Scalable Multiparty Computation from Non-linear Secret Sharing

Sanjam Garg

UC Berkeley

Abhishek Jain

JHU & NTT Research

Pratyay Mukherjee

Supra Research

Mingyuan Wang

UC Berkeley -> NYU Shanghai

Aug. 2024 @ CRYPTO

- **•** honest majority
- $\bullet\,$ information-theoretic plain model
- semi-honest adversary

- **•** honest majority
- $\bullet\,$ information-theoretic plain model
- semi-honest adversary

Objective

- **•** honest majority
- $\bullet\,$ information-theoretic plain model
- semi-honest adversary

Objective

 \bullet Minimizing overall communication & computation complexity

- **•** honest majority
- information-theoretic plain model
- semi-honest adversary

Objective

- \bullet Minimizing overall communication & computation complexity
- \bullet For an arithmetic circuit C over F, can we achieve overall computation complexity $|C|$ field operations?
	- Optimal since insecure evaluation requires the same complexity

- **•** honest majority
- information-theoretic plain model
- semi-honest adversary

Objective

- \bullet Minimizing overall communication & computation complexity
- \bullet For an arithmetic circuit C over F, can we achieve overall computation complexity $|C|$ field operations?
	- Optimal since insecure evaluation requires the same complexity
- \bullet Scalable as the overall complexity does not grow with n.

 \bullet Most practically-efficient MPC protocols (only field operations, no cryptographic operations)

- \bullet Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
- \bullet Can distribute a large computation over parties; per party workload decreases as n grows

- Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
- \bullet Can distribute a large computation over parties; per party workload decreases as n grows
- \bullet Honest majority assumption becomes more reliable as n grows

- Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
- \bullet Can distribute a large computation over parties; per party workload decreases as n grows
- \bullet Honest majority assumption becomes more reliable as n grows
- Many applications naturally involve many parties (e.g., federated learning)

- Most practically-efficient MPC protocols (only field operations, no cryptographic operations)
- \bullet Can distribute a large computation over parties; per party workload decreases as n grows
- \bullet Honest majority assumption becomes more reliable as n grows
- Many applications naturally involve many parties (e.g., federated learning)
- ...

After a long sequence of works [Ben-Or-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, Franklin-Yung'92, Damgard-Nielson'07, ...]

After a long sequence of works [Ben-Or-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, Franklin-Yung'92, Damgard-Nielson'07, ...]

Structured Circuit

- SIMD circuit [Franklin-Yung'92]
- highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]

After a long sequence of works [Ben-Or-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, Franklin-Yung'92, Damgard-Nielson'07, ...

Structured Circuit

- SIMD circuit [Franklin-Yung'92]
- highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]

General Circuit

- Circuit transformation [Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
	- \bullet introduces poly(log |C|, d) overhead (communication/computation, round complexity)

After a long sequence of works [Ben-Or-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, Franklin-Yung'92, Damgard-Nielson'07, ...

Structured Circuit

- SIMD circuit [Franklin-Yung'92]
- highly-repeatitive circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]

General Circuit

- Circuit transformation [Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
	- \bullet introduces poly(log |C|, d) overhead (communication/computation, round complexity)
- Share transformation [Goyal-Polychroniadou-Song'21, Goyal-Polychroniadou-Song'22]
	- \bullet Only achieve communication complexity $|C|$ field element
	- Computation complexity is still $n \cdot |C|$ field operation

Can we build scalable MPC protocol in computation for general circuit?

Assuming F is an exponentially large prime field,

For any general circuit C over F , there is a scalable MPC protocol among n parties

Assuming F is an exponentially large prime field,

For any general circuit C over F , there is a scalable MPC protocol among n parties

The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|)$ **(** $\approx |C|$ **field elements/operations)**

Assuming F is an exponentially large prime field,

We prove security when $\log |F| = \tilde{O}(n^2)$

For any general circuit C over F , there is a scalable MPC protocol among n parties

The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|)$ **(** $\approx |C|$ **field elements/operations)**

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \tilde{O}(n^2)$
- \bullet We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F , there is a scalable MPC protocol among n parties

The communication/computation (bit)-complexity is $O(|C| \cdot \log |F|)$ **(** $\approx |C|$ **field elements/operations)**

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \tilde{O}(n^2)$
- \bullet We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F , there is a scalable MPC protocol among n parties

- **The communication/computation (bit)-complexity is** $O(|C| \cdot \log |F|)$ **(** $\approx |C|$ **field elements/operations)**
- \bullet We measure complexity at a bit-level (as opposed to $|C|$ field operations)

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \tilde{O}(n^2)$
- \bullet We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F , there is a scalable MPC protocol among n parties

- **The communication/computation (bit)-complexity is** $O(|C| \cdot \log |F|)$ **(** $\approx |C|$ **field elements/operations)**
- \bullet We measure complexity at a bit-level (as opposed to $|C|$ field operations)
- \bullet Also extends to dishonest-majority setting in the preprocessing model (see paper)

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \tilde{O}(n^2)$
- We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F , there is a scalable MPC protocol among n parties

- **The communication/computation (bit)-complexity is** $O(|C| \cdot \log |F|)$ **(** $\approx |C|$ **field elements/operations)**
- \bullet We measure complexity at a bit-level (as opposed to $|C|$ field operations)
- Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works

• Translate the arithmetic circuit into a Boolean circuit \implies highly-repeatitive (boolean) circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]

Assuming F is an exponentially large prime field,

- We prove security when $\log |F| = \tilde{O}(n^2)$
- We conjecture it is secure even when $\log |F| = \widetilde{O}(n)$

For any general circuit C over F , there is a scalable MPC protocol among n parties

- **The communication/computation (bit)-complexity is** $O(|C| \cdot \log |F|)$ **(** $\approx |C|$ **field elements/operations)**
- \bullet We measure complexity at a bit-level (as opposed to $|C|$ field operations)
- Also extends to dishonest-majority setting in the preprocessing model (see paper)

An alternative approach from existing works

- Translate the arithmetic circuit into a Boolean circuit \implies highly-repeatitive (boolean) circuit [Beck-Goel-Jain-Kaptchuk Eurocrypt'21]
- Not desirable due to high (concrete/asymptotic) cost of computation
	- Yao's Garbling vs. Arithmetic Garbling: [Applebaum-Ishai-Kushilevitz'11]

Application of MPC over large prime field

Delegating computation of resource-intensive cryptographic tasks:

- SNARK proof generation [Ozdemir-Boneh'22, Garg-Goel-Jain-Policharla-Sekar'23, Chiesa-Lehmkuhl-Mishra-Zhang'23]
- \bullet $\log|F| \approx 256$

Application of MPC over large prime field

Delegating computation of resource-intensive cryptographic tasks:

- SNARK proof generation [Ozdemir-Boneh'22, Garg-Goel-Jain-Policharla-Sekar'23, Chiesa-Lehmkuhl-Mishra-Zhang'23]
- $\log |F| \approx 256$
- Our protocol can plausibly $(n < log |F|)$ be applied to such scenarios with 100 ∼ 200 parties.

Technical Highlight

Emulating the circuit evaluation gate by gate by secret sharing

- -
-

Emulating the circuit evaluation gate by gate by secret sharing

- -
-

Emulating the circuit evaluation gate by gate by secret sharing

- Given [x] and [y], locally compute $[z] = [x] + [y]$ or $[x] \cdot [y]$
- \bullet Degree-reduction after each multiplication gate, given double sharing $[r]_t$ and $[r]_{2t}$ of r
	- Reconstruct $[x]_t \cdot [y]_t [r]_{2t}$
	- Locally compute $[z] = [r]_t + (x \cdot y r)$

- -
-

Emulating the circuit evaluation gate by gate by secret sharing

- Given [x] and [y], locally compute $[z] = [x] + [y]$ or $[x] \cdot [y]$
- \bullet Degree-reduction after each multiplication gate, given double sharing $[r]_t$ and $[r]_{2t}$ of r
	- Reconstruct $[x]_t \cdot [y]_t [r]_{2t}$
	- Locally compute $[z] = [r]_t + (x \cdot y r)$

Tricks required for Scalable MPC

- Packed secret sharing [Franklin-Yung'92]
	- This work: "Unpacked" secret sharing
- Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]
	- This work: High-dimensional Smudging Lemma

Emulating the circuit evaluation gate by gate by secret sharing

- Given [x] and [y], locally compute $[z] = [x] + [y]$ or $[x] \cdot [y]$
- \bullet Degree-reduction after each multiplication gate, given double sharing $[r]_t$ and $[r]_{2t}$ of r
	- Reconstruct $[x]_t \cdot [y]_t [r]_{2t}$
	- Locally compute $[z] = [r]_t + (x \cdot y r)$

Tricks required for Scalable MPC

- Packed secret sharing [Franklin-Yung'92]
	- This work: "Unpacked" secret sharing

Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]

This work: High-dimensional Smudging Lemma

Emulating the circuit evaluation gate by gate by secret sharing

- Given [x] and [y], locally compute $[z] = [x] + [y]$ or $[x] \cdot [y]$
- Degree-reduction after each multiplication gate, given double sharing $[r]_t$ and $[r]_{2t}$ of r \bullet
	- Reconstruct $[x]_t \cdot [y]_t [r]_{2t}$
	- Locally compute $[z] = [r]_t + (x \cdot y r)$

Tricks required for Scalable MPC

- Packed secret sharing [Franklin-Yung'92]
	- This work: "Unpacked" secret sharing
- Batch Randomness Generation via VanderMonde randomness extraction [Damgard-Nielson'07]
	- This work: High-dimensional Smudging Lemma

Limitations of Packing

+ or ×

- \bullet *n* field operations for emulating one arithmetic gate
	- This is the case for any linear secret sharing scheme

Limitations of Packing

- \bullet *n* field operations for emulating one arithmetic gate
	- This is the case for any linear secret sharing scheme

• Packing $O(n)$ secrets into one instance of a secret sharing

 \odot O(n) overhead becomes O(1) through packing

Limitations of Packing

- \bullet *n* field operations for emulating one arithmetic gate
	- This is the case for any linear secret sharing scheme

• Packing $O(n)$ secrets into one instance of a secret sharing

 \odot O(n) overhead becomes O(1) through packing

Limitations of Packing

• Must emulate multiple $O(n)$ gates simultaneously

- \bullet *n* field operations for emulating one arithmetic gate
	- This is the case for any linear secret sharing scheme

Packing $O(n)$ secrets into one instance of a secret sharing

 $O(n)$ overhead becomes $O(1)$ through packing

Limitations of Packing

- Must emulate multiple $O(n)$ gates simultaneously
- Existing works develop different ways to tackle this
	- Structure circuit / circuit transformation [Franklin-Yung'92, Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
	- Share transformation [Goyal-Polychroniadou-Song'21, Goyal-Polychroniadou-Song'22]

- \bullet *n* field operations for emulating one arithmetic gate
	- This is the case for any linear secret sharing scheme

• Packing $O(n)$ secrets into one instance of a secret sharing

 \odot O(n) overhead becomes O(1) through packing

Limitations of Packing

- Must emulate multiple $O(n)$ gates simultaneously
- Existing works develop different ways to tackle this
	- Structure circuit / circuit transformation [Franklin-Yung'92, Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
	- Share transformation [Goyal-Polychroniadou-Song'21, Goyal-Polychroniadou-Song'22]
- Can't achieve computational scalability for general circuit

- \bullet *n* field operations for emulating one arithmetic gate
	- This is the case for any linear secret sharing scheme

• Packing $O(n)$ secrets into one instance of a secret sharing

 \odot O(n) overhead becomes O(1) through packing

Limitations of Packing

- Must emulate multiple $O(n)$ gates simultaneously
- Existing works develop different ways to tackle this
	- Structure circuit / circuit transformation [Franklin-Yung'92, Damgard-Ishai-Kroigaard'10, Genkin-Ishai-Polychroniadou'15]
	- Share transformation [Goyal-Polychroniadou-Song'21, Goyal-Polychroniadou-Song'22]
- Can't achieve computational scalability for general circuit

Key Point of Packing

- \bullet Efficiency: rate $O(1)$ secret sharing through packing.
- Drawback: amortized rate

- \bullet Efficiency: rate $O(1)$ secret sharing through packing.
- Drawback: amortized rate

- \bullet Efficiency: rate $O(1)$ secret sharing through packing.
- Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate $O(1)$ secret sharing through "unpacking".

- \bullet Efficiency: rate $O(1)$ secret sharing through packing.
- Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate $O(1)$ secret sharing through "unpacking".

Breaking long secret into short secret shares

- \bullet Efficiency: rate $O(1)$ secret sharing through packing.
- Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate $O(1)$ secret sharing through "unpacking".

- Breaking long secret into short secret shares
- No need to emulate multiple gates simultaneously

- \bullet Efficiency: rate $O(1)$ secret sharing through packing.
- Drawback: amortized rate

Our Conceptual Contribution

Achieving non-amortized rate $O(1)$ secret sharing through "unpacking".

- Breaking long secret into short secret shares
- No need to emulate multiple gates simultaneously

How can we achieve this?

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
	- \bullet compatible with the existing framework; gate emulation $+$ degree reduction

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
	- \bullet compatible with the existing framework; gate emulation $+$ degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
	- \bullet compatible with the existing framework; gate emulation $+$ degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

- recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
	- \bullet compatible with the existing framework; gate emulation $+$ degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

 \bullet Pick p_1, p_2, \ldots, p_n appropriately to make it rate- $O(1)$.

- \bullet recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
	- \bullet compatible with the existing framework; gate emulation $+$ degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

 \bullet Pick p_1, p_2, \ldots, p_n appropriately to make it rate- $O(1)$.

Remarks

 \bullet Secret length $\log F$ has to be $O(n)$

- \bullet recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
	- \bullet compatible with the existing framework; gate emulation $+$ degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

 \bullet Pick p_1, p_2, \ldots, p_n appropriately to make it rate- $O(1)$.

- \bullet Secret length $\log F$ has to be $O(n)$
- Have to measure overall complexity at a bit level

- \bullet recently introduced by [GJMSWZ'23] to build (weighted) mpc protocols
	- \bullet compatible with the existing framework; gate emulation $+$ degree reduction
- A secret $s \in F_p$ is re-randomized as an integer $S = s + \alpha \cdot p$.

 \bullet Pick p_1, p_2, \ldots, p_n appropriately to make it rate- $O(1)$.

- \bullet Secret length $\log F$ has to be $O(n)$
- Have to measure overall complexity at a bit level
- Already achieve online overhead $O(1)$ assuming we have $[r]_t$ and $[r]_{2t}$

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

Each multiplication gate consumes one pair;

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- \bullet Each pair should be generated with complexity not dependent on n

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- \bullet Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson'07

Each party generates a pair $[r_i]_t$, $[r_i]_{2t}$ and

$$
V_{n-t,n} \cdot \begin{pmatrix} [r_1]_t \\ [r_2]_t \\ \vdots \\ [r_n]_t \end{pmatrix} \qquad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix}, \qquad \text{e.g.,} \quad V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}
$$

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- \bullet Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson'07

Each party generates a pair $[r_i]_t$, $[r_i]_{2t}$ and

$$
V_{n-t,n} \cdot \begin{pmatrix} [r_1]_t \\ [r_2]_t \\ \vdots \\ [r_n]_t \end{pmatrix} \qquad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix},
$$

Extract
$$
n-t
$$
 pairs out of *n* pairs

 \bullet

$$
\text{e.g.,}\quad V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}
$$

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- \bullet Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson'07

Each party generates a pair $[r_i]_t$, $[r_i]_{2t}$ and

$$
V_{n-t,n} \cdot \begin{pmatrix} [r_1]_t \\ [r_2]_t \\ \vdots \\ [r_n]_t \end{pmatrix} \qquad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix}, \qquad \text{e.g.,} \quad V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}
$$

- \bullet Extract $n t$ pairs out of n pairs
- $V_{n-t,n}$ is super-invertible (any $n-t$ by $n-t$ submatrix is invertible)

How do we generate $[r]_t$, $[r]_{2t}$ efficiently?

- Each multiplication gate consumes one pair;
- \bullet Each pair should be generated with complexity not dependent on n

VanderMonde Randomness Extraction Damgard-Nielson'07

Each party generates a pair $[r_i]_t$, $[r_i]_{2t}$ and

$$
V_{n-t,n} \cdot \begin{pmatrix} [r_1]_t \\ [r_2]_t \\ \vdots \\ [r_n]_t \end{pmatrix} \qquad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix}, \qquad \text{e.g.,} \quad V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}
$$

- \bullet Extract $n t$ pairs out of n pairs
- $V_{n-t,n}$ is super-invertible (any $n-t$ by $n-t$ submatrix is invertible)
- \bullet No matter which t parties are corrupted, the extracted masks are uniformly random.

Key Technical Barrier

For CRT secret sharing, how do we prove the security of these extracted masks?

$$
V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-t} \end{pmatrix} \approx V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D'_1 \\ D'_2 \\ \vdots \\ D'_{n-t} \end{pmatrix}
$$

These are distributions over integers! Arguing statistical distance for distributions over integers is not easy.

High-dimensional Smudging Lemma

$$
V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-t} \end{pmatrix} \quad \text{and} \quad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1' \\ D_2' \\ \vdots \\ D_{n-t}' \end{pmatrix}
$$

for

$$
V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}
$$

are close as long as $D_i - D'_i$ are divisible by

 $\prod_{1\leqslant i < j \leqslant n} (j-i)$

High-dimensional Smudging Lemma

$$
V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-t} \end{pmatrix} \quad \text{and} \quad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1' \\ D_2' \\ \vdots \\ D_{n-t}' \end{pmatrix}
$$

for

$$
V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}
$$

are close as long as $D_i - D'_i$ are divisible by

 $\prod_{1\leqslant i < j \leqslant n} (j-i)$

 $\prod_{1 \leqslant i < j \leqslant n} (j - i)$ is a n^2 -bit integer. To get rate-1, it means $\log |F|$ has to be $O(n^2)$.

High-dimensional Smudging Lemma

$$
V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_{n-t} \end{pmatrix} \quad \text{and} \quad V_{n-t,n} \cdot \begin{pmatrix} [r_1]_{2t} \\ [r_2]_{2t} \\ \vdots \\ [r_n]_{2t} \end{pmatrix} + \begin{pmatrix} D_1' \\ D_2' \\ \vdots \\ D_{n-t}' \end{pmatrix}
$$

for

$$
V_{n-t,n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1^2 & 2^2 & 3^2 & \dots & n^2 \\ 1^{n-t} & 2^{n-t} & 3^{n-t} & \dots & n^{n-t} \end{pmatrix}
$$

are close as long as $D_i - D'_i$ are divisible by

 $\prod_{1\leqslant i < j \leqslant n} (j-i)$

- $\prod_{1 \leqslant i < j \leqslant n} (j i)$ is a n^2 -bit integer. To get rate-1, it means $\log |F|$ has to be $O(n^2)$.
- Due to proof techniques

Summary

Scalable MPC for general circuit over large prime field F :

- \bullet $|C| \cdot \log |F|$ -bit communication/computation complexity
- Based on CRT-secret sharing
- \bullet "unpacked" secret sharing to achieve non-amortized rate- $O(1)$
- high-dimensional smudging lemma: randomness extraction over integers
- require $\log F = \tilde{O}(n^2)$ Open problem: can we prove the security for $\log F = \tilde{O}(n)$?

Thanks!

