Scalable Multiparty Computation from Non-linear Secret Sharing

Sanjam Garg

UC Berkeley

Abhishek Jain

JHU & NTT Research

Pratvav Mukherjee

Supra Research

Mingyuan Wang

UC Berkeley -> NYU Shanghai

Aug. 2024 @ CRYPTO

- honest majority
- information-theoretic plain model
- semi-honest adversary

- honest majority
- information-theoretic plain model
- semi-honest adversary

Objective

- honest majority
- information-theoretic plain model
- semi-honest adversary

Objective

• Minimizing overall communication & computation complexity

- honest majority
- information-theoretic plain model
- semi-honest adversary

Objective

- Minimizing overall communication & computation complexity
- For an arithmetic circuit C over F, can we achieve overall computation complexity |C| field operations?
 - Optimal since insecure evaluation requires the same complexity

- honest majority
- information-theoretic plain model
- semi-honest adversary

Objective

- Minimizing overall communication & computation complexity
- For an arithmetic circuit C over F, can we achieve overall computation complexity |C| field operations?
 - Optimal since insecure evaluation requires the same complexity
- Scalable as the overall complexity does not grow with n.

• Most practically-efficient MPC protocols (only field operations, no cryptographic operations)

- Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
- $\bullet\,$ Can distribute a large computation over parties; per party workload decreases as n grows

- Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
- ${\bullet}\,$ Can distribute a large computation over parties; per party workload decreases as n grows
- Honest majority assumption becomes more reliable as n grows

- Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
- Can distribute a large computation over parties; per party workload decreases as n grows
- Honest majority assumption becomes more reliable as n grows
- Many applications naturally involve many parties (e.g., federated learning)

...

- Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
- Can <u>distribute</u> a large computation over parties; per party workload decreases as n grows
- Honest majority assumption becomes more reliable as n grows
- Many applications naturally involve many parties (e.g., federated learning)

After a long sequence of works [Ben-Or-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, Franklin-Yung'92, Damgard-Nielson'07, ...]

After a long sequence of works [Ben-Or-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, Franklin-Yung'92, Damgard-Nielson'07, ...]

Structured Circuit

- SIMD circuit [Franklin-Yung'92]
- highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]

After a long sequence of works [Ben-Or-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, Franklin-Yung'92, Damgard-Nielson'07, ...]

Structured Circuit

- SIMD circuit [Franklin-Yung'92]
- highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]

General Circuit

- Circuit transformation [Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
 - introduces $poly(\log |C|, d)$ overhead (communication/computation, round complexity)

After a long sequence of works [Ben-Or-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, Franklin-Yung'92, Damgard-Nielson'07, ...]

Structured Circuit

- SIMD circuit [Franklin-Yung'92]
- highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]

General Circuit

- Circuit transformation [Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
 - introduces poly(log |C|, d) overhead (communication/computation, round complexity)
- Share transformation [Goyal-Polychroniadou-Song'21, Goyal-Polychroniadou-Song'22]
 - Only achieve communication complexity |C| field element
 - Computation complexity is still $n \cdot |C|$ field operation

Can we build scalable MPC protocol in computation for general circuit?

Assuming ${\pmb F}$ is an exponentially large prime field,

For any general circuit C over F, there is a scalable MPC protocol among n parties

Assuming F is an exponentially large prime field,

For any general circuit C over F, there is a scalable MPC protocol among n parties

• The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|) \approx |C|$ field elements/operations)

Assuming F is an exponentially large prime field,

• We prove security when $\log |F| = \widetilde{O}(n^2)$

For any general circuit C over F, there is a scalable MPC protocol among n parties

• The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|) \approx |C|$ field elements/operations)

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \widetilde{O}(n^2)$
- We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F, there is a scalable MPC protocol among n parties

• The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|) \approx |C|$ field elements/operations)

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \widetilde{O}(n^2)$
- We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F, there is a scalable MPC protocol among n parties

- The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|) \approx |C|$ field elements/operations)
- We measure complexity at a bit-level (as opposed to |C| field operations)

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \widetilde{O}(n^2)$
- We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F, there is a scalable MPC protocol among n parties

- The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|) \approx |C|$ field elements/operations)
- We measure complexity at a bit-level (as opposed to |C| field operations)
- Also extends to dishonest-majority setting in the preprocessing model (see paper)

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \widetilde{O}(n^2)$
- We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F, there is a scalable MPC protocol among n parties

- The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|) \approx |C|$ field elements/operations)
- We measure complexity at a bit-level (as opposed to |C| field operations)
- Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works

● Translate the arithmetic circuit into a Boolean circuit ⇒ highly-repeatitive (boolean) circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \widetilde{O}(n^2)$
- We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F, there is a scalable MPC protocol among n parties

- The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|) \approx |C|$ field elements/operations)
- We measure complexity at a bit-level (as opposed to |C| field operations)
- Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works

- Translate the arithmetic circuit into a Boolean circuit \implies highly-repeatitive (boolean) circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]
- Not desirable due to high (concrete/asymptotic) cost of computation
 - Yao's Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz'11]

Application of MPC over large prime field

Delegating computation of resource-intensive cryptographic tasks:

- SNARK proof generation [Ozdemir-Boneh'22, Garg-Goel-Jain-Policharla-Sekar'23, Chiesa-Lehmkuhl-Mishra-Zhang'23]
- $\log |F| \approx 256$

Application of MPC over large prime field

Delegating computation of resource-intensive cryptographic tasks:

- SNARK proof generation [Ozdemir-Boneh'22, Garg-Goel-Jain-Policharla-Sekar'23, Chiesa-Lehmkuhl-Mishra-Zhang'23]
- $\log |F| \approx 256$
- Our protocol can plausibly $(n < \log |F|)$ be applied to such scenarios with $100 \sim 200$ parties.

Technical Highlight

Emulating the circuit evaluation gate by gate by secret sharing

- Packed secret sharing [Franklin-Yung'92]
 - o This work: "Unpedied" secret sharing
- Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]
 This section (Detectioned Structures) Control on the section of the secti

Emulating the circuit evaluation gate by gate by secret sharing

- Packed secret sharing [Franklin-Yung'92]
 - o "This work: "Unpeded" secret planing
- Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]
 This section (Detectioned Structures) Control on the section of the secti

Emulating the circuit evaluation gate by gate by secret sharing

- Given [x] and [y], locally compute [z] = [x] + [y] or $[x] \cdot [y]$
- Degree-reduction after each multiplication gate, given double sharing $[r]_t$ and $[r]_{2t}$ of r
 - Reconstruct $[x]_t \cdot [y]_t [r]_{2t}$
 - Locally compute $[z] = [r]_t + (x \cdot y r)$

- Packed secret sharing [Franklin-Yung'92]
 - o "This work: "Unpeded" secret planing
- Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]
 "This works [Debedimentional Simulation Learning]

Emulating the circuit evaluation gate by gate by secret sharing

- Given [x] and [y], locally compute [z] = [x] + [y] or $[x] \cdot [y]$
- Degree-reduction after each multiplication gate, given double sharing $[r]_t$ and $[r]_{2t}$ of r
 - Reconstruct $[x]_t \cdot [y]_t [r]_{2t}$
 - Locally compute $[z] = [r]_t + (x \cdot y r)$

Tricks required for Scalable MPC

- Packed secret sharing [Franklin-Yung'92]
 - This work: "Unpacked" secret sharing

• Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]

• This work: High-dimensional Smudging Lemma

Emulating the circuit evaluation gate by gate by secret sharing

- Given [x] and [y], locally compute [z] = [x] + [y] or $[x] \cdot [y]$
- Degree-reduction after each multiplication gate, given double sharing $[r]_t$ and $[r]_{2t}$ of r
 - Reconstruct $[x]_t \cdot [y]_t [r]_{2t}$
 - Locally compute $[z] = [r]_t + (x \cdot y r)$

Tricks required for Scalable MPC

- Packed secret sharing [Franklin-Yung'92]
 - This work: "Unpacked" secret sharing

• Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]

• This work: High-dimensional Smudging Lemma

Emulating the circuit evaluation gate by gate by secret sharing

- Given [x] and [y], locally compute [z] = [x] + [y] or $[x] \cdot [y]$
- Degree-reduction after each multiplication gate, given double sharing $[r]_t$ and $[r]_{2t}$ of r
 - Reconstruct $[x]_t \cdot [y]_t [r]_{2t}$
 - Locally compute $[z] = [r]_t + (x \cdot y r)$

- Packed secret sharing [Franklin-Yung'92]
 - This work: "Unpacked" secret sharing
- Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]
 - This work: High-dimensional Smudging Lemma

 $+ \text{ or } \times$

- n field operations for emulating one arithmetic gate
 - This is the case for any linear secret sharing scheme

- $\bullet \ n \ {\rm field} \ {\rm operations} \ {\rm for} \ {\rm emulating} \ {\rm one} \ {\rm arithmetic} \ {\rm gate} \$
 - This is the case for any linear secret sharing scheme

• Packing O(n) secrets into one instance of a secret sharing

• O(n) overhead becomes O(1) through packing

- n field operations for emulating one arithmetic gate
 - This is the case for any linear secret sharing scheme

• Packing O(n) secrets into one instance of a secret sharing

• O(n) overhead becomes O(1) through packing

Limitations of Packing

• Must emulate multiple O(n) gates simultaneously

- ${\scriptstyle \bullet \ } n$ field operations for emulating one arithmetic gate
 - This is the case for any linear secret sharing scheme

• Packing O(n) secrets into one instance of a secret sharing

• O(n) overhead becomes O(1) through packing

- Must emulate multiple O(n) gates <u>simultaneously</u>
- Existing works develop different ways to tackle this
 - Structure circuit / circuit transformation [Franklin-Yung'92, Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
 - Share transformation [Goyal-Polychroniadou-Song'21, Goyal-Polychroniadou-Song'22]

- $\bullet \ n \ {\rm field} \ {\rm operations} \ {\rm for} \ {\rm emulating} \ {\rm one} \ {\rm arithmetic} \ {\rm gate} \$
 - This is the case for any linear secret sharing scheme

• Packing O(n) secrets into one instance of a secret sharing

• O(n) overhead becomes O(1) through packing

- Must emulate multiple O(n) gates <u>simultaneously</u>
- Existing works develop different ways to tackle this
 - Structure circuit / circuit transformation [Franklin-Yung'92, Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
 - Share transformation [Goyal-Polychroniadou-Song'21, Goyal-Polychroniadou-Song'22]
- Can't achieve computational scalability for general circuit

- ${\scriptstyle \bullet \ } n$ field operations for emulating one arithmetic gate
 - This is the case for any linear secret sharing scheme

• Packing O(n) secrets into one instance of a secret sharing

• O(n) overhead becomes O(1) through packing

Limitations of Packing

- Must emulate multiple O(n) gates simultaneously
- Existing works develop different ways to tackle this
 - Structure circuit / circuit transformation [Franklin-Yung'92, Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
 - Share transformation [Goyal-Polychroniadou-Song'21, Goyal-Polychroniadou-Song'22]
- Can't achieve computational scalability for general circuit

Key Point of Packing

- Efficiency: rate O(1) secret sharing through packing.
- Drawback: <u>amortized</u> rate

- Efficiency: rate O(1) secret sharing through packing.
- $\bullet~$ Drawback: $amortized~ {\rm rate}~$

- Efficiency: rate O(1) secret sharing through packing.
- Drawback: *amortized* rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through "unpacking".

- Efficiency: rate O(1) secret sharing through packing.
- Drawback: *amortized* rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through "unpacking".

• Breaking long secret into short secret shares

- Efficiency: rate O(1) secret sharing through packing.
- Drawback: *amortized* rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through "unpacking".

- Breaking long secret into short secret shares
- No need to emulate multiple gates simultaneously

- Efficiency: rate O(1) secret sharing through packing.
- Drawback: *amortized* rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through "unpacking".

- Breaking long secret into short secret shares
- No need to emulate multiple gates simultaneously

How can we achieve this?

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
 - $\bullet~$ compatible with the existing framework; gate emulation +~ degree reduction

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
 - compatible with the existing framework; gate emulation + degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
 - compatible with the existing framework; gate emulation + degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
 - compatible with the existing framework; gate emulation + degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

- Each share can be much smaller than the secret (e.g., $p_1 = 2, p_2 = 3, ...$)
- Pick p_1, p_2, \ldots, p_n appropriately to make it rate-O(1).

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
 - compatible with the existing framework; gate emulation + degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

- Each share can be much smaller than the secret (e.g., $p_1 = 2, p_2 = 3, ...$)
- Pick p_1, p_2, \ldots, p_n appropriately to make it rate-O(1).

Remarks

• Secret length $\log F$ has to be O(n)

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
 - compatible with the existing framework; gate emulation + degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

- Each share can be much smaller than the secret (e.g., $p_1 = 2, p_2 = 3, ...$)
- Pick p_1, p_2, \ldots, p_n appropriately to make it rate-O(1).

- Secret length $\log F$ has to be O(n)
- Have to measure overall complexity at a bit level

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
 - compatible with the existing framework; gate emulation + degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

- Each share can be much smaller than the secret (e.g., $p_1 = 2, p_2 = 3, ...$)
- Pick p_1, p_2, \ldots, p_n appropriately to make it rate-O(1).

- Secret length $\log F$ has to be O(n)
- Have to measure overall complexity at a bit level
- Already achieve online overhead O(1) assuming we have $[r]_t$ and $[r]_{2t}$

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

• Each multiplication gate consumes one pair;

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- ${\small \bullet}\,$ Each pair should be generated with complexity not dependent on n

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson'07

Each party generates a pair $[r_i]_t$, $[r_i]_{2t}$ and

$$V_{n-t,n} \cdot \begin{pmatrix} [r_1]_t \\ [r_2]_t \\ \vdots \\ [r_n]_t \end{pmatrix} \qquad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix}, \qquad \text{e.g.,} \quad V_{n-t,n} =$$

.g.,
$$V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}$$

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson'07

Each party generates a pair $[r_i]_t$, $[r_i]_{2t}$ and

$$V_{n-t,n} \cdot \begin{pmatrix} [r_1]_t \\ [r_2]_t \\ \vdots \\ [r_n]_t \end{pmatrix} \qquad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix},$$

e.g.,
$$V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}$$

• Extract n - t pairs out of n pairs

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson'07

Each party generates a pair $[r_i]_t$, $[r_i]_{2t}$ and

$$V_{n-t,n} \cdot \begin{pmatrix} [r_1]_t \\ [r_2]_t \\ \vdots \\ [r_n]_t \end{pmatrix} \qquad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix}, \qquad \text{e.g.,} \quad V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}$$

- Extract n t pairs out of n pairs
- $V_{n-t,n}$ is super-invertible (any n-t by n-t submatrix is invertible)

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson'07

Each party generates a pair $[r_i]_t$, $[r_i]_{2t}$ and

$$V_{n-t,n} \cdot \begin{pmatrix} [r_1]_t \\ [r_2]_t \\ \vdots \\ [r_n]_t \end{pmatrix} \qquad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix}, \qquad \text{e.g.,} \quad V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}$$

- Extract n t pairs out of n pairs
- $V_{n-t,n}$ is super-invertible (any n-t by n-t submatrix is invertible)
- No matter which t parties are corrupted, the extracted masks are uniformly random.

Key Technical Barrier

For CRT secret sharing, how do we prove the security of these extracted masks?

$$V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-t} \end{pmatrix} \approx V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D'_1 \\ D'_2 \\ \vdots \\ D'_{n-t} \end{pmatrix}$$

These are distributions over integers! Arguing statistical distance for distributions over integers is not easy.

High-dimensional Smudging Lemma

$$V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-t} \end{pmatrix} \quad \text{and} \quad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D'_1 \\ D'_2 \\ \vdots \\ D'_{n-t} \end{pmatrix}$$

for

$$V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}$$

are close as long as $D_i - D'_i$ are divisible by

 $\prod_{1\leqslant i < j\leqslant n} (j-i)$

High-dimensional Smudging Lemma

$$V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-t} \end{pmatrix} \quad \text{and} \quad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D'_1 \\ D'_2 \\ \vdots \\ D'_{n-t} \end{pmatrix}$$

for

$$V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}$$

are close as long as $D_i - D'_i$ are divisible by

 $\prod_{1 \leqslant i < j \leqslant n} (j-i)$

• $\prod_{1 \leq i < j \leq n} (j-i)$ is a n^2 -bit integer. To get rate-1, it means $\log |F|$ has to be $O(n^2)$.

High-dimensional Smudging Lemma

$$V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-t} \end{pmatrix} \quad \text{and} \quad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D'_1 \\ D'_2 \\ \vdots \\ D'_{n-t} \end{pmatrix}$$

for

$$V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}$$

are close as long as $D_i - D'_i$ are divisible by

 $\prod_{1 \leqslant i < j \leqslant n} (j-i)$

- $\prod_{1 \leq i < j \leq n} (j-i)$ is a n^2 -bit integer. To get rate-1, it means $\log |F|$ has to be $O(n^2)$.
- Due to proof techniques

Summary

Scalable MPC for general circuit over large prime field F:

- $|C| \cdot \log |F|$ -bit communication/computation complexity
- Based on CRT-secret sharing
- "unpacked" secret sharing to achieve non-amortized rate-O(1)
- high-dimensional smudging lemma: randomness extraction over integers
- require $\log F = \widetilde{O}(n^2)$ Open problem: can we prove the security for $\log F = \widetilde{O}(n)$?

Thanks!

Questions?