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Can distribute a large computation over parties; per party workload decreases as n grows
Honest majority assumption becomes more reliable as n grows
Many applications naturally involve many parties (e.g., federated learning)
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Prior Works

After a long sequence of works [Ben-Or-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07, ...]

Structured Circuit

SIMD circuit [Franklin-Yung’92]

highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

General Circuit

Circuit transformation [Damgard-Ishai-Kroigaard’10, Genkin-Ishai-Polychroniadou’15]

introduces poly(log |C|, d) overhead (communication/computation, round complexity)

Share transformation [Goyal-Polychroniadou-Song’21, Goyal-Polychroniadou-Song’22]

Only achieve communication complexity |C| field element
Computation complexity is still n · |C| field operation

Can we build scalable MPC protocol in computation for general circuit?
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Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties

The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)
Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Not desirable due to high (concrete/asymptotic) cost of computation
Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]
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Application of MPC over large prime field
Delegating computation of resource-intensive cryptographic tasks:

SNARK proof generation [Ozdemir-Boneh’22, Garg-Goel-Jain-Policharla-Sekar’23,
Chiesa-Lehmkuhl-Mishra-Zhang’23]

log |F | ≈ 256

Our protocol can plausibly (n < log |F |) be applied to such scenarios with 100 ∼ 200 parties.
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Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing
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Given [x] and [y], locally compute [z] = [x] + [y] or [x] · [y]

Degree-reduction after each multiplication gate, given double sharing [r]t and [r]2t of r
Reconstruct [x]t · [y]t − [r]2t
Locally compute [z] = [r]t + (x · y − r)

Tricks required for Scalable MPC

Packed secret sharing [Franklin-Yung’92]
This work: “Unpacked” secret sharing

Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson’07]
This work: High-dimensional Smudging Lemma
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Necessity of Packing

n field operations for emulating one arithmetic gate
This is the case for any linear secret sharing scheme

Packing O(n) secrets into one instance of a secret sharing
O(n) overhead becomes O(1) through packing

Limitations of Packing

Must emulate multiple O(n) gates simultaneously

Existing works develop different ways to tackle this
Structure circuit / circuit transformation
[Franklin-Yung’92, Damgard-Ishai-Kroigaard’10,

Genkin-Ishai-Polychroniadou’15]
Share transformation [Goyal-Polychroniadou-Song’21,

Goyal-Polychroniadou-Song’22]
Can’t achieve computational scalability for general circuit

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate
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Chinese-remainder-Theorem based Secret Sharing
recently introduced by [GJMSWZ’23] to build (weighted) mpc protocols

compatible with the existing framework; gate emulation + degree reduction

A secret s ∈ Fp is re-randomized as an integer S = s+ α · p.

Long secret S S mod p1 S mod p2 . . . S mod pn

rate-O(1)

Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
Pick p1, p2, . . . , pn appropriately to make it rate-O(1).

Remarks

Secret length logF has to be O(n)

Have to measure overall complexity at a bit level
Already achieve online overhead O(1) assuming we have [r]t and [r]2t
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Batch Randomness Generation
How do we generate [r]t, [r]2t efficiently?

Each multiplication gate consumes one pair;

Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson’07

Each party generates a pair [ri]t, [ri]2t and

Vn−t,n ·


[r1]t
[r2]t

...
[rn]t

 Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

 , e.g., Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t



Extract n− t pairs out of n pairs
Vn−t,n is super-invertible (any n− t by n− t submatrix is invertible)
No matter which t parties are corrupted, the extracted masks are uniformly random.
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Key Technical Barrier
For CRT secret sharing, how do we prove the security of these extracted masks?

Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D1

D2

...
Dn−t

 ≈ Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D′

1
D′

2
...

D′
n−t


These are distributions over integers! Arguing statistical distance for distributions over integers is not easy.



High-dimensional Smudging Lemma
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
D1

D2

...
Dn−t

 and Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D′

1
D′

2
...

D′
n−t


for

Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t


are close as long as Di −D′

i are divisible by ∏
1⩽i<j⩽n(j − i)

∏
1⩽i<j⩽n(j − i) is a n2-bit integer. To get rate-1, it means log |F | has to be O(n2).

Due to proof techniques
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Summary
Scalable MPC for general circuit over large prime field F :

|C| · log |F |-bit communication/computation complexity

Based on CRT-secret sharing

“unpacked” secret sharing to achieve non-amortized rate-O(1)

high-dimensional smudging lemma: randomness extraction over integers

require logF = Õ(n2) — Open problem: can we prove the security for logF = Õ(n)?

Thanks!

Questions?


