How to construct
uantum FHE, Generically

Aparna Gupte Vinod Vaikuntanathan
MIT MIT

Classical Fully Homomorphic Encryption (FHE)

Input x D

Circuit C

Server should not learn anything about x

Classical Fully Homomorphic Encryption (FHE)

Input x
c, evk

pk, sk, evk < KeyGen

Circuit C

C < Encpk(x)

Server should not learn anything about x

Classical Fully Homomorphic Encryption (FHE)

Input x
c, evk
>

pk, sk, evk < KeyGen

Circuit C

E <
C — ncpk(x) ¢’ <« Eval(C, c, evk)

C(x) <« Decyl(ch
Server should not learn anything about x

Classical Fully Homomorphic Encryption (FHE)

Input x
c, evk
>

pk, sk, evk < KeyGen

Circuit C

C < Encpk(x) <

¢’ <« Eval(C, c, evk)
C(x) <« Decyl(ch
Server should not learn anything about x
Client efficiency:
* Decryption should be more efficient than computing C

Quantum Fully Homomorphic Encryption (OFHE)

Input x
c, evk

pk, sk, evk < KeyGen

Quantum circuit Q

C < Encpk(x)

Q(x) < Decglc’)

¢’ « Eval (O, c, evk)

Server should not learn anything about x

Client efficiency:
* Decryption should be more efficient than computing O

Quantum Fully Homomorphic Encryption (OFHE)

Input x
c, evk

pk, sk, evk < KeyGen

Quantum circuit Q

C < Encpk(x)

Q(x) < Decglc’)

¢’ « Eval (O, c, evk)

Server should not learn anything about x

Client efficiency:

* Decryption should be more efficient than computing O
* Client should be classical!

What was known

What was known

Quantum/Classical client

Assumptions needed

BJ15, DSS16

Quantum client

Any post-quantum (pq.)
classical FHE*

*with decryption circuit in NCi1

What was known

Quantum/Classical client

Assumptions needed

BJ15, DSS16

Quantum client &

Any post-quantum (pq.)
classical FHE*

*with decryption circuit in NCi1

What was known

Quantum/Classical client

Assumptions needed

BJ15, DSS16

Quantum client &

Any post-quantum (pq.)
classical FHE* &

*with decryption circuit in NCi1

What was known

Quantum/Classical client

Assumptions needed

BJ15, DSS16

Quantum client &

Any post-quantum (pq.)
classical FHE* &

Mahi8a, Brai8

Classical client

Learning With Errors
(LWE)

*with decryption circuit in NCi1

What was known

Quantum/Classical client

Assumptions needed

BJ15, DSS16

Quantum client &

Any post-quantum (pq.)
classical FHE* &

Mahi8a, Brai8

Classical client

Learning With Errors
(LWE)

*with decryption circuit in NCi1

What was known

Quantum/Classical client

Assumptions needed

BJ15, DSS16

Quantum client &

Any post-quantum (pq.)
classical FHE* &

Mahi8a, Brai8

Classical client

Learning With Errors
(LWE) &

*with decryption circuit in NCi1

Does (classical-client) QFHE really need LWE?

Does (classical-client) QFHE really need LWE?

Why should we diversify assumptions?

Does (classical-client) QFHE really need LWE?

Quantum Algorithms for Lattice Problems

Yilei Chen*

Why should we diversify assumptions?

* Do not want all QFHE eggs in the LWE basket. What if we break LWE?

&

Does (classical-client) QFHE really need LWE?

Quantum Algorithms for Lattice Problems

Why should we diversify assumptions? ’ :ii ‘
* Do not want all QFHE eggs in the LWE basket. What if we break LWE?

 Different properties useful in different contexts: different efficiency profiles

Does (classical-client) QFHE really need LWE?

Quantum Algorithms for Lattice Problems

Why should we diversify assumptions? ’ :ii ‘
* Do not want all QFHE eggs in the LWE basket. What if we break LWE?

 Different properties useful in different contexts: different efficiency profiles

Dream Theorem. Any post-quantum classical FHE = QFHE.

Our Results (QFHE)

Theorem 1 [G-Vaikuntanathan]

pqg. Classical FHE* + pqg. Dual-mode Trapdoor Functions = QFHE

* with decryption circuit in NCi1

Our Results (QFHE)

Theorem 1 [G-Vaikuntanathan]

pqg. Classical FHE* + pqg. Dual-mode Trapdoor Functions = QFHE

y

* LWE [BV11, BVi4]
* pq. 1O + pq. re-randomizable encryption [CLTVi4]
* pqg. IO + Group actions [CLTVi4, Wichs24]

* with decryption circuit in NCi1

Our Results (QFHE)

Theorem 1 [G-Vaikuntanathan]

pqg. Classical FHE* + pqg. Dual-mode Trapdoor Functions = QFHE

 LWE [BV11, BVi4] * LWE [Mahi8b]
* pg.lO + pg. re-randomizable encryption [CLTVi4] * Group actions [GV24, Theorem 2]
* DQ. [O + Gr()up actions [CLTV14, WiChS,24] Build on work of Alamati, Malavolta and Rahimi [AMR22]

* with decryption circuit in NCi1

Our Results (QFHE)

Theorem 1 [G-Vaikuntanathan]

pqg. Classical FHE* + pqg. Dual-mode Trapdoor Functions = QFHE

o L\

 LWE [BV11, BVi4] * LWE [Mahi8b]
* pg.lO + pg. re-randomizable encryption [CLTVi4] * Group actions [GV24, Theorem 2]
* DQ. [O + Gr()up actions [CLTV14, WiChS,24] Build on work of Alamati, Malavolta and Rahimi [AMR22]

Corollary [GV24]. pq. IO + Group actions = QFHE

* with decryption circuit in NCi1

Non-compact QFHE

c, evk
Input x > Quantum circuit Q0
pk, sk, evk < KeyGen
¢ < Enc,i(x)
x) < Dec.(c’ c’
o) #(€)) ¢’ < Eval(O, c, evk)

Client efficiency:
* Decryption should be more efficient than computing O

Non-compact QFHE

c, evk
Input x > Quantum circuit Q0
>
<<

pk, sk, evk < KeyGen >
¢ < Ency,i(x) >

x) < Dec.(c’ c’

o) #(€)) ¢’ < Eval(O, c, evk)

Client efficiency:

[J [J [
-- a ala ava 1T NO MMaAoaYe o1rn ala)) aVtaala -g‘
— Y 12 w J UL W C w UAY _/

* Still useful for outsourcing quantum computation if we allow interaction and a non-

compact poly(| QO |)-time client
* Client should be classical

. Called Blind Delegated

NO“‘COmpaCt QFHE = Quantum Computation

o Previously known only

with LWE
c, evk
Input x > Quantum circuit Q0
>
<<

pk, sk, evk < KeyGen >
¢ < Ency,i(x) >

x) < Dec(c’ c’

o) #(€)) ¢’ < Eval(O, c, evk)
Client efficiency:

[]
-- a Al a ava 1 IO MAAOAYOD AOTDh N a a
» V- L J UACYLAYS Wl U v

* Still useful for outsourcing quantum computation if we allow interaction and a non-

compact poly(| QO |)-time client
* Client should be classical

Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++
pqg. Dual-mode Trapdoor Functions = Non-compact QFHE

Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++

pqg. Dual-mode Trapdoor Functions = Non-compact QFHE

[\

Group actions [GV24, Theorem 2]

Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++

pqg. Dual-mode Trapdoor Functions = Non-compact QFHE

[\

Group actions [GV24, Theorem 2]

Corollary [GV24]. Group actions = Non-compact QFHE

Not known to imply

classical (compact) FHE

Our scheme for (compact) OFHE

Input x
c, evk

pk, sk, evk < KeyGen

Quantum circuit Q

C < Encpk(x)

Q(x) < Decglc’)

¢’ « Eval (O, c, evk)

Server should not learn anything about x

Client efficiency:

* Decryption should be more efficient than computing O
* Client should be classical!

Starting point: Dulek-Schaftner-Speelman’16

evk
—
_ Lo Fo R
&H ¢ =Enc(x), ¥R &R &R
Q(x) < Decgylc’) ¢’
) c' « Eval(Q, c, evky)

* Client needs to be quantum
* Needs to prepare and send quantum evaluation keys evk (which is a function of sk)

Our Idea: Use RSP

Remote State Preparation (RSP)

[Djunko-Kashefi”16, Gheorghiu-Vidick19,
Cojocaru-Colisson-Kashefi-Wallden19, Gheorghiu-Metger-Poremba’22]

Family of states {@i}iel

* Goal: Replace quantum communication in some protocols.

Our Idea: Use RSP

Remote State Preparation (RSP)

[Djunko-Kashefi”16, Gheorghiu-Vidick19,
Cojocaru-Colisson-Kashefi-Wallden19, Gheorghiu-Metger-Poremba’22]

X

Instructions to prepare state @i
Family of states {@i}ia Hides i

>

* Goal: Replace quantum communication in some protocols.

Our Idea: Use RSP

Remote State Preparation (RSP)

[Djunko-Kashefi”16, Gheorghiu-Vidick19,
Cojocaru-Colisson-Kashefi-Wallden19, Gheorghiu-Metger-Poremba’22]

X

Instructions to prepare state @i
Family of states {@i}ia Hides i

>

“Blindly” prepare @ ;

Server does not learn i

* Goal: Replace quantum communication in some protocols.

Our Idea: Use RSP

Remote State Preparation (RSP)

[Djunko-Kashefi”16, Gheorghiu-Vidick19,
Cojocaru-Colisson-Kashefi-Wallden19, Gheorghiu-Metger-Poremba’22]

X

Instructions to prepare state @i
Family of states {@i}ia Hides i

>

“Blindly” prepare @ ;

Server does not learn i

* Goal: Replace quantum communication in some protocols.

* What is known? Can RSP BB84 states assuming dual-mode trapdoor functions [GV19, GMP22].

Our Main Technical Contribution
RSP the DSS evaluation keys

* Can we do remote state preparation for the DSS quantum evk?

Our Main Technical Contribution
RSP the DSS evaluation keys

* Can we do remote state preparation for the DSS quantum evk?

* We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

Our Main Technical Contribution
RSP the DSS evaluation keys

* Can we do remote state preparation for the DSS quantum evk?

* We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

Our Main Technical Contribution
RSP the DSS evaluation keys

* Can we do remote state preparation for the DSS quantum evk?

* We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

¢ = Enc(x),

Instructions to prepare
evk, that hide sk
>

Our Main Technical Contribution
RSP the DSS evaluation keys

* Can we do remote state preparation for the DSS quantum evk?

* We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

¢ = Enc(x),

Instructions to prepare
evk, that hide sk
>

Prepares evk,, &2 but learns nothing about sk

Our Main Technical Contribution
RSP the DSS evaluation keys

* Can we do remote state preparation for the DSS quantum evk?

* We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

¢ = Enc(x),
Instructions to prepare
evk, that hide sk
>

/

C

O(x) < Decg(c) Prepares evk &2 but learns nothing about sk

¢' < Eval(O, c, evky)

Our Main Technical Contribution
RSP the DSS evaluation keys

* Can we do remote state preparation for the DSS quantum evk?

* We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

¢ = Enc(x),
Instructions to prepare
evk, that hide sk
>

/

C

O(x) < Decg(c) Prepares evk &2 but learns nothing about sk

¢' < Eval(O, c, evky)
Client is classical!

Our Main Technical Contribution
RSP the DSS evaluation keys

Step (1) It (essentially) suffices to RSP one of these two states:

1 2

e R

o

Our Main Technical Contribution
RSP the DSS evaluation keys

Step (1) It (essentially) suffices to RSP one of these two states:

1 2

e R

Step (2) Dual-mode trapdoor functions = RSP of @ - or @ -

o

Dual-mode trapdoor functions

Definition. Family of pairs of injective functions f,,f; : X = Y such that either

Dual-mode trapdoor functions

Definition. Family of pairs of injective functions f,,f; : X = Y such that either

(1) Im(fy) = Im(f;)

Dual-mode trapdoor functions

Definition. Family of pairs of injective functions f,,f; : X = Y such that either

(1) Im(fy) = Im(f,) or (2) Im(fy) N Im(f,) = .

Dual-mode trapdoor functions

Definition. Family of pairs of injective functions f,,f; : X = Y such that either

(1) Im(fy) = Im(f,) or (2) Im(fy) N Im(f,) = .

X

* Dual-mode: Given keys for f, f;, it is hard to tell whether they are in mode (1) or (2).

Dual-mode trapdoor functions

Definition. Family of pairs of injective functions f,,f; : X = Y such that either

(1) Im(fy) = Im(f,) or (2) Im(fy) N Im(f,) = .

X

* Dual-mode: Given keys for f, f;, it is hard to tell whether they are in mode (1) or (2).

* Trapdoor: allows efficient inversion in both modes.

Warmup: Remote State Preparation of BB84 states

|GV1g9, GMP22]

Warmup: Remote State Preparation of BB84 states

| | |GV1g9, GMP22]
BB84 states: { 10), |1), —(\O)+\1>), —(\O>— ‘U)}
@1 @2 \/5 @3 \/5 @4

Warmup: Remote State Preparation of BB84 states

| | |GV1g9, GMP22]
BB84 states: { 10), |1), —(10) + | 1)), —([0) — | 1))}

&, &8, V2 &, V2 g,

1. Prepare state 2 2 |5) | x)

be{0,1} xeX

Warmup: Remote State Preparation of BB84 states

| | |GV1g9, GMP22]
BB84 states: { 10), |1), —(10) + | 1)), —([0) — | 1))}

&, &8, V2 &, V2 g,

1. Prepare state 2 2 |6) | x) | fp(x))

be{0,1} xeX

Warmup: Remote State Preparation of BB84 states

| , |GV1g9, GMP22]
BBS4states:{\O), | 1), —(\O)+\1)), —(\O)—\l))}
2 2
g, V2odR, V2,
1. Prepare state 2 2 |6) | x) | fp(x))
be{0,1} xeX
2. Measure register #3togety € Y
* Inmode (1) Im(j,) = Im(f;) * Inmode (2) Im(f)) NIm(f,) =@

[0) [x0) + 1) | xy) D) |)

Warmup: Remote State Preparation of BB84 states

| , |GV1g9, GMP22]
BBS4states:{\O), | 1), —(\O)+\1)), —(\O)—\l))}
,ofp VEod V2B,
1. Prepare state 2 2 |6) | x) | fp(x))
be{0,1} xeX
2. Measure register #3togety € Y
* Inmode (1) Im(f,) = Im(f)) * Inmode (2) Im(f) NIm(f,) = &
[0) [x0) + [1) [x;) [D) | x,)

3. Measure register #2 in Hadamard basis to get rid of x;,

* Inmode (1) Im(f,) = Im(f)) @3 @4 * Inmode (2) Im(fy) NIm(f)) = @ @1 @2

Our Main Technical Contribution
RSP the DSS evaluation keys

Step (1) It (essentially) suffices to RSP one of these two states:

1 2

e R

Step (2) Dual-mode trapdoor functions = RSP of @ - or @ -

o

Lemma [GV24]. Dual-mode trapdoor functions = RSP for

%

Lemma [GV24]. Dual-mode trapdoor functions = RSP for 868 =

1
@1 = —(1000) +1001) + 110y + |TID)) = 3 Jwww)

u=v,we{0,1}

V)

Lemma [GV24]. Dual-mode trapdoor functions = RSP for 868 =

1
@1 = —(1000) +1001) + 110y + |TID)) = 3 Jwww)

u=v,we{0,1}

1
@2 =5(\ooo>+\010>+\101>+\111>>= Y o lww)

u=w,ve{0,1}

Lemma [GV24]. Dual-mode trapdoor functions = RSP for

%

Lemma [GV24]. Dual-mode trapdoor functions = RSP for

%

If client wants to prepare g@g =

1 2

Q [NWAVAVAVAVAVAVAVA 2
Lemma [GV24]. Dual-mode trapdoor functions = RSP for 8@8 = y @2 - %

1

If client wants to prepare g@g - want to project to the blue basis vectors.

®
3

1
(\ooo>+ 1001) + [010) + [011) + | 100) + [101} + [110) + \111>>
/2

1 2

Q [NWAVAVAVAVAVAVAVA 2
Lemma [GV24]. Dual-mode trapdoor functions = RSP for 8@8 = y @2 - %

1

[f client wants to prepare g@g - want to project to the blue basis vectors.

®
3

\/_(\ooo>+ 001) + 010) + [011) + [100) + [101) + | 110) + [111))
2\/2

1. Prepare Z 2 | uvw) | x) | f,,,,(x)) for 8 functions . : X — Y, u,v,w € {0,1}.
u,y,wel{0,1} xeX Y

fblue UYW @
° fred Uvw

1 2

Q [NWAVAVAVAVAVAVAVA 2
Lemma [GV24]. Dual-mode trapdoor functions = RSP for 8@81 = y @2 - %

If client wants to prepare &

want to project to the blue basis vectors.

X
X
I

®
3

1
(\ooo>+ 1001) + [010) + [011) + | 100) + [101} + [110) + \111>>
/2

1.

f blue uww
2. Measure 3rd register, get y € 1, Zblue v |luvw) | x,,.,.,.)- °
fred uvw

Prepare

Z 2 | uvw) | x) | f,,,,(x)) for 8 functions . : X — Y, u,v,w € {0,1}.
u,y,wel{0,1} xeX Y

1 2

Q [NWAVAVAVAVAVAVAVA 2
Lemma [GV24]. Dual-mode trapdoor functions = RSP for 8@81 = y @2 - %

If client wants to prepare &

want to project to the blue basis vectors.

X
X
I

®
3

1
(\ooo>+ 1001) 4+ [010) + [011) + [100) + [101) + [110) + \111))
20/2

1.

f blue uww
2. Measure 3rd register, get y € 1, Zblue v |luvw) | x,,.,.,.)- °
fred uvw

Prepare

Z 2 | uvw) | x) | f,,,,(x)) for 8 functions . : X — Y, u,v,w € {0,1}.
u,y,wel{0,1} xeX Y

1 2

Q [NWAVAVAVAVAVAVAVA 2
Lemma [GV24]. Dual-mode trapdoor functions = RSP for 8@8 = y @2 - %

1

If client wants to prepare g@ want to project to the blue basis vectors.

X
X
I

®
3

1
(\ooo>+ 1001) 4+ [010) + [011) + [100) + [101) + [110) + \111))
24/2 Dual-mode trapdoor functions

1. Prepare Z 2 | uvw) | x) | f,,,,(x)) for 8 functions . : X — Y, u,v,w € {0,1}.

u,y,wel{0,1} xeX Y

f blue uww
2. Measure 3rd register, get y € 1, Zblue v |luvw) | x,,.,.,.)- °
fred uvw e

1 2

Q [NWAVAVAVAVAVAVAVA 2
Lemma [GV24]. Dual-mode trapdoor functions = RSP for 8@8 = y @2 - %

1

want to project to the blue basis vectors.

If client wants to prepare g@g

®
3

1
(\ooo>+ 1001) 4+ [010) + [011) + [100) + [101) + [110) + \111))
20/2

Dual-mode trapdoor functions

1. Prepare Z 2 | uvw) | x) | f,,,,(x)) for 8 functions . : X — Y, u,v,w € {0,1}.

u,y,wel{0,1} xeX Y

f blue uww
2. Measure 3rd register, get y € 1, Zblue v |luvw) | x,,.,.,.)- °
fred uvw

3. Measure 2nd register in Hadamard basis getrid of x,,,,,. e

Summary of Our Results

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions = QFHE.

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions = QFHE.

Theorem 2. Group actions = pq. Dual-mode Trapdoor Functions.

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions = QFHE.
Theorem 2. Group actions = pq. Dual-mode Trapdoor Functions.

Corollary 3. pg. 10 + Group actions = QFHE.

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions = QFHE.
Theorem 2. Group actions = pq. Dual-mode Trapdoor Functions.
Corollary 3. pg. 10 + Group actions = QFHE.

Theorem 1. ++ pqg. Dual-mode Trapdoor Functions = Non-compact QFHE.

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions = QFHE.
Theorem 2. Group actions = pq. Dual-mode Trapdoor Functions.

Corollary 3. pg. 10 + Group actions = QFHE.

Theorem 1. ++ pqg. Dual-mode Trapdoor Functions = Non-compact QFHE.

Corollary 4. Group actions = Non-compact QFHE.

Open Question #1

* [sthe dream theorem true?

Open Question #2

We don't need classical FHE
Our work: Dual-mode trapdoor functions suffice
Information'theoretic Security unlikely [Morimae-Nishimura-Takeuchi-Tani’18, Aaronson-Cojocaru-Gheorghiu-Kashefi'19]

Can you construct non-compact QFHE from one-way functions?

