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• Do not want all QFHE eggs in the LWE basket. What if we break LWE?

• Different properties useful in different contexts: different efficiency profiles

Does (classical-client) QFHE really need LWE?

Dream Theorem. Any post-quantum classical FHE  QFHE.⟹
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Input x Quantum circuit Q

pk, sk, evk ← KeyGen
c ← Encpk(x)

c, evk

c′￼ ← Eval(Q, c, evk)
c′￼Q(x) ← Decsk(c′￼)

Client efficiency:
•Decryption should be more efficient than computing Q

•Still useful for outsourcing quantum computation if we allow interaction and a non-
compact -time clientpoly( |Q | )

•Client should be classical

…

• Called Blind Delegated 
Quantum Computation

• Previously known only 
with LWE



Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++


pq. Dual-mode Trapdoor Functions    Non-compact QFHE⟹



Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++


pq. Dual-mode Trapdoor Functions    Non-compact QFHE⟹

Group actions [GV24, Theorem 2]

⟹



Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++


pq. Dual-mode Trapdoor Functions    Non-compact QFHE⟹

Corollary [GV24]. Group actions    Non-compact QFHE⟹

Not known to imply 
classical (compact) FHE

Group actions [GV24, Theorem 2]

⟹



Our scheme for (compact) QFHE

Input x Quantum circuit Q

pk, sk, evk ← KeyGen

c, evk

  c′￼ ← Eval (Q, c, evk)
c′￼

Server should not learn anything about  x

c ← Encpk(x)

Q(x) ← Decsk(c′￼)

Client efficiency:

•Decryption should be more efficient than computing 

•Client should be classical!

Q



Starting point: Dulek-Schaffner-Speelman’16

 , c = Enc(x)

c′￼ ← Eval(Q, c, evksk)
c′￼

evksk{
•Client needs to be quantum 🙁

•Needs to prepare and send quantum evaluation keys  (which is a function of )evk sk

Q(x) ← Decsk(c′￼)
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• Goal: Replace quantum communication in some protocols.

• What is known? Can RSP BB84 states assuming dual-mode trapdoor functions [GV19, GMP22].
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Our Main Technical Contribution

• Can we do remote state preparation for the DSS quantum ?evk

• We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

RSP the DSS evaluation keys

  

Instructions to prepare


 that hide 

c = Enc(x),

evksk sk

Prepares evksk but learns nothing about sk

c′￼ ← Eval(Q, c, evksk)

c′￼

Q(x) ← Decsk(c′￼)

Client is classical!
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Dual-mode trapdoor functions
Definition. Family of pairs of injective functions    such that eitherf0, f1 : X → Y

≈c

f0

X Y0=Y1

Y

f1
X

Y0

Y1

Y
f0

f1

(1) Im( f0) = Im( f1)

• Dual-mode: Given keys for , it is hard to tell whether they are in mode (1) or (2).f0, f1
• Trapdoor: allows efficient inversion in both modes.

or                    (2) .Im( f0) ∩ Im( f1) = ∅
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x∈X
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2. Measure register #3 to get y ∈ Y

• In mode (1)  
 

Im( f0) = Im( f1)

3. Measure register #2 in Hadamard basis to get rid of xb

• In mode (1) Im( f0) = Im( f1)
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Theorem 2. Group actions  pq. Dual-mode Trapdoor Functions.⟹
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Theorem 1. ++ pq. Dual-mode Trapdoor Functions  Non-compact QFHE.⟹
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Open Question #1

• Is the dream theorem true?

Dream Theorem. Any post-quantum classical FHE  QFHE.⟹



Open Question #2

Non-compact QFHE from minimal assumptions

• We don’t need classical FHE


• Our work: Dual-mode trapdoor functions suffice


• Information-theoretic security unlikely [Morimae-Nishimura-Takeuchi-Tani’18, Aaronson-Cojocaru-Gheorghiu-Kashefi’19]


• Can you construct non-compact QFHE from one-way functions?


