Scalable Multiparty Computation from Non-linear Secret Sharing

Sanjam Garg Abhishek Jain Pratyay Mukherjee
I o A 1

UC Berkeley JHU & NTT Research Supra Research

Mingyuan Wang

UC Berkeley -> NYU Shanghai

Aug. 2024 @ CRYPTO

G —e®

N

AN
B0 — - =00

tttttttttttt

[N

f(z1, 22 . -, &n)

ay

trusted party

~ /N,

%sm

@ honest majority
@ information-theoretic plain model

@ semi-honest adversary

N
> ;m trusted party
n)

@ honest majority
N
~~ @ information-theoretic plain model

g of Q @ semi-honest adversary
— 8 & 5 e

;;) trusted party
N\ 1

@ honest majority

@ semi-honest adversary

@ Minimizing overall communication & computation complexity

N

«—> trusted party
i
n)

@ honest majority
N
~~ @ information-theoretic plain model

é - 5 g g 3 \,— g @ semi-honest adversary

@ Minimizing overall communication & computation complexity

@ For an arithmetic circuit C' over F, can we achieve overall computation complexity |C| field operations?

o Optimal since insecure evaluation requires the same complexity

N

—> trusted party
i
n)

@ honest majority
N
~~ @ information-theoretic plain model

é - 5 g g 3 \,— g @ semi-honest adversary

@ Minimizing overall communication & computation complexity

@ For an arithmetic circuit C' over F, can we achieve overall computation complexity |C| field operations?
o Optimal since insecure evaluation requires the same complexity

@ Scalable as the overall complexity does not grow with n.

Why Scalable information-theoretic MPC

@ Most practically-efficient MPC protocols (only field operations, no cryptographic operations)

Why Scalable information-theoretic MPC

@ Most practically-efficient MPC protocols (only field operations, no cryptographic operations)

@ Can distribute a large computation over parties; per party workload decreases as n grows

Why Scalable information-theoretic MPC

@ Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
@ Can distribute a large computation over parties; per party workload decreases as n grows

@ Honest majority assumption becomes more reliable as n grows

Why Scalable information-theoretic MPC

@ Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
Can distribute a large computation over parties; per party workload decreases as n grows

Honest majority assumption becomes more reliable as n grows

Many applications naturally involve many parties (e.g., federated learning)

7 Scalable information-theoretic MPC

@ Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
Can distribute a large computation over parties; per party workload decreases as n grows
Honest majority assumption becomes more reliable as n grows

Many applications naturally involve many parties (e.g., federated learning)

After a long sequence Of WorkS IBen—Or»G()ldwaSS(—‘,!’—\Nigders(m‘88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07, ..]

After a long sequence Of WOTkS IBe!l—Or—G()](iwasse\’—\\'ig(lm's(m'88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07, ..]

@ SIMD circuit [Franklin-Yung’92]

@ highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21|

r Works

Aftel“ a long sequence Of WOl“kS [Hel1—(:)1'—(,}()|(iw;\sse\’—\\'ig(l(—lrs(m'88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07,]

@ SIMD circuit [Franklin-Yung’92]

@ highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21|

@ Circuit transformation [Damgard-Ishai-Kroigaard’10, Genkin-Ishai-Polychroniadou’15|

@ introduces poly(log |C|, d) overhead (communication/computation, round complexity)

Prior Works

Aftel“ a long sequence Of WOIkS [Hel1—(:)1'—(,}()|(iw;\sse\’—\\'ig(l(—lrs(m'88, Chaum-Crepeau-Damgard’88, Franklin-Yung’92,

Damgard-Nielson’07,]

SIMD circuit [Franklin-Yung’92]

highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

@ Circuit transformation [Damgard-Ishai-Kroigaard’10, Genkin-Ishai-Polychroniadou’15|

@ introduces poly(log |C|, d) overhead (communication/computation, round complexity)

@ Share transformation [Goyal-Polychroniadou-Song’21, Goyal-Polychroniadou-Song’22|

@ Only achieve communication complexity |C| field element
o Computation complexity is still n - |C| field operation

Can we build scalable MPC protocol in computation for general circuit? J

Our Results (Informal)

Assuming F' is an exponentially large prime field,

For any general circuit C' over F', there is a scalable MPC protocol among n parties

Our Results (Informal)

Assuming F' is an exponentially large prime field,

For any general circuit C' over F', there is a scalable MPC protocol among n parties

@ The communication/computation (bit)-complexity is O(|C| - log |F|) (= |C| field elements/operations)

Our Results (Informal)

Assuming F' is an exponentially large prime field,

@ We prove security when log |[F| = O(n2)

For any general circuit C' over F, there is a scalable MPC protocol among n parties

@ The communication/computation (bit)-complexity is O(|C| - log |F|) (= |C| field elements/operations)

Our Results (Informal)

Assuming F' is an exponentially large prime field,
@ We prove security when log |[F| = O(n2)
@ We conjecture it is secure even when log |F| = O(n)

For any general circuit C' over F, there is a scalable MPC protocol among n parties

@ The communication/computation (bit)-complexity is O(|C| - log |F|) (= |C| field elements/operations)

Our Results (Informal)

Assuming F' is an exponentially large prime field,
@ We prove security when log |[F| = O(n2)
@ We conjecture it is secure even when log |F| = O(n)

For any general circuit C' over F, there is a scalable MPC protocol among n parties

@ The communication/computation (bit)-complexity is O(|C| - log |F|) (= |C| field elements/operations)

@ We measure complexity at a bit-level (as opposed to |C| field operations)

Our Results (Informal)

Assuming F' is an exponentially large prime field,
@ We prove security when log |[F| = O(n2)
@ We conjecture it is secure even when log |F| = O(n)
For any general circuit C' over F, there is a scalable MPC protocol among n parties

@ The communication/computation (bit)-complexity is O(|C| - log |F|) (= |C| field elements/operations)

@ We measure complexity at a bit-level (as opposed to |C| field operations)

@ Also extends to dishonest-majority setting in the preprocessing model (see paper)

Our Results (Informal)

Assuming F' is an exponentially large prime field,
@ We prove security when log |F| = 6(n2)
@ We conjecture it is secure even when log || = O(n)

For any general circuit C' over F, there is a scalable MPC protocol among n parties

@ The communication/computation (bit)-complexity is O(|C| - log |F|) (= |C| field elements/operations)

@ We measure complexity at a bit-level (as opposed to |C| field operations)

@ Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works

@ Translate the arithmetic circuit into a Boolean circuit = highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]

Our Results (Informal)

Assuming F' is an exponentially large prime field,
@ We prove security when log |F| = 6(n2)
@ We conjecture it is secure even when log || = O(n)

For any general circuit C' over F, there is a scalable MPC protocol among n parties

@ The communication/computation (bit)-complexity is O(|C| - log |F|) (= |C| field elements/operations)

@ We measure complexity at a bit-level (as opposed to |C| field operations)

@ Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works

@ Translate the arithmetic circuit into a Boolean circuit = highly-repeatitive (boolean)
circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt’21]
@ Not desirable due to high (concrete/asymptotic) cost of computation

@ Yao’s Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz’11]

Application of MPC over large prime field

Delegating computation of resource-intensive cryptographic tasks:

@ SNARK proof generation [Ozdemir-Boneh’22; Garg-Goel-Jain-Policharla-Sekar’23,
Chiesa-Lehmkuhl-Mishra-Zhang’23|

@ log |F| ~ 256

Application of MPC over large prime field

Delegating computation of resource-intensive cryptographic tasks:

@ SNARK proof generation [Ozdemir-Boneh’22; Garg-Goel-Jain-Policharla-Sekar’23,
Chiesa-Lehmkuhl-Mishra-Zhang’23|

® log|F| ~ 256
@ Our protocol can plausibly (n < log|F|) be applied to such scenarios with 100 ~ 200 parties.

Technical Highlight

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

(2] [2]

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

(2] [2]

(=] [v] [z] v
@ Given [z] and [y], locally compute [z] = [z] + [y] or [z] - [y]

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

(2] [2]

(=] [v] [z] v
@ Given [z] and [y], locally compute [z] = [z] + [y] or [z] - [y]

@ Degree-reduction after each multiplication gate, given double sharing [r]; and [r]|2: of

@ Reconstruct [z]; - [y]z — [r]2¢
@ Locally compute [z] = [r]; + (z -y — r)

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

(2] [2]

(=] [v] [z] v
@ Given [z] and [y], locally compute [z] = [z] + [y] or [z] - [y]

@ Degree-reduction after each multiplication gate, given double sharing [r]; and [r]|2: of

@ Reconstruct [z]; - [y]z — [r]2¢
@ Locally compute [z] = [r]; + (z -y — r)

Tricks required for Scalable MPC

@ Packed secret sharing [Franklin-Yung’92|

@ Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson’07]

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

(2] [2]

(=] [v] [z] v
@ Given [z] and [y], locally compute [z] = [z] + [y] or [z] - [y]

@ Degree-reduction after each multiplication gate, given double sharing [r]; and [r]|2: of

@ Reconstruct [z]; - [y]z — [r]2¢
@ Locally compute [z] = [r]; + (z -y — r)

Tricks required for Scalable MPC

@ Packed secret sharing [Franklin-Yung’92|

@ This work: “Unpacked” secret sharing

@ Batch Randomness Generation via VanderMonde randomness extraction |[Damgard-Nielson’07]

Existing Framework

Emulating the circuit evaluation gate by gate by secret sharing

(2] [2]

(=] [v] [z] v
@ Given [z] and [y], locally compute [z] = [z] + [y] or [z] - [y]

@ Degree-reduction after each multiplication gate, given double sharing [r]; and [r]|2: of

@ Reconstruct [z]; - [y]z — [r]2¢
@ Locally compute [z] = [r]; + (z -y — r)

Tricks required for Scalable MPC

@ Packed secret sharing [Franklin-Yung’92|
@ This work: “Unpacked” secret sharing

@ Batch Randomness Generation via VanderMonde randomness extraction |[Damgard-Nielson’07]

@ This work: High-dimensional Smudging Lemma

Necessity of Packing

Limitations of Packing

Necessity of Packing

@ n field operations for emulating one arithmetic gate

@ This is the case for any linear secret sharing scheme

Limitations of Packing

Necessity of Packing

@ n field operations for emulating one arithmetic gate

@ This is the case for any linear secret sharing scheme

@ Packing O(n) secrets into one instance of a secret sharing
@ O(n) overhead becomes O(1) through packing

Limitations of Packing

Necessity of Packing

@ n field operations for emulating one arithmetic gate

@ This is the case for any linear secret sharing scheme

@ Packing O(n) secrets into one instance of a secret sharing
@ O(n) overhead becomes O(1) through packing

Limitations of Packing

@ Must emulate multiple O(n) gates simultaneously

Necessity of Packing

@ n field operations for emulating one arithmetic gate

@ This is the case for any linear secret sharing scheme

@ Packing O(n) secrets into one instance of a secret sharing
@ O(n) overhead becomes O(1) through packing

Limitations of Packing

@ Must emulate multiple O(n) gates simultaneously

@ Existing works develop different ways to tackle this

@ Structure circuit / circuit transformation
lFranklin»Yung"QQ, Damgard-Ishai-Kroigaard’10,

Gonkinflshai—Polychroniadou"15]
@ Share transformation lG()yal—P()lychr()uiadou—Song"21A
Goyal—PolychroniadoufSong’22]

Necessity of Packing

@ n field operations for emulating one arithmetic gate

@ This is the case for any linear secret sharing scheme

@ Packing O(n) secrets into one instance of a secret sharing
@ O(n) overhead becomes O(1) through packing

Limitations of Packing

@ Must emulate multiple O(n) gates simultaneously

@ Existing works develop different ways to tackle this

@ Structure circuit / circuit transformation
lFranklin»Yung"QQ, Damgard-Ishai-Kroigaard’10,

Gonkinflshai—Polychroniadou"15]
@ Share transformation lG()yal—P()lychr()uiadou—Song"21A
Goyal—PolychroniadoufSong’22]

@ Can’t achieve computational scalability for general circuit
v

Necessity of Packing

@ n field operations for emulating one arithmetic gate
@ This is the case for any linear secret sharing scheme

@ Packing O(n) secrets into one instance of a secret sharing
@ O(n) overhead becomes O(1) through packing

Limitations of Packing

+or X @ Must emulate multiple O(n) gates simultaneously

@ Existing works develop different ways to tackle this

@ Structure circuit / circuit transformation
ll’ranklin»Yung'QQ, Damgard-Ishai-Kroigaard’10,

GCnkinfIshai—Polychroniadou'15]
@ Share transformation |C()_y'dl—P()l_\j(‘,hr(miad(m-Soug"Z].

Goyal—Polychronia‘doufSong,’22]

@ Can’t achieve computational scalability for general circuit
v

Key Point of Packing

@ Efficiency: rate O(1) secret sharing through packing.

@ Drawback: amortized rate

Key Point of Packing

@ Efficiency: rate O(1) secret sharing through packing.

@ Drawback: amortized rate

Key Point of Packing

@ Efficiency: rate O(1) secret sharing through packing.

@ Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through “unpacking”.

Key Point of Packing

@ Efficiency: rate O(1) secret sharing through packing.

@ Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through “unpacking”.

@ Breaking long secret into short secret shares

Key Point of Packing

@ Efficiency: rate O(1) secret sharing through packing.

@ Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through “unpacking”.
@ Breaking long secret into short secret shares

@ No need to emulate multiple gates simultaneously

Key Point of Packing

@ Efficiency: rate O(1) secret sharing through packing.

@ Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate O(1) secret sharing through “unpacking”.
@ Breaking long secret into short secret shares

@ No need to emulate multiple gates simultaneously

How can we achieve this?

Chinese-remainder-Theorem based Secret Sharing

@ recently introduced by [GIMSWZ’23| to build (weighted) mpc protocols
@ compatible with the existing framework; gate emulation + degree reduction

Chinese-remainder-Theorem based Secret Sharing

@ recently introduced by [GIMSWZ’23| to build (weighted) mpc protocols
@ compatible with the existing framework; gate emulation + degree reduction

@ A secret s € F), is re-randomized as an integer S = s + « - p.

Chinese-remainder-Theorem based Secret Sharing

@ recently introduced by [GIMSWZ’23| to build (weighted) mpc protocols
@ compatible with the existing framework; gate emulation + degree reduction

@ A secret s € F), is re-randomized as an integer S = s + « - p.

Long secret S | S mod p;

| S mod pa2

Chinese-remainder-Theorem based Secret Sharing

@ recently introduced by [GIMSWZ’23| to build (weighted) mpc protocols
@ compatible with the existing framework; gate emulation + degree reduction

@ A secret s € F), is re-randomized as an integer S = s + « - p.

Long secret S ‘ S mod p1 L ‘ S mod pa ‘

N

rate-O(1)

@ Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
@ Pick p1,p2,...,pn appropriately to make it rate-O(1).

Chinese-remainder-Theorem based Secret Sharing

@ recently introduced by [GIMSWZ’23| to build (weighted) mpc protocols
@ compatible with the existing framework; gate emulation + degree reduction

@ A secret s € F), is re-randomized as an integer S = s + « - p.

Long secret S ‘ S mod p1 L ‘ S mod pa ‘

N

rate-O(1)

@ Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
@ Pick p1,p2,...,pn appropriately to make it rate-O(1).

@ Secret length log F' has to be O(n)

Chinese-remainder-Theorem based Secret Sharing

@ recently introduced by [GIMSWZ’23| to build (weighted) mpc protocols
@ compatible with the existing framework; gate emulation + degree reduction

@ A secret s € F), is re-randomized as an integer S = s + « - p.

Long secret S ‘ S mod p1 L ‘ S mod pa ‘

N

rate-O(1)

@ Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
@ Pick p1,p2,...,pn appropriately to make it rate-O(1).

@ Secret length log F' has to be O(n)

@ Have to measure overall complexity at a bit level

Chinese-remainder-Theorem based Secret Sharing

@ recently introduced by [GIMSWZ’23| to build (weighted) mpc protocols
@ compatible with the existing framework; gate emulation + degree reduction

@ A secret s € F), is re-randomized as an integer S = s + « - p.

Long secret S ‘ S mod p1 L ‘ S mod pa ‘

N

rate-O(1)

@ Each share can be much smaller than the secret (e.g., p1 = 2, p2 = 3, ...)
@ Pick p1,p2,...,pn appropriately to make it rate-O(1).

@ Secret length log F' has to be O(n)

@ Have to measure overall complexity at a bit level

@ Already achieve online overhead O(1) assuming we have [r]; and [r]2;

Batch Randomness Generation

How do we generate [r]:, [r]2: efficiently?

Batch Randomness Generation

How do we generate [r]:, [r]2: efficiently?

@ Each multiplication gate consumes one pair;

Batch Randomness Generation

How do we generate [r];, [r]2: efficiently?
@ Each multiplication gate consumes one pair;

@ Each pair should be generated with complexity not dependent on n

atch Randomness Generation

How do we generate [r];, [r]2: efficiently?
@ Each multiplication gate consumes one pair;

@ Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction pamgard-Nielson’07

Each party generates a pair [r;]¢, [r;]2: and

[ra)e [ra)2e 1 2 3 ... =n
[ra]t [r2]2¢ 12 92 32 n2
ant,n . o ant.,n . .) e.g., ant,n =
. . ln—t Qn—t 3n—t . nn—t
[Tn]t ["'n]2t

atch Randomness Generation

How do we generate [r];, [r]2: efficiently?
@ Each multiplication gate consumes one pair;

@ Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction pamgard-Nielson’07

Each party generates a pair [r;]¢, [r;]2: and

[ra)e [ra)2e 1 2 3 ... =n
[ra]t [r2]2¢ 12 92 32 n2
ant,n . o ant.,n . .) e.g., ant,n =
. . ln—t Qn—t 3n—t . nn—t
[Tn]t ["'n]2t

@ Extract n — t pairs out of n pairs

atch Randomness Generation

How do we generate [r];, [r]2: efficiently?
@ Each multiplication gate consumes one pair;

@ Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction pamgard-Nielson’07

Each party generates a pair [r;]¢, [r;]2: and

[ra)e [ra)2e 1 2 3 ... =n
[ra]t [r2]2¢ 12 92 32 n2
ant,n . o ant.,n . .) e.g., ant,n =
. . ln—t Qn—t 3n—t . nn—t
[Tn]t ["'n]2t

@ Extract n — t pairs out of n pairs

@ V,,_¢ n is super-invertible (any n — ¢ by n — ¢t submatrix is invertible)

atch Randomness Generation

How do we generate [r];, [r]2: efficiently?
@ Each multiplication gate consumes one pair;

@ Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction pamgard-Nielson’07

Each party generates a pair [r;]¢, [r;]2: and

[ra)e [ra)2e 1 2 3 ... =n
[ra]t [r2]2¢ 12 92 32 n2
ant,n . o ant.,n . .) e.g., ant,n =
. . ln—t Qn—t 3n—t . nn—t
[Tn]t ["'n]2t

@ Extract n — t pairs out of n pairs

@ V,,_¢ n is super-invertible (any n — ¢ by n — ¢t submatrix is invertible)

@ No matter which ¢ parties are corrupted, the extracted masks are uniformly random.

Key Technical Barrier

For CRT secret sharing, how do we prove the security of these extracted masks?

[r1]2¢ D [r1]2¢ D)

[ra]ot Dy [r2]2t Dy
ant,n . + . ~ ant,n : + o

[rn]2t Dy [r'n]Qt D!

="t
These are distributions over integers! Arguing statistical distance for distributions over integers is not easy.

High-dimensional Smudging Lemma

[r1]2¢ Dy [r1]2¢
[r2]2¢ Do [r2]2s
Vn—t,n + and Vn—t,n
[Tn}Qt Dy [rrL]2t
for
1 2 3 d00 n
12 22 32 ... n?
ant,n =

1n—t 2n—t 3n—t nn—t

are close as long as D; — D} are divisible by

[licicjcn(G =9

High-dimensional Smudging Lemma

[r1]o¢ D, [r1]2¢ D]
[ra]ot Dy [r2]2t Dy
Vn—t,n + and Vn—t,n o +
[Tn}Qt Dy [rrL]2t D;Lft
for
1 2 3 .. n
12 22 & e @
ant,n =
1n—t 2n—t 3n—t nn—t
are close as long as D; — D} are divisible by
[licicjcn(G =9
v
@ Tlicicicnli—

i) is a n2-bit integer. To get rate-1, it means log |F| has to be O(n?).

High-dimensional Smudging Lemma

[r1]o¢ D, [r1]2¢ D]
[ra]ot Dy [r2]2t Dy
Vn—t,n + and Vn—t,n o +
[Tn}Qt Dy [rrL]2t D;Lft
for
1 2 3 .. n
12 22 & e @
ant,n =
1n—t 2n—t 3n—t nn—t
are close as long as D; — D} are divisible by
[licicjcn(G =9
v
@ Tlicicicnli—

i) is a n2-bit integer. To get rate-1, it means log |F| has to be O(n?).
@ Due to proof techniques

Scalable MPC for general circuit over large prime field F":

|C| - log | F|-bit communication/computation complexity
Based on CRT-secret sharing
“unpacked” secret sharing to achieve non-amortized rate-O(1)

high-dimensional smudging lemma: randomness extraction over integers

require log F = O(n?) — Open problem: can we prove the security for log F = O(n)?

Thanks!

Questions?

