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@ Minimizing overall communication & computation complexity

@ For an arithmetic circuit C' over F, can we achieve overall computation complexity |C| field operations?
o Optimal since insecure evaluation requires the same complexity

@ Scalable as the overall complexity does not grow with n.
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SIMD circuit [Franklin-Yung’92]

highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

@ Circuit transformation [Damgard-Ishai-Kroigaard’10, Genkin-Ishai-Polychroniadou’15|

@ introduces poly(log |C|, d) overhead (communication/computation, round complexity)

@ Share transformation [Goyal-Polychroniadou-Song’21, Goyal-Polychroniadou-Song’22|

@ Only achieve communication complexity |C| field element
o Computation complexity is still n - |C| field operation

Can we build scalable MPC protocol in computation for general circuit? J
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Our Results (Informal)

Assuming F' is an exponentially large prime field,
@ We prove security when log |F| = 6(n2)
@ We conjecture it is secure even when log || = O(n)

For any general circuit C' over F, there is a scalable MPC protocol among n parties

@ The communication/computation (bit)-complexity is O(|C| - log |F|) (= |C| field elements/operations)

@ We measure complexity at a bit-level (as opposed to |C| field operations)

@ Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works

@ Translate the arithmetic circuit into a Boolean circuit = highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]
@ Not desirable due to high (concrete/asymptotic) cost of computation

@ Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]
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Delegating computation of resource-intensive cryptographic tasks:

@ SNARK proof generation [Ozdemir-Boneh’22; Garg-Goel-Jain-Policharla-Sekar’23,
Chiesa-Lehmkuhl-Mishra-Zhang’23|

® log|F| ~ 256
@ Our protocol can plausibly (n < log|F|) be applied to such scenarios with 100 ~ 200 parties.
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@ Given [z] and [y], locally compute [z] = [z] + [y] or [z] - [y]

@ Degree-reduction after each multiplication gate, given double sharing [r]; and [r]|2: of

@ Reconstruct [z]; - [y]z — [r]2¢
@ Locally compute [z] = [r]; + (z -y — r)

Tricks required for Scalable MPC

@ Packed secret sharing [Franklin-Yung’92|
@ This work: “Unpacked” secret sharing

@ Batch Randomness Generation via VanderMonde randomness extraction |[Damgard-Nielson’07]

@ This work: High-dimensional Smudging Lemma
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Key Point of Packing

@ Efficiency: rate O(1) secret sharing through packing.

@ Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through “unpacking”.
@ Breaking long secret into short secret shares

@ No need to emulate multiple gates simultaneously

How can we achieve this?
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Chinese-remainder-Theorem based Secret Sharing

@ recently introduced by [GIMSWZ’23| to build (weighted) mpc protocols
@ compatible with the existing framework; gate emulation + degree reduction

@ A secret s € F), is re-randomized as an integer S = s + « - p.

Long secret S ‘ S mod p1 L ‘ S mod pa ‘

N

rate-O(1)

@ Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
@ Pick p1,p2,...,pn appropriately to make it rate-O(1).

@ Secret length log F' has to be O(n)

@ Have to measure overall complexity at a bit level

@ Already achieve online overhead O(1) assuming we have [r]; and [r]2;
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atch Randomness Generation

How do we generate [r];, [r]2: efficiently?
@ Each multiplication gate consumes one pair;

@ Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction pamgard-Nielson’07

Each party generates a pair [r;]¢, [r;]2: and

[ra)e [ra)2e 1 2 3 ... =n
[ra]t [r2]2¢ 12 92 32 n2
ant,n . o ant.,n . . ) e.g., ant,n =
. . ln—t Qn—t 3n—t . nn—t
[Tn]t ["'n]2t

@ Extract n — t pairs out of n pairs

@ V,,_¢ n is super-invertible (any n — ¢ by n — ¢t submatrix is invertible)

@ No matter which ¢ parties are corrupted, the extracted masks are uniformly random.




Key Technical Barrier

For CRT secret sharing, how do we prove the security of these extracted masks?

[r1]2¢ D [r1]2¢ D)

[ra]ot Dy [r2]2t Dy
ant,n . + . ~ ant,n : + o

[rn]2t Dy [r'n]Qt D!

="t
These are distributions over integers! Arguing statistical distance for distributions over integers is not easy.
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High-dimensional Smudging Lemma

[r1]o¢ D, [r1]2¢ D]
[ra]ot Dy [r2]2t Dy
Vn—t,n + and Vn—t,n o +
[Tn}Qt Dy [rrL]2t D;Lft
for
1 2 3 .. n
12 22 & e @
ant,n =
1n—t 2n—t 3n—t nn—t
are close as long as D; — D} are divisible by
[licicjcn(G =9
v
@ Tlicicicnli—

i) is a n2-bit integer. To get rate-1, it means log |F| has to be O(n?).
@ Due to proof techniques



Scalable MPC for general circuit over large prime field F":

|C| - log | F|-bit communication/computation complexity
Based on CRT-secret sharing
“unpacked” secret sharing to achieve non-amortized rate-O(1)

high-dimensional smudging lemma: randomness extraction over integers

require log F = O(n?) — Open problem: can we prove the security for log F = O(n)?

Thanks!

Questions?




