
How to construct

Quantum FHE, Generically

Aparna Gupte

MIT

Vinod Vaikuntanathan

MIT

Classical Fully Homomorphic Encryption (FHE)

Input x

Server should not learn anything about x

Circuit C

Classical Fully Homomorphic Encryption (FHE)

Input x

pk, sk, evk ← KeyGen

c ← Encpk(x)

c, evk

Server should not learn anything about x

Circuit C

Classical Fully Homomorphic Encryption (FHE)

Input x

pk, sk, evk ← KeyGen

c ← Encpk(x)

c, evk

c′￼ ← Eval(C, c, evk)
c′￼

C(x) ← Decsk(c′￼)
Server should not learn anything about x

Circuit C

Classical Fully Homomorphic Encryption (FHE)

Input x

pk, sk, evk ← KeyGen

c ← Encpk(x)

c, evk

c′￼ ← Eval(C, c, evk)
c′￼

C(x) ← Decsk(c′￼)
Server should not learn anything about x

Client efficiency:

•Decryption should be more efficient than computing C

Circuit C

Quantum Fully Homomorphic Encryption (QFHE)

Input x Quantum circuit Q

pk, sk, evk ← KeyGen

c, evk

 c′￼ ← Eval (Q, c, evk)
c′￼

Server should not learn anything about x

c ← Encpk(x)

Q(x) ← Decsk(c′￼)

Client efficiency:
•Decryption should be more efficient than computing Q

Quantum Fully Homomorphic Encryption (QFHE)

Input x Quantum circuit Q

pk, sk, evk ← KeyGen

c, evk

 c′￼ ← Eval (Q, c, evk)
c′￼

Server should not learn anything about x

c ← Encpk(x)

Q(x) ← Decsk(c′￼)

Client efficiency:
•Decryption should be more efficient than computing Q
•Client should be classical!

What was known

What was known

Quantum/Classical client Assumptions needed

BJ15, DSS16 Quantum client
Any post-quantum (pq.)

classical FHE*

* with decryption circuit in NC1

What was known

Quantum/Classical client Assumptions needed

BJ15, DSS16 Quantum client
Any post-quantum (pq.)

classical FHE*

* with decryption circuit in NC1

🙁

What was known

Quantum/Classical client Assumptions needed

BJ15, DSS16 Quantum client
Any post-quantum (pq.)

classical FHE*

* with decryption circuit in NC1

🙂
🙁

What was known

Quantum/Classical client Assumptions needed

BJ15, DSS16 Quantum client
Any post-quantum (pq.)

classical FHE*

Mah18a, Bra18 Classical client
Learning With Errors

(LWE)

* with decryption circuit in NC1

🙂
🙁

What was known

Quantum/Classical client Assumptions needed

BJ15, DSS16 Quantum client
Any post-quantum (pq.)

classical FHE*

Mah18a, Bra18 Classical client
Learning With Errors

(LWE)

* with decryption circuit in NC1

🙂

🙂
🙁

What was known

Quantum/Classical client Assumptions needed

BJ15, DSS16 Quantum client
Any post-quantum (pq.)

classical FHE*

Mah18a, Bra18 Classical client
Learning With Errors

(LWE)

* with decryption circuit in NC1

🙂

🙂
🙁

🙁

Does (classical-client) QFHE really need LWE?

Why should we diversify assumptions?

Does (classical-client) QFHE really need LWE?

Why should we diversify assumptions?

• Do not want all QFHE eggs in the LWE basket. What if we break LWE?

Does (classical-client) QFHE really need LWE?

Why should we diversify assumptions?

• Do not want all QFHE eggs in the LWE basket. What if we break LWE?

• Different properties useful in different contexts: different efficiency profiles

Does (classical-client) QFHE really need LWE?

Why should we diversify assumptions?

• Do not want all QFHE eggs in the LWE basket. What if we break LWE?

• Different properties useful in different contexts: different efficiency profiles

Does (classical-client) QFHE really need LWE?

Dream Theorem. Any post-quantum classical FHE QFHE.⟹

Our Results (QFHE)

Theorem 1 [G-Vaikuntanathan]

pq. Classical FHE* + pq. Dual-mode Trapdoor Functions QFHE⟹

* with decryption circuit in NC1

Our Results (QFHE)

Theorem 1 [G-Vaikuntanathan]

pq. Classical FHE* + pq. Dual-mode Trapdoor Functions QFHE⟹

⟹
• LWE [BV11, BV14]

• pq. IO + pq. re-randomizable encryption [CLTV14]

• pq. IO + Group actions [CLTV14, Wichs’24]

* with decryption circuit in NC1

Our Results (QFHE)

Theorem 1 [G-Vaikuntanathan]

pq. Classical FHE* + pq. Dual-mode Trapdoor Functions QFHE⟹

⟹
• LWE [BV11, BV14]

• pq. IO + pq. re-randomizable encryption [CLTV14]

• pq. IO + Group actions [CLTV14, Wichs’24]

⟹
• LWE [Mah18b]

• Group actions [GV24, Theorem 2]

Build on work of Alamati, Malavolta and Rahimi [AMR22]

* with decryption circuit in NC1

Our Results (QFHE)

Theorem 1 [G-Vaikuntanathan]

pq. Classical FHE* + pq. Dual-mode Trapdoor Functions QFHE⟹

⟹
• LWE [BV11, BV14]

• pq. IO + pq. re-randomizable encryption [CLTV14]

• pq. IO + Group actions [CLTV14, Wichs’24]

Corollary [GV24]. pq. IO + Group actions QFHE⟹

⟹
• LWE [Mah18b]

• Group actions [GV24, Theorem 2]

Build on work of Alamati, Malavolta and Rahimi [AMR22]

* with decryption circuit in NC1

Non-compact QFHE

Input x Quantum circuit Q

pk, sk, evk ← KeyGen
c ← Encpk(x)

c, evk

c′￼ ← Eval(Q, c, evk)
c′￼Q(x) ← Decsk(c′￼)

Client efficiency:

•Decryption should be more efficient than computing Q

Non-compact QFHE

Input x Quantum circuit Q

pk, sk, evk ← KeyGen
c ← Encpk(x)

c, evk

c′￼ ← Eval(Q, c, evk)
c′￼Q(x) ← Decsk(c′￼)

Client efficiency:
•Decryption should be more efficient than computing Q

•Still useful for outsourcing quantum computation if we allow interaction and a non-
compact -time clientpoly(|Q |)

•Client should be classical

…

Non-compact QFHE

Input x Quantum circuit Q

pk, sk, evk ← KeyGen
c ← Encpk(x)

c, evk

c′￼ ← Eval(Q, c, evk)
c′￼Q(x) ← Decsk(c′￼)

Client efficiency:
•Decryption should be more efficient than computing Q

•Still useful for outsourcing quantum computation if we allow interaction and a non-
compact -time clientpoly(|Q |)

•Client should be classical

…

• Called Blind Delegated
Quantum Computation

• Previously known only
with LWE

Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++

pq. Dual-mode Trapdoor Functions Non-compact QFHE⟹

Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++

pq. Dual-mode Trapdoor Functions Non-compact QFHE⟹

Group actions [GV24, Theorem 2]

⟹

Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++

pq. Dual-mode Trapdoor Functions Non-compact QFHE⟹

Corollary [GV24]. Group actions Non-compact QFHE⟹

Not known to imply
classical (compact) FHE

Group actions [GV24, Theorem 2]

⟹

Our scheme for (compact) QFHE

Input x Quantum circuit Q

pk, sk, evk ← KeyGen

c, evk

 c′￼ ← Eval (Q, c, evk)
c′￼

Server should not learn anything about x

c ← Encpk(x)

Q(x) ← Decsk(c′￼)

Client efficiency:

•Decryption should be more efficient than computing

•Client should be classical!

Q

Starting point: Dulek-Schaffner-Speelman’16

 , c = Enc(x)

c′￼ ← Eval(Q, c, evksk)
c′￼

evksk{
•Client needs to be quantum 🙁

•Needs to prepare and send quantum evaluation keys (which is a function of)evk sk

Q(x) ← Decsk(c′￼)

Our Idea: Use RSP

• Goal: Replace quantum communication in some protocols.

Remote State Preparation (RSP)
[Djunko-Kashefi’16, Gheorghiu-Vidick’19,

Cojocaru-Colisson-Kashefi-Wallden’19, Gheorghiu-Metger-Poremba’22]

i

i

Family of states { }i∈I

Our Idea: Use RSP

• Goal: Replace quantum communication in some protocols.

Remote State Preparation (RSP)
[Djunko-Kashefi’16, Gheorghiu-Vidick’19,

Cojocaru-Colisson-Kashefi-Wallden’19, Gheorghiu-Metger-Poremba’22]

Hides i

Instructions to prepare state i

i

i

Family of states { }i∈I

Our Idea: Use RSP

• Goal: Replace quantum communication in some protocols.

Remote State Preparation (RSP)
[Djunko-Kashefi’16, Gheorghiu-Vidick’19,

Cojocaru-Colisson-Kashefi-Wallden’19, Gheorghiu-Metger-Poremba’22]

“Blindly” prepare
Server does not learn i

i

Hides i

Instructions to prepare state i

i

i

Family of states { }i∈I

Our Idea: Use RSP

• Goal: Replace quantum communication in some protocols.

• What is known? Can RSP BB84 states assuming dual-mode trapdoor functions [GV19, GMP22].

Remote State Preparation (RSP)
[Djunko-Kashefi’16, Gheorghiu-Vidick’19,

Cojocaru-Colisson-Kashefi-Wallden’19, Gheorghiu-Metger-Poremba’22]

“Blindly” prepare
Server does not learn i

i

Hides i

Instructions to prepare state i

i

i

Family of states { }i∈I

Our Main Technical Contribution

• Can we do remote state preparation for the DSS quantum ?evk

RSP the DSS evaluation keys

Our Main Technical Contribution

• Can we do remote state preparation for the DSS quantum ?evk

• We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

RSP the DSS evaluation keys

Our Main Technical Contribution

• Can we do remote state preparation for the DSS quantum ?evk

• We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

RSP the DSS evaluation keys

Our Main Technical Contribution

• Can we do remote state preparation for the DSS quantum ?evk

• We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

RSP the DSS evaluation keys

Instructions to prepare

 that hide

c = Enc(x),

evksk sk

Our Main Technical Contribution

• Can we do remote state preparation for the DSS quantum ?evk

• We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

RSP the DSS evaluation keys

Instructions to prepare

 that hide

c = Enc(x),

evksk sk

Prepares evksk but learns nothing about sk

Our Main Technical Contribution

• Can we do remote state preparation for the DSS quantum ?evk

• We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

RSP the DSS evaluation keys

Instructions to prepare

 that hide

c = Enc(x),

evksk sk

Prepares evksk but learns nothing about sk

c′￼ ← Eval(Q, c, evksk)

c′￼

Q(x) ← Decsk(c′￼)

Our Main Technical Contribution

• Can we do remote state preparation for the DSS quantum ?evk

• We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

RSP the DSS evaluation keys

Instructions to prepare

 that hide

c = Enc(x),

evksk sk

Prepares evksk but learns nothing about sk

c′￼ ← Eval(Q, c, evksk)

c′￼

Q(x) ← Decsk(c′￼)

Client is classical!

Our Main Technical Contribution

Step (1) It (essentially) suffices to RSP one of these two states:

1
=

1 2

3

2
=

1 2

3
{ , }

RSP the DSS evaluation keys

Our Main Technical Contribution

Step (1) It (essentially) suffices to RSP one of these two states:

Step (2) Dual-mode trapdoor functions RSP of or .⟹ 1 2

1
=

1 2

3

2
=

1 2

3
{ , }

RSP the DSS evaluation keys

Dual-mode trapdoor functions
Definition. Family of pairs of injective functions such that eitherf0, f1 : X → Y

Dual-mode trapdoor functions
Definition. Family of pairs of injective functions such that eitherf0, f1 : X → Y

f0

X Y0=Y1

Y

f1

(1) Im(f0) = Im(f1)

Dual-mode trapdoor functions
Definition. Family of pairs of injective functions such that eitherf0, f1 : X → Y

f0

X Y0=Y1

Y

f1
X

Y0

Y1

Y
f0

f1

(1) Im(f0) = Im(f1) or (2) .Im(f0) ∩ Im(f1) = ∅

Dual-mode trapdoor functions
Definition. Family of pairs of injective functions such that eitherf0, f1 : X → Y

≈c

f0

X Y0=Y1

Y

f1
X

Y0

Y1

Y
f0

f1

(1) Im(f0) = Im(f1)

• Dual-mode: Given keys for , it is hard to tell whether they are in mode (1) or (2).f0, f1

or (2) .Im(f0) ∩ Im(f1) = ∅

Dual-mode trapdoor functions
Definition. Family of pairs of injective functions such that eitherf0, f1 : X → Y

≈c

f0

X Y0=Y1

Y

f1
X

Y0

Y1

Y
f0

f1

(1) Im(f0) = Im(f1)

• Dual-mode: Given keys for , it is hard to tell whether they are in mode (1) or (2).f0, f1
• Trapdoor: allows efficient inversion in both modes.

or (2) .Im(f0) ∩ Im(f1) = ∅

Warmup: Remote State Preparation of BB84 states
[GV19, GMP22]

Warmup: Remote State Preparation of BB84 states
BB84 states: { |0⟩, |1⟩,

1

2
(|0⟩ + |1⟩),

1

2
(|0⟩ − |1⟩)}

1 2 3 4

[GV19, GMP22]

Warmup: Remote State Preparation of BB84 states
BB84 states: { |0⟩, |1⟩,

1

2
(|0⟩ + |1⟩),

1

2
(|0⟩ − |1⟩)}

1 2 3 4

1. Prepare state ∑
b∈{0,1}

∑
x∈X

|b⟩ |x⟩

[GV19, GMP22]

Warmup: Remote State Preparation of BB84 states
BB84 states: { |0⟩, |1⟩,

1

2
(|0⟩ + |1⟩),

1

2
(|0⟩ − |1⟩)}

1 2 3 4

1. Prepare state ∑
b∈{0,1}

∑
x∈X

|b⟩ |x⟩ | fb(x)⟩

[GV19, GMP22]

Warmup: Remote State Preparation of BB84 states
BB84 states: { |0⟩, |1⟩,

1

2
(|0⟩ + |1⟩),

1

2
(|0⟩ − |1⟩)}

1 2 3 4

1. Prepare state ∑
b∈{0,1}

∑
x∈X

|b⟩ |x⟩

2. Measure register #3 to get y ∈ Y

• In mode (1)  
 

Im(f0) = Im(f1)

| fb(x)⟩

|0⟩ |x0⟩ + |1⟩ |x1⟩

• In mode (2) Im(f0) ∩ Im(f1) = ∅

|b⟩ |xb⟩

[GV19, GMP22]

Warmup: Remote State Preparation of BB84 states
BB84 states: { |0⟩, |1⟩,

1

2
(|0⟩ + |1⟩),

1

2
(|0⟩ − |1⟩)}

1 2 3 4

1. Prepare state ∑
b∈{0,1}

∑
x∈X

|b⟩ |x⟩

2. Measure register #3 to get y ∈ Y

• In mode (1)  
 

Im(f0) = Im(f1)

3. Measure register #2 in Hadamard basis to get rid of xb

• In mode (1) Im(f0) = Im(f1)

| fb(x)⟩

|0⟩ |x0⟩ + |1⟩ |x1⟩

• In mode (2) Im(f0) ∩ Im(f1) = ∅

|b⟩ |xb⟩

• In mode (2) Im(f0) ∩ Im(f1) = ∅ 1 23 4

[GV19, GMP22]

Our Main Technical Contribution

Step (1) It (essentially) suffices to RSP one of these two states:

Step (2) Dual-mode trapdoor functions RSP of or .⟹ 1 2

1
=

1 2

3

2
=

1 2

3
{ , }

RSP the DSS evaluation keys

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

1
=

1 2

3

=
1
2 (|000⟩ + |001⟩ + |110⟩ + |111⟩) = ∑

u=v,w∈{0,1}

|uvw⟩

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

2
=

1 2

3

=
1
2 (|000⟩ + |010⟩ + |101⟩ + |111⟩) = ∑

u=w,v∈{0,1}

|uvw⟩

1
=

1 2

3

=
1
2 (|000⟩ + |001⟩ + |110⟩ + |111⟩) = ∑

u=v,w∈{0,1}

|uvw⟩

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

If client wants to prepare
1

=

1 2

3

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

If client wants to prepare want to project to the blue basis vectors.

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1
=

1 2

3

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

If client wants to prepare want to project to the blue basis vectors.

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1
=

1 2

3

1. Prepare for 8 functions , . 

 

∑
u,v,w∈{0,1}

∑
x∈X

|uvw⟩ |x⟩ | fuvw(x)⟩ fuvw : X → Y u, v, w ∈ {0,1}
Y

X
Y1

Y2

fblue uvw

fred uvw

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

If client wants to prepare want to project to the blue basis vectors.

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1
=

1 2

3

1. Prepare for 8 functions , . 

 

∑
u,v,w∈{0,1}

∑
x∈X

|uvw⟩ |x⟩ | fuvw(x)⟩ fuvw : X → Y u, v, w ∈ {0,1}

2. Measure 3rd register, get , . 
 

y ∈ Y1 ∑blue u,v,w |uvw⟩ |xuvw⟩

Y

X
Y1

Y2

fblue uvw

fred uvw

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

If client wants to prepare want to project to the blue basis vectors.

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1
=

1 2

3

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1. Prepare for 8 functions , . 

 

∑
u,v,w∈{0,1}

∑
x∈X

|uvw⟩ |x⟩ | fuvw(x)⟩ fuvw : X → Y u, v, w ∈ {0,1}

2. Measure 3rd register, get , . 
 

y ∈ Y1 ∑blue u,v,w |uvw⟩ |xuvw⟩

Y

X
Y1

Y2

fblue uvw

fred uvw

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

If client wants to prepare want to project to the blue basis vectors.

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1
=

1 2

3

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1. Prepare for 8 functions , . 

 

∑
u,v,w∈{0,1}

∑
x∈X

|uvw⟩ |x⟩ | fuvw(x)⟩ fuvw : X → Y u, v, w ∈ {0,1}

2. Measure 3rd register, get , . 
 

y ∈ Y1 ∑blue u,v,w |uvw⟩ |xuvw⟩

Y

X
Y1

Y2

fblue uvw

fred uvw

Dual-mode trapdoor functions⟹

 Lemma [GV24]. Dual-mode trapdoor functions RSP for⟹
1

=

1 2

3

2
=

1 2

3
{ , }

If client wants to prepare want to project to the blue basis vectors.

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1
=

1 2

3

1

2 2 (|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩)

1. Prepare for 8 functions , . 

 

∑
u,v,w∈{0,1}

∑
x∈X

|uvw⟩ |x⟩ | fuvw(x)⟩ fuvw : X → Y u, v, w ∈ {0,1}

2. Measure 3rd register, get , . 
 

y ∈ Y1 ∑blue u,v,w |uvw⟩ |xuvw⟩

3. Measure 2nd register in Hadamard basis get rid of .xuvw

Y

X
Y1

Y2

fblue uvw

fred uvw

Dual-mode trapdoor functions⟹

Summary of Our Results

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions QFHE.⟹

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions QFHE.⟹

Theorem 2. Group actions pq. Dual-mode Trapdoor Functions.⟹

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions QFHE.⟹

Theorem 2. Group actions pq. Dual-mode Trapdoor Functions.⟹

Corollary 3. pq. IO + Group actions QFHE.⟹

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions QFHE.⟹

Theorem 2. Group actions pq. Dual-mode Trapdoor Functions.⟹

Corollary 3. pq. IO + Group actions QFHE.⟹

Theorem 1. ++ pq. Dual-mode Trapdoor Functions Non-compact QFHE.⟹

Summary of Our Results

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions QFHE.⟹

Theorem 2. Group actions pq. Dual-mode Trapdoor Functions.⟹

Corollary 3. pq. IO + Group actions QFHE.⟹

Theorem 1. ++ pq. Dual-mode Trapdoor Functions Non-compact QFHE.⟹

Corollary 4. Group actions Non-compact QFHE.⟹

Open Question #1

• Is the dream theorem true?

Dream Theorem. Any post-quantum classical FHE QFHE.⟹

Open Question #2

Non-compact QFHE from minimal assumptions

• We don’t need classical FHE

• Our work: Dual-mode trapdoor functions suffice

• Information-theoretic security unlikely [Morimae-Nishimura-Takeuchi-Tani’18, Aaronson-Cojocaru-Gheorghiu-Kashefi’19]

• Can you construct non-compact QFHE from one-way functions?

