
Scalable Multiparty Computation from Non-linear Secret Sharing

Sanjam Garg

UC Berkeley

Abhishek Jain

JHU & NTT Research

Pratyay Mukherjee

Supra Research

Mingyuan Wang

UC Berkeley -> NYU Shanghai

Aug. 2024 @ CRYPTO

x1 x2

xixn

f(x1, x2, . . . , xn)

trusted party

≈

This Work

honest majority

information-theoretic plain model

semi-honest adversary

Objective

Minimizing overall communication & computation complexity

For an arithmetic circuit C over F , can we achieve overall computation complexity |C| field operations?

Optimal since insecure evaluation requires the same complexity

Scalable as the overall complexity does not grow with n.

x1 x2

xixn

f(x1, x2, . . . , xn)

trusted party

≈
This Work

honest majority

information-theoretic plain model

semi-honest adversary

Objective

Minimizing overall communication & computation complexity

For an arithmetic circuit C over F , can we achieve overall computation complexity |C| field operations?

Optimal since insecure evaluation requires the same complexity

Scalable as the overall complexity does not grow with n.

x1 x2

xixn

f(x1, x2, . . . , xn)

trusted party

≈
This Work

honest majority

information-theoretic plain model

semi-honest adversary

Objective

Minimizing overall communication & computation complexity

For an arithmetic circuit C over F , can we achieve overall computation complexity |C| field operations?

Optimal since insecure evaluation requires the same complexity

Scalable as the overall complexity does not grow with n.

x1 x2

xixn

f(x1, x2, . . . , xn)

trusted party

≈
This Work

honest majority

information-theoretic plain model

semi-honest adversary

Objective
Minimizing overall communication & computation complexity

For an arithmetic circuit C over F , can we achieve overall computation complexity |C| field operations?

Optimal since insecure evaluation requires the same complexity

Scalable as the overall complexity does not grow with n.

x1 x2

xixn

f(x1, x2, . . . , xn)

trusted party

≈
This Work

honest majority

information-theoretic plain model

semi-honest adversary

Objective
Minimizing overall communication & computation complexity

For an arithmetic circuit C over F , can we achieve overall computation complexity |C| field operations?

Optimal since insecure evaluation requires the same complexity

Scalable as the overall complexity does not grow with n.

x1 x2

xixn

f(x1, x2, . . . , xn)

trusted party

≈
This Work

honest majority

information-theoretic plain model

semi-honest adversary

Objective
Minimizing overall communication & computation complexity

For an arithmetic circuit C over F , can we achieve overall computation complexity |C| field operations?

Optimal since insecure evaluation requires the same complexity

Scalable as the overall complexity does not grow with n.

Why Scalable information-theoretic MPC

Most practically-efficient MPC protocols (only field operations, no cryptographic operations)

Can distribute a large computation over parties; per party workload decreases as n grows
Honest majority assumption becomes more reliable as n grows
Many applications naturally involve many parties (e.g., federated learning)
...

Why Scalable information-theoretic MPC

Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
Can distribute a large computation over parties; per party workload decreases as n grows

Honest majority assumption becomes more reliable as n grows
Many applications naturally involve many parties (e.g., federated learning)
...

Why Scalable information-theoretic MPC

Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
Can distribute a large computation over parties; per party workload decreases as n grows
Honest majority assumption becomes more reliable as n grows

Many applications naturally involve many parties (e.g., federated learning)
...

Why Scalable information-theoretic MPC

Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
Can distribute a large computation over parties; per party workload decreases as n grows
Honest majority assumption becomes more reliable as n grows
Many applications naturally involve many parties (e.g., federated learning)

...

Why Scalable information-theoretic MPC

Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
Can distribute a large computation over parties; per party workload decreases as n grows
Honest majority assumption becomes more reliable as n grows
Many applications naturally involve many parties (e.g., federated learning)
...

Prior Works

After a long sequence of works [Ben-Or-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07, ...]

Structured Circuit

SIMD circuit [Franklin-Yung’92]

highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

General Circuit

Circuit transformation [Damgard-Ishai-Kroigaard’10, Genkin-Ishai-Polychroniadou’15]

introduces poly(log |C|, d) overhead (communication/computation, round complexity)

Share transformation [Goyal-Polychroniadou-Song’21, Goyal-Polychroniadou-Song’22]

Only achieve communication complexity |C| field element
Computation complexity is still n · |C| field operation

Can we build scalable MPC protocol in computation for general circuit?

Prior Works

After a long sequence of works [Ben-Or-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07, ...]

Structured Circuit

SIMD circuit [Franklin-Yung’92]

highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

General Circuit

Circuit transformation [Damgard-Ishai-Kroigaard’10, Genkin-Ishai-Polychroniadou’15]

introduces poly(log |C|, d) overhead (communication/computation, round complexity)

Share transformation [Goyal-Polychroniadou-Song’21, Goyal-Polychroniadou-Song’22]

Only achieve communication complexity |C| field element
Computation complexity is still n · |C| field operation

Can we build scalable MPC protocol in computation for general circuit?

Prior Works

After a long sequence of works [Ben-Or-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07, ...]

Structured Circuit

SIMD circuit [Franklin-Yung’92]

highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

General Circuit

Circuit transformation [Damgard-Ishai-Kroigaard’10, Genkin-Ishai-Polychroniadou’15]

introduces poly(log |C|, d) overhead (communication/computation, round complexity)

Share transformation [Goyal-Polychroniadou-Song’21, Goyal-Polychroniadou-Song’22]

Only achieve communication complexity |C| field element
Computation complexity is still n · |C| field operation

Can we build scalable MPC protocol in computation for general circuit?

Prior Works

After a long sequence of works [Ben-Or-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07, ...]

Structured Circuit

SIMD circuit [Franklin-Yung’92]

highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

General Circuit

Circuit transformation [Damgard-Ishai-Kroigaard’10, Genkin-Ishai-Polychroniadou’15]

introduces poly(log |C|, d) overhead (communication/computation, round complexity)

Share transformation [Goyal-Polychroniadou-Song’21, Goyal-Polychroniadou-Song’22]

Only achieve communication complexity |C| field element
Computation complexity is still n · |C| field operation

Can we build scalable MPC protocol in computation for general circuit?

Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties

The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)
Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Not desirable due to high (concrete/asymptotic) cost of computation
Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties
The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)
Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Not desirable due to high (concrete/asymptotic) cost of computation
Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties
The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)
Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Not desirable due to high (concrete/asymptotic) cost of computation
Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties
The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)
Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Not desirable due to high (concrete/asymptotic) cost of computation
Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties
The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)

Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Not desirable due to high (concrete/asymptotic) cost of computation
Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties
The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)
Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Not desirable due to high (concrete/asymptotic) cost of computation
Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties
The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)
Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Not desirable due to high (concrete/asymptotic) cost of computation
Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Our Results (Informal)
Assuming F is an exponentially large prime field,

We prove security when log |F | = Õ(n2)

We conjecture it is secure even when log |F | = Õ(n)

For any general circuit C over F , there is a scalable MPC protocol among n parties
The communication/computation (bit)-complexity is O(|C| · log |F |) (≈ |C| field elements/operations)

We measure complexity at a bit-level (as opposed to |C| field operations)
Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works
Translate the arithmetic circuit into a Boolean circuit =⇒ highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]
Not desirable due to high (concrete/asymptotic) cost of computation

Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Application of MPC over large prime field
Delegating computation of resource-intensive cryptographic tasks:

SNARK proof generation [Ozdemir-Boneh’22, Garg-Goel-Jain-Policharla-Sekar’23,
Chiesa-Lehmkuhl-Mishra-Zhang’23]

log |F | ≈ 256

Our protocol can plausibly (n < log |F |) be applied to such scenarios with 100 ∼ 200 parties.

Application of MPC over large prime field
Delegating computation of resource-intensive cryptographic tasks:

SNARK proof generation [Ozdemir-Boneh’22, Garg-Goel-Jain-Policharla-Sekar’23,
Chiesa-Lehmkuhl-Mishra-Zhang’23]

log |F | ≈ 256

Our protocol can plausibly (n < log |F |) be applied to such scenarios with 100 ∼ 200 parties.

Technical Highlight

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

[x] [y]

+

[z]

[x] [y]

×

[z]

Given [x] and [y], locally compute [z] = [x] + [y] or [x] · [y]

Degree-reduction after each multiplication gate, given double sharing [r]t and [r]2t of r
Reconstruct [x]t · [y]t − [r]2t
Locally compute [z] = [r]t + (x · y − r)

Tricks required for Scalable MPC

Packed secret sharing [Franklin-Yung’92]
This work: “Unpacked” secret sharing

Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson’07]
This work: High-dimensional Smudging Lemma

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

[x] [y]

+

[z]

[x] [y]

×

[z]

Given [x] and [y], locally compute [z] = [x] + [y] or [x] · [y]

Degree-reduction after each multiplication gate, given double sharing [r]t and [r]2t of r
Reconstruct [x]t · [y]t − [r]2t
Locally compute [z] = [r]t + (x · y − r)

Tricks required for Scalable MPC

Packed secret sharing [Franklin-Yung’92]
This work: “Unpacked” secret sharing

Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson’07]
This work: High-dimensional Smudging Lemma

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

[x] [y]

+

[z]

[x] [y]

×

[z]

Given [x] and [y], locally compute [z] = [x] + [y] or [x] · [y]

Degree-reduction after each multiplication gate, given double sharing [r]t and [r]2t of r
Reconstruct [x]t · [y]t − [r]2t
Locally compute [z] = [r]t + (x · y − r)

Tricks required for Scalable MPC

Packed secret sharing [Franklin-Yung’92]
This work: “Unpacked” secret sharing

Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson’07]
This work: High-dimensional Smudging Lemma

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

[x] [y]

+

[z]

[x] [y]

×

[z]

Given [x] and [y], locally compute [z] = [x] + [y] or [x] · [y]

Degree-reduction after each multiplication gate, given double sharing [r]t and [r]2t of r
Reconstruct [x]t · [y]t − [r]2t
Locally compute [z] = [r]t + (x · y − r)

Tricks required for Scalable MPC

Packed secret sharing [Franklin-Yung’92]
This work: “Unpacked” secret sharing

Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson’07]
This work: High-dimensional Smudging Lemma

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

[x] [y]

+

[z]

[x] [y]

×

[z]

Given [x] and [y], locally compute [z] = [x] + [y] or [x] · [y]

Degree-reduction after each multiplication gate, given double sharing [r]t and [r]2t of r
Reconstruct [x]t · [y]t − [r]2t
Locally compute [z] = [r]t + (x · y − r)

Tricks required for Scalable MPC

Packed secret sharing [Franklin-Yung’92]
This work: “Unpacked” secret sharing

Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson’07]
This work: High-dimensional Smudging Lemma

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

[x] [y]

+

[z]

[x] [y]

×

[z]

Given [x] and [y], locally compute [z] = [x] + [y] or [x] · [y]

Degree-reduction after each multiplication gate, given double sharing [r]t and [r]2t of r
Reconstruct [x]t · [y]t − [r]2t
Locally compute [z] = [r]t + (x · y − r)

Tricks required for Scalable MPC

Packed secret sharing [Franklin-Yung’92]
This work: “Unpacked” secret sharing

Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson’07]
This work: High-dimensional Smudging Lemma

xx′
x′′

1

x1

2

x2

n

xn

...

+ or ×

yy′y′′

1

y1

2

y2

n

yn

...

Necessity of Packing

n field operations for emulating one arithmetic gate
This is the case for any linear secret sharing scheme

Packing O(n) secrets into one instance of a secret sharing
O(n) overhead becomes O(1) through packing

Limitations of Packing

Must emulate multiple O(n) gates simultaneously

Existing works develop different ways to tackle this
Structure circuit / circuit transformation
[Franklin-Yung’92, Damgard-Ishai-Kroigaard’10,

Genkin-Ishai-Polychroniadou’15]
Share transformation [Goyal-Polychroniadou-Song’21,

Goyal-Polychroniadou-Song’22]
Can’t achieve computational scalability for general circuit

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

xx′
x′′

1

x1

2

x2

n

xn

...

+ or ×

yy′y′′

1

y1

2

y2

n

yn

...

Necessity of Packing
n field operations for emulating one arithmetic gate

This is the case for any linear secret sharing scheme

Packing O(n) secrets into one instance of a secret sharing
O(n) overhead becomes O(1) through packing

Limitations of Packing

Must emulate multiple O(n) gates simultaneously

Existing works develop different ways to tackle this
Structure circuit / circuit transformation
[Franklin-Yung’92, Damgard-Ishai-Kroigaard’10,

Genkin-Ishai-Polychroniadou’15]
Share transformation [Goyal-Polychroniadou-Song’21,

Goyal-Polychroniadou-Song’22]
Can’t achieve computational scalability for general circuit

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

xx′
x′′

1

x1

2

x2

n

xn

...

+ or ×

yy′y′′

1

y1

2

y2

n

yn

...

Necessity of Packing
n field operations for emulating one arithmetic gate

This is the case for any linear secret sharing scheme

Packing O(n) secrets into one instance of a secret sharing
O(n) overhead becomes O(1) through packing

Limitations of Packing

Must emulate multiple O(n) gates simultaneously

Existing works develop different ways to tackle this
Structure circuit / circuit transformation
[Franklin-Yung’92, Damgard-Ishai-Kroigaard’10,

Genkin-Ishai-Polychroniadou’15]
Share transformation [Goyal-Polychroniadou-Song’21,

Goyal-Polychroniadou-Song’22]
Can’t achieve computational scalability for general circuit

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

xx′
x′′

1

x1

2

x2

n

xn

...

+ or ×

yy′y′′

1

y1

2

y2

n

yn

...

Necessity of Packing
n field operations for emulating one arithmetic gate

This is the case for any linear secret sharing scheme

Packing O(n) secrets into one instance of a secret sharing
O(n) overhead becomes O(1) through packing

Limitations of Packing

Must emulate multiple O(n) gates simultaneously

Existing works develop different ways to tackle this
Structure circuit / circuit transformation
[Franklin-Yung’92, Damgard-Ishai-Kroigaard’10,

Genkin-Ishai-Polychroniadou’15]
Share transformation [Goyal-Polychroniadou-Song’21,

Goyal-Polychroniadou-Song’22]
Can’t achieve computational scalability for general circuit

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

xx′
x′′

1

x1

2

x2

n

xn

...

+ or ×

yy′y′′

1

y1

2

y2

n

yn

...

Necessity of Packing
n field operations for emulating one arithmetic gate

This is the case for any linear secret sharing scheme

Packing O(n) secrets into one instance of a secret sharing
O(n) overhead becomes O(1) through packing

Limitations of Packing

Must emulate multiple O(n) gates simultaneously

Existing works develop different ways to tackle this
Structure circuit / circuit transformation
[Franklin-Yung’92, Damgard-Ishai-Kroigaard’10,

Genkin-Ishai-Polychroniadou’15]
Share transformation [Goyal-Polychroniadou-Song’21,

Goyal-Polychroniadou-Song’22]

Can’t achieve computational scalability for general circuit

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

xx′
x′′

1

x1

2

x2

n

xn

...

+ or ×

yy′y′′

1

y1

2

y2

n

yn

...

Necessity of Packing
n field operations for emulating one arithmetic gate

This is the case for any linear secret sharing scheme

Packing O(n) secrets into one instance of a secret sharing
O(n) overhead becomes O(1) through packing

Limitations of Packing

Must emulate multiple O(n) gates simultaneously

Existing works develop different ways to tackle this
Structure circuit / circuit transformation
[Franklin-Yung’92, Damgard-Ishai-Kroigaard’10,

Genkin-Ishai-Polychroniadou’15]
Share transformation [Goyal-Polychroniadou-Song’21,

Goyal-Polychroniadou-Song’22]
Can’t achieve computational scalability for general circuit

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

xx′
x′′

1

x1

2

x2

n

xn

...

+ or ×

yy′y′′

1

y1

2

y2

n

yn

...

Necessity of Packing
n field operations for emulating one arithmetic gate

This is the case for any linear secret sharing scheme

Packing O(n) secrets into one instance of a secret sharing
O(n) overhead becomes O(1) through packing

Limitations of Packing

Must emulate multiple O(n) gates simultaneously

Existing works develop different ways to tackle this
Structure circuit / circuit transformation
[Franklin-Yung’92, Damgard-Ishai-Kroigaard’10,

Genkin-Ishai-Polychroniadou’15]
Share transformation [Goyal-Polychroniadou-Song’21,

Goyal-Polychroniadou-Song’22]
Can’t achieve computational scalability for general circuit

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

Our Conceptual Contribution
Achieving non-amortized rate O(1) secret sharing through “unpacking”.

Breaking long secret into short secret shares

No need to emulate multiple gates simultaneously

How can we achieve this?

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

Our Conceptual Contribution
Achieving non-amortized rate O(1) secret sharing through “unpacking”.

Breaking long secret into short secret shares

No need to emulate multiple gates simultaneously

How can we achieve this?

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

Our Conceptual Contribution
Achieving non-amortized rate O(1) secret sharing through “unpacking”.

Breaking long secret into short secret shares

No need to emulate multiple gates simultaneously

How can we achieve this?

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

Our Conceptual Contribution
Achieving non-amortized rate O(1) secret sharing through “unpacking”.

Breaking long secret into short secret shares

No need to emulate multiple gates simultaneously

How can we achieve this?

Key Point of Packing
Efficiency: rate O(1) secret sharing through packing.

Drawback: amortized rate

Our Conceptual Contribution
Achieving non-amortized rate O(1) secret sharing through “unpacking”.

Breaking long secret into short secret shares

No need to emulate multiple gates simultaneously

How can we achieve this?

Chinese-remainder-Theorem based Secret Sharing
recently introduced by [GJMSWZ’23] to build (weighted) mpc protocols

compatible with the existing framework; gate emulation + degree reduction

A secret s ∈ Fp is re-randomized as an integer S = s+ α · p.

Long secret S S mod p1 S mod p2 . . . S mod pn

rate-O(1)

Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
Pick p1, p2, . . . , pn appropriately to make it rate-O(1).

Remarks

Secret length logF has to be O(n)

Have to measure overall complexity at a bit level
Already achieve online overhead O(1) assuming we have [r]t and [r]2t

Chinese-remainder-Theorem based Secret Sharing
recently introduced by [GJMSWZ’23] to build (weighted) mpc protocols

compatible with the existing framework; gate emulation + degree reduction
A secret s ∈ Fp is re-randomized as an integer S = s+ α · p.

Long secret S S mod p1 S mod p2 . . . S mod pn

rate-O(1)

Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
Pick p1, p2, . . . , pn appropriately to make it rate-O(1).

Remarks

Secret length logF has to be O(n)

Have to measure overall complexity at a bit level
Already achieve online overhead O(1) assuming we have [r]t and [r]2t

Chinese-remainder-Theorem based Secret Sharing
recently introduced by [GJMSWZ’23] to build (weighted) mpc protocols

compatible with the existing framework; gate emulation + degree reduction
A secret s ∈ Fp is re-randomized as an integer S = s+ α · p.

Long secret S S mod p1 S mod p2 . . . S mod pn

rate-O(1)

Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
Pick p1, p2, . . . , pn appropriately to make it rate-O(1).

Remarks

Secret length logF has to be O(n)

Have to measure overall complexity at a bit level
Already achieve online overhead O(1) assuming we have [r]t and [r]2t

Chinese-remainder-Theorem based Secret Sharing
recently introduced by [GJMSWZ’23] to build (weighted) mpc protocols

compatible with the existing framework; gate emulation + degree reduction
A secret s ∈ Fp is re-randomized as an integer S = s+ α · p.

Long secret S S mod p1 S mod p2 . . . S mod pn

rate-O(1)

Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
Pick p1, p2, . . . , pn appropriately to make it rate-O(1).

Remarks

Secret length logF has to be O(n)

Have to measure overall complexity at a bit level
Already achieve online overhead O(1) assuming we have [r]t and [r]2t

Chinese-remainder-Theorem based Secret Sharing
recently introduced by [GJMSWZ’23] to build (weighted) mpc protocols

compatible with the existing framework; gate emulation + degree reduction
A secret s ∈ Fp is re-randomized as an integer S = s+ α · p.

Long secret S S mod p1 S mod p2 . . . S mod pn

rate-O(1)

Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
Pick p1, p2, . . . , pn appropriately to make it rate-O(1).

Remarks
Secret length logF has to be O(n)

Have to measure overall complexity at a bit level
Already achieve online overhead O(1) assuming we have [r]t and [r]2t

Chinese-remainder-Theorem based Secret Sharing
recently introduced by [GJMSWZ’23] to build (weighted) mpc protocols

compatible with the existing framework; gate emulation + degree reduction
A secret s ∈ Fp is re-randomized as an integer S = s+ α · p.

Long secret S S mod p1 S mod p2 . . . S mod pn

rate-O(1)

Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
Pick p1, p2, . . . , pn appropriately to make it rate-O(1).

Remarks
Secret length logF has to be O(n)

Have to measure overall complexity at a bit level

Already achieve online overhead O(1) assuming we have [r]t and [r]2t

Chinese-remainder-Theorem based Secret Sharing
recently introduced by [GJMSWZ’23] to build (weighted) mpc protocols

compatible with the existing framework; gate emulation + degree reduction
A secret s ∈ Fp is re-randomized as an integer S = s+ α · p.

Long secret S S mod p1 S mod p2 . . . S mod pn

rate-O(1)

Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
Pick p1, p2, . . . , pn appropriately to make it rate-O(1).

Remarks
Secret length logF has to be O(n)

Have to measure overall complexity at a bit level
Already achieve online overhead O(1) assuming we have [r]t and [r]2t

Batch Randomness Generation
How do we generate [r]t, [r]2t efficiently?

Each multiplication gate consumes one pair;

Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson’07

Each party generates a pair [ri]t, [ri]2t and

Vn−t,n ·


[r1]t
[r2]t

...
[rn]t

 Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

 , e.g., Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t



Extract n− t pairs out of n pairs
Vn−t,n is super-invertible (any n− t by n− t submatrix is invertible)
No matter which t parties are corrupted, the extracted masks are uniformly random.

Batch Randomness Generation
How do we generate [r]t, [r]2t efficiently?

Each multiplication gate consumes one pair;

Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson’07

Each party generates a pair [ri]t, [ri]2t and

Vn−t,n ·


[r1]t
[r2]t

...
[rn]t

 Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

 , e.g., Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t



Extract n− t pairs out of n pairs
Vn−t,n is super-invertible (any n− t by n− t submatrix is invertible)
No matter which t parties are corrupted, the extracted masks are uniformly random.

Batch Randomness Generation
How do we generate [r]t, [r]2t efficiently?

Each multiplication gate consumes one pair;

Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson’07

Each party generates a pair [ri]t, [ri]2t and

Vn−t,n ·


[r1]t
[r2]t

...
[rn]t

 Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

 , e.g., Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t



Extract n− t pairs out of n pairs
Vn−t,n is super-invertible (any n− t by n− t submatrix is invertible)
No matter which t parties are corrupted, the extracted masks are uniformly random.

Batch Randomness Generation
How do we generate [r]t, [r]2t efficiently?

Each multiplication gate consumes one pair;

Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson’07

Each party generates a pair [ri]t, [ri]2t and

Vn−t,n ·


[r1]t
[r2]t

...
[rn]t

 Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

 , e.g., Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t



Extract n− t pairs out of n pairs
Vn−t,n is super-invertible (any n− t by n− t submatrix is invertible)
No matter which t parties are corrupted, the extracted masks are uniformly random.

Batch Randomness Generation
How do we generate [r]t, [r]2t efficiently?

Each multiplication gate consumes one pair;

Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson’07

Each party generates a pair [ri]t, [ri]2t and

Vn−t,n ·


[r1]t
[r2]t

...
[rn]t

 Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

 , e.g., Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t


Extract n− t pairs out of n pairs

Vn−t,n is super-invertible (any n− t by n− t submatrix is invertible)
No matter which t parties are corrupted, the extracted masks are uniformly random.

Batch Randomness Generation
How do we generate [r]t, [r]2t efficiently?

Each multiplication gate consumes one pair;

Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson’07

Each party generates a pair [ri]t, [ri]2t and

Vn−t,n ·


[r1]t
[r2]t

...
[rn]t

 Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

 , e.g., Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t


Extract n− t pairs out of n pairs
Vn−t,n is super-invertible (any n− t by n− t submatrix is invertible)

No matter which t parties are corrupted, the extracted masks are uniformly random.

Batch Randomness Generation
How do we generate [r]t, [r]2t efficiently?

Each multiplication gate consumes one pair;

Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson’07

Each party generates a pair [ri]t, [ri]2t and

Vn−t,n ·


[r1]t
[r2]t

...
[rn]t

 Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

 , e.g., Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t


Extract n− t pairs out of n pairs
Vn−t,n is super-invertible (any n− t by n− t submatrix is invertible)
No matter which t parties are corrupted, the extracted masks are uniformly random.

Key Technical Barrier
For CRT secret sharing, how do we prove the security of these extracted masks?

Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D1

D2

...
Dn−t

 ≈ Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D′

1
D′

2
...

D′
n−t


These are distributions over integers! Arguing statistical distance for distributions over integers is not easy.

High-dimensional Smudging Lemma

Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D1

D2

...
Dn−t

 and Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D′

1
D′

2
...

D′
n−t


for

Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t


are close as long as Di −D′

i are divisible by ∏
1⩽i<j⩽n(j − i)

∏
1⩽i<j⩽n(j − i) is a n2-bit integer. To get rate-1, it means log |F | has to be O(n2).

Due to proof techniques

High-dimensional Smudging Lemma

Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D1

D2

...
Dn−t

 and Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D′

1
D′

2
...

D′
n−t


for

Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t


are close as long as Di −D′

i are divisible by ∏
1⩽i<j⩽n(j − i)

∏
1⩽i<j⩽n(j − i) is a n2-bit integer. To get rate-1, it means log |F | has to be O(n2).

Due to proof techniques

High-dimensional Smudging Lemma

Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D1

D2

...
Dn−t

 and Vn−t,n ·


[r1]2t
[r2]2t

...
[rn]2t

+


D′

1
D′

2
...

D′
n−t


for

Vn−t,n =


1 2 3 . . . n
12 22 32 . . . n2

1n−t 2n−t 3n−t . . . nn−t


are close as long as Di −D′

i are divisible by ∏
1⩽i<j⩽n(j − i)

∏
1⩽i<j⩽n(j − i) is a n2-bit integer. To get rate-1, it means log |F | has to be O(n2).

Due to proof techniques

Summary
Scalable MPC for general circuit over large prime field F :

|C| · log |F |-bit communication/computation complexity

Based on CRT-secret sharing

“unpacked” secret sharing to achieve non-amortized rate-O(1)

high-dimensional smudging lemma: randomness extraction over integers

require logF = Õ(n2) — Open problem: can we prove the security for logF = Õ(n)?

Thanks!

Questions?

