# Towards Breaking the Half-Barrier of Local Leakage-resilient Shamir's Secret Sharing

Hai H. Nguyen

# **ETH** zürich

CRYPTO-2024









#### Concern: Side-channel attacks

- "All-or-nothing" no longer true
- Revealing partial information from every share

Benhamouda-Degwekar-Ishai-Rabin-18, Goyal-Kumar-18



Benhamouda-Degwekar-Ishai-Rabin-18, Goyal-Kumar-18



Benhamouda-Degwekar-Ishai-Rabin-18, Goyal-Kumar-18



Example: Quadratic Residue Leakage

$$f_1 = f_2 = \ldots = f_n = QR$$
, where  $QR(x) = \begin{cases} 1 & \text{if } x = a^2 \text{ for some } a \in F_p, \\ 0 & \text{otherwise.} \end{cases}$ 

Benhamouda-Degwekar-Ishai-Rabin-18, Goyal-Kumar-18



Example: Quadratic Residue Leakage

$$f_1 = f_2 = \ldots = f_n = QR$$
, where  $QR(x) = \begin{cases} 1 & \text{if } x = a^2 \text{ for some } a \in F_p, \\ 0 & \text{otherwise.} \end{cases}$ 

 $\varepsilon$ -leakage resilience:  $\Delta(f(\text{share}(s)), f(\text{share}(s'))) \leq \varepsilon$  for all s, s'.

### Local Leakage-resilient Shamir's Secret Sharing



# Local Leakage-resilient Shamir's Secret Sharing



#### Applications: a useful primitive connected to many other fields

- Repairing Reed-Solomon codes [Guruswami Wootters'16, Tamo Ye Barg'17, Guruswami Rawat'17, ...]
- Secure multiparty computation protocol resilient to local leakage attacks [Benhamouda Degwekar Ishai Rabin'18, ...]
- Modular building block for other primitives (e.g., non-malleable secret-sharing) [Goyal Kumar'18, Srinivasan Vasudevan'19, ...]

| Paper              | Local leakage family | Fractional threshold $k/n$ | Techniques     |
|--------------------|----------------------|----------------------------|----------------|
| BDIR'18            | all                  | 0.907                      |                |
| MPSW'21            | all                  | 0.868                      | linear Fourier |
| Journal of BDIR'18 | all                  | 0.85                       | QR leakage)    |
| MNPSW'22           | all                  | 0.78                       |                |
|                    |                      |                            |                |
|                    |                      |                            |                |
|                    |                      |                            |                |
|                    |                      |                            |                |
|                    |                      |                            |                |

| Paper              | Local leakage family | Fractional threshold $k/n$ | Techniques         |
|--------------------|----------------------|----------------------------|--------------------|
| BDIR'18            | all                  | 0.907                      |                    |
| MPSW'21            | all                  | 0.868                      | linear Fourier     |
| Journal of BDIR'18 | all                  | 0.85                       | QR leakage)        |
| MNPSW'22           | all                  | 0.78                       |                    |
|                    | all                  | 0.69                       |                    |
| KK'23              | balanced leakages    | 0.58                       | (no known barrier) |
|                    | unbalanced leakages  | small constant             |                    |
|                    |                      |                            |                    |
|                    |                      |                            |                    |

| Paper              | Local leakage family | Fractional threshold $k/n$ | Techniques           |
|--------------------|----------------------|----------------------------|----------------------|
| BDIR'18            | all                  | 0.907                      |                      |
| MPSW'21            | all                  | 0.868                      | linear Fourier       |
| Journal of BDIR'18 | all                  | 0.85                       | QR leakage)          |
| MNPSW'22           | all                  | 0.78                       |                      |
|                    | all                  | 0.69                       |                      |
| KK'23              | balanced leakages    | 0.58                       | (no known barrier)   |
|                    | unbalanced leakages  | small constant             |                      |
| This work          |                      |                            | higher-order Fourier |

| Paper              | Local leakage family | Fractional threshold $k/n$ | Techniques            |
|--------------------|----------------------|----------------------------|-----------------------|
| BDIR'18            | all                  | 0.907                      |                       |
| MPSW'21            | all                  | 0.868                      | linear Fourier        |
| Journal of BDIR'18 | all                  | 0.85                       | QR leakage)           |
| MNPSW'22           | all                  | 0.78                       |                       |
|                    | all                  | 0.69                       |                       |
| KK'23              | balanced leakages    | 0.58                       | (no known barrier)    |
|                    | unbalanced leakages  | small constant             |                       |
| This work          | <b>QR</b> leakage    | any constant               | higher-order Fourier  |
| THIS WOLK          |                      |                            | ingher-order i ourier |

| Paper              | Local leakage family | Fractional threshold $k/n$ | Techniques            |
|--------------------|----------------------|----------------------------|-----------------------|
| BDIR'18            | all                  | 0.907                      |                       |
| MPSW'21            | all                  | 0.868                      | linear Fourier        |
| Journal of BDIR'18 | all                  | 0.85                       | QR leakage)           |
| MNPSW'22           | all                  | 0.78                       |                       |
|                    | all                  | 0.69                       |                       |
| KK'23              | balanced leakages    | 0.58                       | (no known barrier)    |
|                    | unbalanced leakages  | small constant             | ()                    |
| This work          | <b>QR</b> leakage    | any constant               | higher-order Fourier  |
|                    | almost all           | any constant               | ingher-order i oarier |

| Paper              | Local leakage family | Fractional threshold $k/n$ | Techniques           |
|--------------------|----------------------|----------------------------|----------------------|
| BDIR'18            | all                  | 0.907                      |                      |
| MPSW'21            | all                  | 0.868                      | linear Fourier       |
| Journal of BDIR'18 | all                  | 0.85                       | QR leakage)          |
| MNPSW'22           | all                  | 0.78                       |                      |
|                    | all                  | 0.69                       |                      |
| KK'23              | balanced leakages    | 0.58                       | (no known barrier)   |
|                    | unbalanced leakages  | small constant             | (                    |
| This work          | <b>QR</b> leakage    | any constant               | higher-order Fourier |
|                    | almost all           | any constant               | ingher-order rouner  |

- Requires sufficiently large field, while others require *n* large (no matter what *p* is)
- Worst-case leakage remains open
- Extends to any MDS code-based secret sharing scheme

| Paper | Attack                       | Distinguishing Advantage | Constraints                 |
|-------|------------------------------|--------------------------|-----------------------------|
| NS'20 | <i>t</i> -bit random leakage | 1/2                      | $\log p \leqslant t(n-k)/k$ |
|       |                              |                          |                             |
|       |                              |                          |                             |
|       |                              |                          |                             |
|       |                              |                          |                             |

| Paper                     | Attack                                                                     | Distinguishing Advantage | Constraints                 |
|---------------------------|----------------------------------------------------------------------------|--------------------------|-----------------------------|
| NS'20                     | <i>t</i> -bit random leakage                                               | 1/2                      | $\log p \leqslant t(n-k)/k$ |
| AM <mark>N</mark> NPSW'21 | an explicit <mark>1</mark> -bit local leakage<br>(parity-of-parity attack) | $1/(2^{k}k!)$            | k < n < n                   |
| MNPSWYY'22                |                                                                            | $0.5\cdot(2/\pi)^k$      | k ≋ <i>II</i> < p           |
|                           |                                                                            |                          |                             |
|                           |                                                                            |                          |                             |

| Paper                     | Attack                                                                     | Distinguishing Advantage | Constraints                  |
|---------------------------|----------------------------------------------------------------------------|--------------------------|------------------------------|
| NS'20                     | <i>t</i> -bit random leakage                                               | 1/2                      | $\log p \leqslant t(n-k)/k$  |
| AM <mark>N</mark> NPSW'21 | an explicit <mark>1</mark> -bit local leakage<br>(parity-of-parity attack) | $1/(2^{k}k!)$            | ksnin                        |
| MNPSWYY'22                |                                                                            | $0.5\cdot(2/\pi)^k$      | k ≈ n < p                    |
| CSTW'23                   | an explicit <mark>3</mark> -bit local leakage                              | 1                        | $k = O(\sqrt{n}), n = p - 1$ |
|                           |                                                                            |                          |                              |

| Paper                     | Attack                                                                     | Distinguishing Advantage | Constraints                      |
|---------------------------|----------------------------------------------------------------------------|--------------------------|----------------------------------|
| NS'20                     | <i>t</i> -bit random leakage                                               | 1/2                      | $\log p \leqslant t(n-k)/k$      |
| AM <mark>N</mark> NPSW'21 | an explicit <mark>1</mark> -bit local leakage<br>(parity-of-parity attack) | $1/(2^{k}k!)$            | kspsp                            |
| MNPSWYY'22                |                                                                            | $0.5\cdot(2/\pi)^k$      | k ≋ n < p                        |
| CSTW'23                   | an explicit <mark>3</mark> -bit local leakage                              | 1                        | $k = O(\sqrt{n}), n = p - 1$     |
| This work                 | an explicit <mark>2</mark> -bit local leakage                              | 1                        | $k = O(\sqrt{n}), n = \Theta(p)$ |

Consider k-out-of-n Shamir's secret sharing over a prime field  $F_p$ .

| Paper                     | Attack                                                                     | Distinguishing Advantage | Constraints                      |
|---------------------------|----------------------------------------------------------------------------|--------------------------|----------------------------------|
| NS'20                     | <i>t</i> -bit random leakage                                               | 1/2                      | $\log p \leqslant t(n-k)/k$      |
| AM <mark>N</mark> NPSW'21 | an explicit <mark>1</mark> -bit local leakage<br>(parity-of-parity attack) | $1/(2^{k}k!)$            | ksnin                            |
| MNPSWYY'22                |                                                                            | $0.5\cdot(2/\pi)^k$      | k ≈ n < p                        |
| CSTW'23                   | an explicit <mark>3</mark> -bit local leakage                              | 1                        | $k = O(\sqrt{n}), n = p - 1$     |
| This work                 | an explicit <mark>2</mark> -bit local leakage                              | 1                        | $k = O(\sqrt{n}), n = \Theta(p)$ |

Remarks

• Techniques: exponential sums, particularly Weil's bounds

# Technical Highlights

# Our New Analytical Proxy

#### Our New Proxy

$$\Delta( \text{ } f(\mathsf{share}(0)), \text{ } f(\mathsf{share}(s)) \text{ }) \leqslant \sum_{\ell \in \{0,1\}^n} \sum_{i=1}^n \Bigl\| \tilde{f}_{i,\ell_i} \Bigr\|_{U^{d+1}}$$

- share(s): set of all possible (random) shares of secret s
- Leakage function:  $\boldsymbol{f} = (f_1, f_2, \dots, f_n)$ , where  $f_i \colon \boldsymbol{F_p} \to \{0, 1\}$
- Leakage distribution on s, denoted f(share(s)):
  - samples  $(s_1, s_2, \ldots, s_n) \leftarrow \text{share}(s)$
  - outputs  $(f_1(s_1), f_2(s_2), ..., f_n(s_n))$

• Balanced leakage functions: 
$$\tilde{f}_{i,\ell_i} = \mathbb{1}_{f_i^{-1}(\ell_i)} - \mathbb{1}_{-s+f_i^{-1}(\ell_i)}$$

# Our New Analytical Proxy

#### Our New Proxy

$$\Delta( \ \boldsymbol{f}(\mathsf{share}(0)), \ \boldsymbol{f}(\mathsf{share}(s)) \ ) \leqslant \sum_{\boldsymbol{\ell} \in \{0,1\}^n} \sum_{i=1}^n \Bigl\| \tilde{f}_{i,\ell_i} \Bigr\|_{U^{d+1}}$$

- share(s): set of all possible (random) shares of secret s
- Leakage function:  $f = (f_1, f_2, \dots, f_n)$ , where  $f_i \colon F_p \to \{0, 1\}$
- Leakage distribution on *s*, denoted *f*(share(*s*)):
  - samples  $(s_1, s_2, \ldots, s_n) \leftarrow \text{share}(s)$
  - outputs  $(f_1(s_1), f_2(s_2), \ldots, f_n(s_n))$

• Balanced leakage functions: 
$$\tilde{f}_{i,\ell_i} = \mathbb{1}_{f_i^{-1}(\ell_i)} - \mathbb{1}_{-s+f_i^{-1}(\ell_i)}$$

#### Tools: Higher-order Fourier Analysis

- Gowers norms
- Generalized von Neumann inequality

# Our New Analytical Proxy

#### Our New Proxy

$$\Delta( \text{ } f(\mathsf{share}(0)), \text{ } f(\mathsf{share}(s)) \text{ }) \leqslant \sum_{\ell \in \{0,1\}^n} \sum_{i=1}^n \Bigl\| \tilde{f}_{i,\ell_i} \Bigr\|_{U^{d+1}}$$

- share(s): set of all possible (random) shares of secret s
- Leakage function:  $f = (f_1, f_2, \dots, f_n)$ , where  $f_i \colon F_p \to \{0, 1\}$
- Leakage distribution on *s*, denoted *f*(share(*s*)):
  - samples  $(s_1, s_2, \ldots, s_n) \leftarrow \text{share}(s)$
  - outputs  $(f_1(s_1), f_2(s_2), \ldots, f_n(s_n))$

• Balanced leakage functions: 
$$\tilde{f}_{i,\ell_i} = \mathbb{1}_{f_i^{-1}(\ell_i)} - \mathbb{1}_{-s+f_i^{-1}(\ell_i)}$$

#### Tools: Higher-order Fourier Analysis

- Gowers norms
- Generalized von Neumann inequality

#### Implication

Suffices to bound the Gower's norms of balanced leakage functions.

A generalization of (classical) linear Fourier analysis

A generalization of (classical) linear Fourier analysis

#### Linear Fourier Analysis

- Developed at least a few centuries ago
- Studies how a function correlates with a "linear phase":  $x \mapsto \exp(2\pi i \zeta x)$
- Counts simple linear patterns: 3-term arithmetic progressions (Roth's theorem)

   \[
   \begin{aligned}
   x\_{x,y} [1\_A(x) 1\_A(x+y) 1\_A(x+2y)]
   \]

#### Higher-order Fourier Analysis

- Developed in the last 25 years
- Studies how a function correlates with a "polynomial phase": x → exp(2πiζx<sup>2</sup>)
- Counts more complex linear patterns: 4-term AP (Szemerédi's regularity lemma)
   E<sub>x,y</sub>[1<sub>A</sub>(x)1<sub>A</sub>(x + y)1<sub>A</sub>(x + 2y)1<sub>A</sub>(x + 3y)]

A generalization of (classical) linear Fourier analysis

#### Linear Fourier Analysis

- Developed at least a few centuries ago
- Studies how a function correlates with a "linear phase":  $x \mapsto \exp(2\pi i \zeta x)$
- Counts simple linear patterns: 3-term arithmetic progressions (Roth's theorem)

   \[
   \begin{aligned}
   x\_{x,y} [1\_A(x) 1\_A(x+y) 1\_A(x+2y)]
   \]

#### Higher-order Fourier Analysis

- Developed in the last 25 years
- Studies how a function correlates with a "polynomial phase": x → exp(2πiζx<sup>2</sup>)
- Counts more complex linear patterns: 4-term AP (Szemerédi's regularity lemma)
   E<sub>x,y</sub>[1<sub>A</sub>(x)1<sub>A</sub>(x + y)1<sub>A</sub>(x + 2y)1<sub>A</sub>(x + 3y)]

#### n-Linear Form

Let  $\Psi = (\psi_1, \psi_2, \dots, \psi_n)$  be linear functions over t variables  $\mathbf{x} = (x_1, x_2, \dots, x_t)$  and  $\mathbf{f} = (f_1, f_2, \dots, f_n)$ , where  $\psi_i \colon F^t \to F$ ,  $f_i \colon F \to [-1, 1]$ . Define  $\Lambda_{\Psi}(f_1, f_2, \dots, f_n) = \mathbb{E}_{\mathbf{x} \in F^t}[f_1(\psi_1(\mathbf{x})) \cdot f_2(\psi_2(\mathbf{x})) \cdots f_n(\psi_n(\mathbf{x}))]$ 

A generalization of (classical) linear Fourier analysis

#### Linear Fourier Analysis

- Developed at least a few centuries ago
- Studies how a function correlates with a "linear phase": x → exp(2πiζx)
- Counts simple linear patterns: 3-term arithmetic progressions (Roth's theorem)

   \[
   \begin{aligned}
   x\_{x,y} [1\_A(x) 1\_A(x+y) 1\_A(x+2y)]
   \]

#### Higher-order Fourier Analysis

- Developed in the last 25 years
- Studies how a function correlates with a "polynomial phase": x → exp(2πiζx<sup>2</sup>)
- Counts more complex linear patterns: 4-term AP (Szemerédi's regularity lemma)

   \[ \mathbb{L}\_{x,y} [ \mathbb{L}\_{A}(x) \mathbb{L}\_{A}(x+y) \mathbb{L}\_{A}(x+2y) \mathbb{L}\_{A}(x+3y) ]
   \]

#### n-Linear Form

Let  $\Psi = (\psi_1, \psi_2, \dots, \psi_n)$  be linear functions over t variables  $\mathbf{x} = (x_1, x_2, \dots, x_t)$  and  $\mathbf{f} = (f_1, f_2, \dots, f_n)$ , where  $\psi_i \colon F^t \to F$ ,  $f_i \colon F \to [-1, 1]$ . Define  $\Lambda_{\Psi}(f_1, f_2, \dots, f_n) = \mathbb{E}_{\mathbf{x} \in F^t}[f_1(\psi_1(\mathbf{x})) \cdot f_2(\psi_2(\mathbf{x})) \cdots f_n(\psi_n(\mathbf{x}))]$ 

- 3-term AP:  $\Lambda_{\Psi}(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A)$ , where  $\psi_1(x, y) = x$ ,  $\psi_2(x, y) = x + y$ ,  $\psi_3(x, y) = x + 2y$ .
- 4-term AP:  $\Lambda_{\Psi}(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A)$ , where additionally  $\psi_4(x, y) = x + 3y$ .

# Main Ideas

Reduction to bounding linear forms

$$\Delta(\boldsymbol{f}(\mathsf{share}(0)), \boldsymbol{f}(\mathsf{share}(\boldsymbol{s}))) \leqslant \sum_{\boldsymbol{\ell}} \sum_{i}^{n} \Lambda_{\Psi}(\tilde{f}_{i,\ell_{1}}, \tilde{f}_{i,\ell_{2}}, \dots, \tilde{f}_{i,\ell_{n}}).$$

### Main Ideas

#### Reduction to bounding linear forms

$$\Delta(\ \boldsymbol{f}(\mathsf{share}(0)),\ \boldsymbol{f}(\mathsf{share}(s))\ ) \leqslant \sum_{\boldsymbol{\ell}} \sum_{i}^{n} \Lambda_{\Psi}(\tilde{f}_{i,\ell_{1}},\tilde{f}_{i,\ell_{2}},\ldots,\tilde{f}_{i,\ell_{n}}).$$

Theorem (Generalized von Neumann Inequality [GreenTao'10])

Let  $\Psi = (\psi_1, \psi_2, \dots, \psi_n)$  be a system of linear functions with Cauchy-Schwarz complexity d. Let  $g_i : F_p \to [-1, 1]$  for every  $i \in [n]$ . Provided  $p \ge d$ , it holds that

 $\Lambda_{\Psi}(g_1,g_2,\ldots,g_n) \leqslant \min_{1\leqslant i\leqslant n} \|g_i\|_{U^{d+1}}.$ 

One of the key ingredients in the proof of the breakthrough result: "The primes contain arbitrarily long arithmetic progressions."

### Main Ideas

#### Reduction to bounding linear forms

$$\Delta(\ \boldsymbol{f}(\mathsf{share}(0)),\ \boldsymbol{f}(\mathsf{share}(s))\ ) \leqslant \sum_{\boldsymbol{\ell}} \sum_{i}^{n} \Lambda_{\Psi}(\tilde{f}_{i,\ell_{1}},\tilde{f}_{i,\ell_{2}},\ldots,\tilde{f}_{i,\ell_{n}}).$$

Theorem (Generalized von Neumann Inequality [GreenTao'10])

Let  $\Psi = (\psi_1, \psi_2, \dots, \psi_n)$  be a system of linear functions with Cauchy-Schwarz complexity d. Let  $g_i : F_p \to [-1, 1]$  for every  $i \in [n]$ . Provided  $p \ge d$ , it holds that

 $\Lambda_{\Psi}(g_1,g_2,\ldots,g_n) \leqslant \min_{1\leqslant i\leqslant n} \|g_i\|_{U^{d+1}}.$ 

One of the key ingredients in the proof of the breakthrough result: "The primes contain arbitrarily long arithmetic progressions."

Applying this theorem extensively to all leakage values  $\ell$  and indices *i* yields

$$\Delta(f(\mathsf{share}(0)), f(\mathsf{share}(s))) \leqslant \sum_{\ell} \sum_{i=1}^{n} \left\| \tilde{f}_{i,\ell_i} \right\|_{U^{d+1}}.$$

Consider n = 4 parties, threshold k = 4 over prime field  $F_7$  with evaluation places  $\{1, 2, 3, 4\}$ .

(Random) shares of secret 0 share(0) =  $\langle G_0 \rangle$ , where  $G_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^3 & 3^3 & 4^3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 2 \\ 1 & 1 & 6 & 1 \end{pmatrix}$  $s_1 = x + y + z$ ,  $s_2 = 2x + 4y + z$ ,  $s_3 = 3x + 2y + 6z$ ,  $s_4 = 4x + 2y + z$  for uniformly random x, y, z

Consider n = 4 parties, threshold k = 4 over prime field  $F_7$  with evaluation places  $\{1, 2, 3, 4\}$ .

#### (Random) shares of secret 0

share(0) = 
$$\langle G_0 \rangle$$
, where  $G_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^3 & 3^3 & 4^3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 2 \\ 1 & 1 & 6 & 1 \end{pmatrix}$ 

 $s_1 = x + y + z$ ,  $s_2 = 2x + 4y + z$ ,  $s_3 = 3x + 2y + 6z$ ,  $s_4 = 4x + 2y + z$  for uniformly random x, y, z

Suppose the leakage function is QR. Let  $A = \{a^2 \mid a \in F_7\} = \{0, 1, 4, 2\}$ .

#### Probability of leakage being 1

 $\Pr[f(\text{share}(0)) = 1] = \mathbb{E}_{x,y,z}[\mathbb{1}_A(x+y+z)\mathbb{1}_A(2x+4y+z)\mathbb{1}_A(3x+2y+6z)\mathbb{1}_A(4x+2y+z)]$ =  $\Lambda_{\Psi}(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A)$ 

 $\mathsf{Pr}[f(\mathsf{share}(s)) = 1] = \Lambda_{\Psi}(\mathbb{1}_{s+A}, \mathbb{1}_{s+A}, \mathbb{1}_{s+A}, \mathbb{1}_{s+A}) \quad \mathsf{since \ share}(s) = (s, s, \dots, s) + \mathsf{share}(0)$ 

Consider n = 4 parties, threshold k = 4 over prime field  $F_7$  with evaluation places  $\{1, 2, 3, 4\}$ .

(Random) shares of secret 0

share(0) = 
$$\langle G_0 \rangle$$
, where  $G_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^3 & 3^3 & 4^3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 2 \\ 1 & 1 & 6 & 1 \end{pmatrix}$ 

 $s_1 = x + y + z$ ,  $s_2 = 2x + 4y + z$ ,  $s_3 = 3x + 2y + 6z$ ,  $s_4 = 4x + 2y + z$  for uniformly random x, y, z

Suppose the leakage function is QR. Let  $A = \{a^2 \mid a \in F_7\} = \{0, 1, 4, 2\}$ .

#### Probability of leakage being 1

 $|\Pr[f(\mathsf{share}(0)) = 1] - \Pr[f(\mathsf{share}(s)) = 1]| = |\Lambda_{\Psi}(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_{s+A}, \mathbb{1}_{s+A}, \mathbb{1}_{s+A}, \mathbb{1}_{s+A}, \mathbb{1}_{s+A}, \mathbb{1}_{s+A})|$ 

Consider n = 4 parties, threshold k = 4 over prime field  $F_7$  with evaluation places  $\{1, 2, 3, 4\}$ .

(Random) shares of secret 0

share(0) = 
$$\langle G_0 \rangle$$
, where  $G_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^3 & 3^3 & 4^3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 2 \\ 1 & 1 & 6 & 1 \end{pmatrix}$ 

 $s_1 = x + y + z$ ,  $s_2 = 2x + 4y + z$ ,  $s_3 = 3x + 2y + 6z$ ,  $s_4 = 4x + 2y + z$  for uniformly random x, y, z

Suppose the leakage function is QR. Let  $A = \{a^2 \mid a \in F_7\} = \{0, 1, 4, 2\}$ .

#### Probability of leakage being 1

 $|\Pr[f(\mathsf{share}(0)) = 1] - \Pr[f(\mathsf{share}(s)) = 1]| = |\Lambda_{\Psi}(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \Lambda_{\Psi}(\mathbb{1}_{s+A}, \mathbb{1}_{s+A}, \mathbb{1}_{s+A}, \mathbb{1}_{s+A})|$ 

Not a linear form, but bounded by 4 linear forms:

 $\Lambda_{\Psi}(\mathbb{1}_{A}-\mathbb{1}_{s+A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A})+\Lambda_{\Psi}(\mathbb{1},\mathbb{1}_{A}-\mathbb{1}_{s+A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A}-\mathbb{1}_{s+A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}$ 







#### Remark

Bounding the Gowers norms of an arbitrary function is challenging.



#### Remark

Bounding the Gowers norms of an arbitrary function is challenging.

#### Balanced quadratic leakage functions

$$\|\mathbb{1}_{\mathsf{QR}} - \mathbb{1}_{s+\mathsf{QR}}\|_{U^d} \leqslant rac{1}{p^{\Theta(c_d)}} ext{ for all } s.$$

Technique: multiplicative character sums



#### Remark

Bounding the Gowers norms of an arbitrary function is challenging.

#### Balanced quadratic leakage functions

$$\|\mathbb{1}_{\mathsf{QR}} - \mathbb{1}_{s+\mathsf{QR}}\|_{U^d} \leqslant rac{1}{p^{\Theta(c_d)}} ext{ for all } s.$$

Technique: multiplicative character sums

#### Random balanced leakage function

$$\|\mathbb{1}_A - \mathbb{1}_{s+A}\|_{U^d} = O_d\left(rac{1}{p}
ight)$$
 for all  $s$ .

Technique: standard probabilistic methods

# Summary and Open Problems

#### Takeaway

Oevelop a new analytic framework using higher-order Fourier analysis

• cn-out-of-n Shamir secret sharing is leakage-resilient against almost all 1-bit local leakage

**2** Present an explicit 2-bit leakage attack that determines the secret when  $k = \Theta(\sqrt{n})$ ,  $p = \Theta(n)$ 

# Summary and Open Problems

#### Takeaway

Oevelop a new analytic framework using higher-order Fourier analysis

• cn-out-of-n Shamir secret sharing is leakage-resilient against almost all 1-bit local leakage

2 Present an explicit 2-bit leakage attack that determines the secret when  $k = \Theta(\sqrt{n})$ ,  $p = \Theta(n)$ 

#### **Open Problems**

Leakage resilience

- Breaking the half threshold for the worst-case leakage
- What if p is not large enough, says  $p = \Theta(n)$ ?
- Multiple-bit leakages
- Does randomizing the evaluation places help?

#### 2 Attacks

- 1-bit leakage attack
- Higher threshold regime

# Summary and Open Problems

#### Takeaway

Oevelop a new analytic framework using higher-order Fourier analysis

• cn-out-of-n Shamir secret sharing is leakage-resilient against almost all 1-bit local leakage

2 Present an explicit 2-bit leakage attack that determines the secret when  $k = \Theta(\sqrt{n})$ ,  $p = \Theta(n)$ 

#### **Open Problems**

Leakage resilience

- Breaking the half threshold for the worst-case leakage
- What if p is not large enough, says  $p = \Theta(n)$ ?
- Multiple-bit leakages
- Does randomizing the evaluation places help?

#### 2 Attacks

- 1-bit leakage attack
- Higher threshold regime

