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Regular Syndrome Decoding

Definition: We say that e ∈ Fn
2 with Hamming weight w is regular if

e = (e1, e2,⋯, ew),

where each ei has length b = n
w

and Hamming weight one.

Regular Syndrome Decoding (RSD)
Given H ∈ Fr×n

2 , s ∈ Fr
2 and w ∈ N, find e ∈ Fn

2 such that
wt(e) = w

e is regular
He = s

RSD has been employed in many cryptographic constructions, including:

SHA-3 candidate FSB (Augot et al., 2003)
MPC protocols (Hazay et al., 2018)
Pseudorandom Correlation Generators (Boyle et al., 2018, Boyle et al. 2019)
Post-quantum signatures (Carozza et al., 2023, Hongrui et al., 2024)
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Uniqueness bound

Random RSD instance:
- sample uniformly random H ∈ Fr×n

2

- sample uniformly random regular vector e ∈ Fn
2 with weight w

- set s = He

Average number of solutions: SRSD = max {1 ; ( n
w
)
w
2−r = bw2−r}

Let r = (1 − κ) ⋅ n, with κ ∈ [0; 1] being the code rate

Uniqueness bound
Let w = ωn with ω ∈ [0 ; 0.5], ω = 1

b
and b ∈ N.

We have SRSD = 1 if
−ω ⋅ log2(ω) ≤ 1 − κ.

Analogue of Gilbert-Varshamov (GV) bound for the standard Syndrome Decoding (SD)
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Solving RSD

Information Set Decoding (ISD) is known to be the best solver for SD

Hazay et al., 2018: even if tailored to the RSD setting, ISD obtains about the same complexity as direct SD
attacks

Liu et al., 2022: standard ISD attacks perform best for most of the suggested parameters

It seems regularity cannot be used to speed-up attacks...

Briaud and Øygarden, 2023: algebraic-based solvers, cryptanalysis of many RSD instances

Carozza, Couteau and Joux, 2023:

New solvers (CCJ-Linearization, CCJ-Enum, CCJ-MO)

Comparison of SD and RSD using number of solutions
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Our contributions
Regular-ISD algorithms

- Design of new algorithms (Perm, Enum, Rep, Rep-MO)
- Fastest solvers for worst case RSD instances
- Cryptanalysis of many RSD-based schemes

Towards a rigorous hardness classification
- Comparison with SD using (also) costs of known algorithms
- Identification of easy regimes (low dimension and exponentially many solutions)

- Identification of regimes in which RSD is harder than SD
- Worst case RSD is harder than worst case SD

Artifact
- Estimator for concrete and asymptotics costs
- Proof-of-concept implementation of Perm and Enum
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Regularity-encoding parity-check equations

Technique already used in Briaud and Øygarden, 2023 and Carozza, Couteau, Joux, 2023

Any RSD instance {H, s,w} can be transformed into a new RSD instance {H′, s′,w} by encoding regularity:

H′ =

⎛

⎜
⎜
⎜
⎜
⎜

⎝

H
1 1 ⋯ 1

1 1 ⋯ 1
⋱

1 1 ⋯ 1

⎞

⎟
⎟
⎟
⎟
⎟

⎠

b b b

w
s′ =

⎛

⎜
⎜
⎜
⎜
⎜

⎝

s
1
1
⋮

1

⎞

⎟
⎟
⎟
⎟
⎟

⎠

New code dimension: k ′ = n − r − w

New code rate: κ′ = max {κ − w
n
; 0} (with large probability)
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Regular permutations

Definition: Let e = (e1, . . . , ew) ∈ (Fb
2)

w . For an integer v ≤ b and a permutation matrix P let

Pe = (e′1, . . . , e
′

w , e
′′

1 , . . . , e
′′

w),

with e′i ∈ Fb−v
2 and e′′i ∈ Fv

2 . We call P a v -regular permutation if each e′i and each e′′i are formed only by
coordinates from ei .

Example: w = 6, b = 10, v = 4

Length b

e =

π(e) =

Length b − v Length v



Perm: Permutation-Based Regular ISD

Adaptation of Prange’s ISD to the regular setting, using regularity encoding parity-checks and regular
permutation

The information set is constituted by sampling v ∶= k′

w
=

n−r−w
w

coordinates from each block

s

=

H e Regular
permutation

s

=

e′ = ePA B Systematic
form

A−1s Ir A−1B

=

0k
′

Regular,
weight w

Error free, length k ′,
w blocks each with length v

Equal, regular with weight w

Rounding issues: if v is not integer: select ⌊v⌋ from some blocks, ⌈v⌉ from the other blocks. Very mild impact
on complexity



Perm: Permutation-Based Regular ISD

Adaptation of Prange’s ISD to the regular setting, using regularity encoding parity-checks and regular
permutation

The information set is constituted by sampling v ∶= k′

w
=

n−r−w
w

coordinates from each block

s

=

H e Regular
permutation

s

=

e′ = ePA B Systematic
form

A−1s Ir A−1B

=

0k
′

Regular,
weight w

Error free, length k ′,
w blocks each with length v

Equal, regular with weight w

Rounding issues: if v is not integer: select ⌊v⌋ from some blocks, ⌈v⌉ from the other blocks. Very mild impact
on complexity



Perm: Permutation-Based Regular ISD

Adaptation of Prange’s ISD to the regular setting, using regularity encoding parity-checks and regular
permutation

The information set is constituted by sampling v ∶= k′

w
=

n−r−w
w

coordinates from each block

s

=

H e Regular
permutation

s

=

e′ = ePA B Systematic
form

A−1s Ir A−1B

=

0k
′

Regular,
weight w

Error free, length k ′,
w blocks each with length v

Equal, regular with weight w

Rounding issues: if v is not integer: select ⌊v⌋ from some blocks, ⌈v⌉ from the other blocks. Very mild impact
on complexity



Perm: Permutation-Based Regular ISD

Adaptation of Prange’s ISD to the regular setting, using regularity encoding parity-checks and regular
permutation

The information set is constituted by sampling v ∶= k′

w
=

n−r−w
w

coordinates from each block

s

=

H e Regular
permutation

s

=

e′ = ePA B Systematic
form

A−1s Ir A−1B

=

0k
′

Regular,
weight w

Error free, length k ′,
w blocks each with length v

Equal, regular with weight w

Rounding issues: if v is not integer: select ⌊v⌋ from some blocks, ⌈v⌉ from the other blocks. Very mild impact
on complexity



Advanced Regular ISD algorithms
Translation of advanced techniques from the SD setting. Rounding issues have mild impact on complexity

Best solvers for worst case RSD instances (asymptotic time complexity expressed as T = 2cn):
CCJ-MO: c = 0.1281
Rep-MO: c = 0.1117 (0.1119 after resolving rounding issues)

For many RSD-based schemes, regular-ISD algorithms result in the fastest attacks

source (n, k,w) previous best regular-ISD
Hazay et al., 2018 (1280, 860, 80) 132 114

Liu et al., 2024

(210, 652, 57) 90 76
(210, 652, 106) 129 113
(212, 1589, 172) 132 109
(214, 3482, 338) 135 118
(216, 7391, 667) 139 126

Carozza et al., 2024 (1842, 825, 307) 183 153

Table: Bit security for selected instances considering regular-ISD in comparison to previous best approaches.
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Hardness classification: SD vs RSD

Comparison of hardness to solve SD and RSD with same parameters (n, κ, ω)

Number of solutions:
SD is harder than RSD when
solution is unique

Easy RSD Regimes
κ ≥ 1

2
and ω ≥ 1 − κ:

Exponentially many solutions

ω ≥ κ:
κ′ = 0 with large probability

0 5 ⋅ 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

SD: Unique
RSD: Unique
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RSD: Unique

ω
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−
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GV bound Uniqueness bound
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Hardness classification: worst case RSD instances

Worst case RSD instances: w = ω∗n, with ω∗ ≈ min {κ
2
; UB(κ)}

Worst case RSD is harder than worst case SD
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Figure: Comparison of running time of best ISD algorithm on worst case SD instances and best regular-ISD algorithms on
RSD worst case instances
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Conclusions

Regular-ISD: translation of ISD from the standard case to the regular case

Regular-ISD algorithms setting are the best solvers for RSD in many concrete applications and for worst case
instances

Hardness classification for RSD and how to choose worst case RSD instances

Worst case RSD are harder-to-solve than worst case SD for all code rates approximately ≥ 0.5

Full version: Eprint 2023/1568

THANKS FOR THE ATTENTION ;)



Conclusions

Regular-ISD: translation of ISD from the standard case to the regular case

Regular-ISD algorithms setting are the best solvers for RSD in many concrete applications and for worst case
instances

Hardness classification for RSD and how to choose worst case RSD instances

Worst case RSD are harder-to-solve than worst case SD for all code rates approximately ≥ 0.5

Full version: Eprint 2023/1568

THANKS FOR THE ATTENTION ;)



Conclusions

Regular-ISD: translation of ISD from the standard case to the regular case

Regular-ISD algorithms setting are the best solvers for RSD in many concrete applications and for worst case
instances

Hardness classification for RSD and how to choose worst case RSD instances

Worst case RSD are harder-to-solve than worst case SD for all code rates approximately ≥ 0.5

Full version: Eprint 2023/1568

THANKS FOR THE ATTENTION ;)



Conclusions

Regular-ISD: translation of ISD from the standard case to the regular case

Regular-ISD algorithms setting are the best solvers for RSD in many concrete applications and for worst case
instances

Hardness classification for RSD and how to choose worst case RSD instances

Worst case RSD are harder-to-solve than worst case SD for all code rates approximately ≥ 0.5

Full version: Eprint 2023/1568

THANKS FOR THE ATTENTION ;)


