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Threshold Secret Sharing [shamir, Biakiey]

Sharing:

secret s

share s;

share s,

share s3

Reconstruction:

Concern: Side-channel attacks

@ “All-or-nothing” no longer true

XX

secret s

< k shares

@ Revealing partial information from every share

share s,
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secret s
share s; share s, share s3 share s,
fs] | fi(ss) fo | | fa(sn)

Example: Quadratic Residue Leakage

1 if x = a° for some a € F,

fi=f=...=1f,=QR, where QR(x) = j
0 otherwise.

e-leakage resilience: A( f(share(s)), f(share(s’)) ) < e for all s,s’. J
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Local Leakage-resilient Shamir's Secret Sharing

k-out-of-n ShamirSS

degree < (k — 1)

Applications: a useful primitive connected to many other fields

@ Repairing Reed-Solomon codes
[Guruswami Wootters'16, Tamo Ye Barg'17, Guruswami Rawat’17, ...]

@ Secure multiparty computation protocol resilient to local leakage attacks
[Benhamouda Degwekar Ishai Rabin’18, ...]

@ Modular building block for other primitives (e.g., non-malleable secret-sharing)
[Goyal Kumar'18, Srinivasan Vasudevan'l19, ...]
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Prior Work and Our Contribution: Leakage Resilience

Goal: The smaller k/n, the better. Typical parameters for MPC applications are 1/2 and 1/3.

’ Paper ‘ Local leakage family ‘ Fractional threshold k/n ‘ Techniques ‘
BDIR'18 all 0.907
MPSW'21 all 0.868 linear Fourler.
(known half barrier:
Journal of BDIR'18 all 0.85 QR leakage)
MNPSW'22 all 0.78
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Goal: The smaller k/n, the better. Typical parameters for MPC applications are 1/2 and 1/3.

’ Paper ‘ Local leakage family ‘ Fractional threshold k/n ‘ Techniques ‘
BDIR'18 all 0.907
MPSW'21 all 0.868 linear Fourler.
(known half barrier:
Journal of BDIR'18 all 0.85 QR leakage)
MNPSW'22 all 0.78
all 0.69
, li Fouri
KK'23 balanced leakages 0.58 near rouner
(no known barrier)
unbalanced leakages small constant
. QR leakage any constant i .
This work higher-order Fourier
almost all any constant

@ Requires sufficiently large field, while others require n large (no matter what p is)
@ Worst-case leakage remains open

@ Extends to any MDS code-based secret sharing scheme
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Prior Work and Our Contribution: Attacks

Consider k-out-of-n Shamir’s secret sharing over a prime field Fp.

Paper

Attack

Distinguishing Advantage

Constraints

NS'20

t-bit random leakage
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Prior Work and Our Contribution: Attacks

Consider k-out-of-n Shamir’s secret sharing over a prime field Fp.

Paper Attack Distinguishing Advantage Constraints
NS'20 t-bit random leakage 1/2 logp < t(n—k)/k
AMNNPSW'21 | 5, explicit 1-bit local leakage 1/(2kk!) k<n<p
MNPSWYY'22 (parity-of-parity attack) 05 (2/n)" =
CSTW'23 an explicit 3-bit local leakage 1 k=0(/n), n=p—1
This work an explicit 2-bit local leakage 1 k= 0O(y/n),n=©(p)

@ Techniques: exponential sums, particularly Weil’s bounds
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Technical Highlights



Our New Analytical Proxy

Our New Proxy

A( f(share(0)), f(share(s)) ) < > > f,-,g/.‘ s
£e{0,1}7 i=1
V.

@ share(s): set of all possible (random) shares of secret s
@ Leakage function: f = (fi,f,...,f,), where fi: F, — {0,1}
@ Leakage distribution on s, denoted f(share(s)):

@ samples (s1,2,...,5n) < share(s)

@ outputs (fi(s1), 2(s2), - -, fa(sn))
@ Balanced leakage functions: f;,gl. = ]lf/‘—l(éf) — ]l_erfl__l(L,f) )
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@ share(s): set of all possible (random) shares of secret s
@ Leakage function: f = (fi,f,...,f,), where fi: F, — {0,1}
@ Leakage distribution on s, denoted f(share(s)):

@ samples (s1,2,...,5n) < share(s)
@ outputs (fi(s1), 2(s2), - -, fa(sn))

@ Balanced leakage functions: f; ,, = 1, 1

—s+£7 1)

i

Tools: Higher-order Fourier Analysis

@ Gowers norms

)

.

@ Generalized von Neumann inequality

.

Implication

Suffices to bound the Gower's norms of balanced leakage functions.
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A generalization of (classical) linear Fourier analysis J

Linear Fourier Analysis Higher-order Fourier Analysis

@ Developed at least a few centuries ago @ Developed in the last 25 years

@ Studies how a function correlates with a

@ Studies how a function correlates with a
“polynomial phase”: x — exp(2mi¢x?)

“linear phase”: x — exp(2mi(x)
@ Counts simple linear patterns: 3-term @ Counts more complex linear patterns: 4-term

arithmetic progressions (Roth’s theorem) AP (Szemerédi's regularity lemma)

Exy[La(x)La(x + y)La(x + 2y)] ) Exy[la(x)La(x + y)La(x + 2y)La(x + 3y)]
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n-Linear Form

Let W = (1,2, ...,%n) be linear functions over t variables x = (x1, x2, ..., x;) and
f=(f,h,...,f), where );: F* — F, f;: F — [—1,1]. Define
N(fi, o, .. £) = Exepe[(¥1(X)) - £2(12(x))- - fa(2bn(X))]

@ 3-term AP: Ay(1a,1a,14), where ¢1(x, y) = x, 2(x,y) = x +y, ¥3(x,y) = x + 2y.
@ 4-term AP: Ay(La,1a,1a,14), where additionally ¥4(x, y) = x + 3y.
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A

Theorem (Generalized von Neumann Inequality [ D

Let W = (¢1,2,...,1n) be a system of linear functions with Cauchy-Schwarz complexity d. Let
gi: Fp — [—1,1] for every i € [n]. Provided p > d, it holds that

/\\U(gh 82, .- 7g’7) < lrgiign”gi”UdJrl‘

V.

One of the key ingredients in the proof of the breakthrough result: “The primes contain arbitrarily long

arithmetic progressions.”

Applying this theorem extensively to all leakage values £ and indices i yields

A( f(share(0)), F(share(s))) <> ZH”‘

yd+1°
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[llustrative Example

Consider n = 4 parties, threshold k = 4 over prime field F7 with evaluation places {1, 2, 3,4}.

(Random) shares of secret 0

1 2 3 4 1 2 3
share(0) = (Go), where Go= |1 2> 3> 4| =(1 4 2
1 2 3 4 1 16

si=x+y+z 5 =2x+4y+ z, 53 =3x+ 2y + 6z, ss = 4x + 2y + z for uniformly random x, y, z
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Not a linear form, but bounded by 4 linear forms:

Av(Ta—T1sia,1a, 14, 1a)+Aw(L, La—T1sia, La,1a)+Aw(1a, 14, La—1sia, La)+Aw(1la, 1a, 14, La—1sia)
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X X+ a

Il = Exa[f(x)f(x + a)] [Illye = Ex.ap[f (x)f(x + a)f (x + b)f(x + a+ b)]

Bounding the Gowers norms of an arbitrary function is challenging.

Balanced quadratic leakage functions Random balanced leakage function

1 1
ITor — Tsiqrllye < P for all s. |14 — Lstallys = Od (;) for all s.

Technique: multiplicative character sums Technique: standard probabilistic methods
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Summary and Open Problems

Takeaway

@ Develop a new analytic framework using higher-order Fourier analysis

@ cn-out-of-n Shamir secret sharing is leakage-resilient against almost all 1-bit local leakage

@ Present an explicit 2-bit leakage attack that determines the secret when k = ©(y/n), p = ©(n)
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Thank you!
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