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Quantum Algorithms for Lattice Problems

Why should we diversify assumptions? ’ :ii ‘
* Do not want all QFHE eggs in the LWE basket. What if we break LWE?

 Different properties useful in different contexts: different efficiency profiles

Dream Theorem. Any post-quantum classical FHE = QFHE.
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o L\

 LWE [BV11, BVi4] * LWE [Mahi8b]
* pg.lO + pg. re-randomizable encryption [CLTVi4] * Group actions [GV24, Theorem 2]
* DQ. [O + Gr()up actions [CLTV14, WiChS,24] Build on work of Alamati, Malavolta and Rahimi [AMR22]

Corollary [GV24]. pq. IO + Group actions = QFHE

* with decryption circuit in NCi1
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Group actions [GV24, Theorem 2]

Corollary [GV24]. Group actions = Non-compact QFHE
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Our scheme for (compact) OFHE
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Client efficiency:
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Starting point: Dulek-Schaftner-Speelman’16

evk
—
_ Lo Fo R
&H ¢ =Enc(x), ¥R &R &R
Q(x) < Decgylc’) ¢’
) c' « Eval(Q, c, evky)

* Client needs to be quantum
* Needs to prepare and send quantum evaluation keys evk (which is a function of sk)
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Remote State Preparation (RSP)

[Djunko-Kashefi”16, Gheorghiu-Vidick19,
Cojocaru-Colisson-Kashefi-Wallden19, Gheorghiu-Metger-Poremba’22]

X

Instructions to prepare state @i
Family of states {@i}ia Hides i

>

“Blindly” prepare @ ;

Server does not learn i

* Goal: Replace quantum communication in some protocols.

* What is known? Can RSP BB84 states assuming dual-mode trapdoor functions [GV19, GMP22].
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Our Main Technical Contribution
RSP the DSS evaluation keys

* Can we do remote state preparation for the DSS quantum evk?

* We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

¢ = Enc(x),
Instructions to prepare
evk, that hide sk
>

/

C

O(x) < Decg(c) Prepares evk &2 but learns nothing about sk

¢' < Eval(O, c, evky)
Client is classical!
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Dual-mode trapdoor functions

Definition. Family of pairs of injective functions f,,f; : X = Y such that either

(1) Im(fy) = Im(f,) or (2) Im(fy) N Im(f,) = .

X

* Dual-mode: Given keys for f, f;, it is hard to tell whether they are in mode (1) or (2).

* Trapdoor: allows efficient inversion in both modes.
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Warmup: Remote State Preparation of BB84 states

| , |GV1g9, GMP22]
BBS4states:{\O), | 1), —(\O)+\1)), —(\O)—\l))}
,ofp VEod V2B,
1.  Prepare state 2 2 |6) | x) | fp(x))
be{0,1} xeX
2. Measure register #3togety € Y
* Inmode (1) Im(f,) = Im(f)) * Inmode (2) Im(f) NIm(f,) = &
[0) [ x0) + [ 1) [ x;) [ D) | x,)

3. Measure register #2 in Hadamard basis to get rid of x;,

* Inmode (1) Im(f,) = Im(f)) @3 @4 * Inmode (2) Im(fy) NIm(f)) = @ @1 @2
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want to project to the blue basis vectors.

If client wants to prepare g@g

®
3

1
(\ooo>+ 1001) 4+ [010) + [011) + [100) + [ 101) + [110) + \111))
20/2

Dual-mode trapdoor functions

1. Prepare Z 2 | uvw) | x) | f,,,,(x)) for 8 functions . : X — Y, u,v,w € {0,1}.

u,y,wel{0,1} xeX Y

f blue uww
2.  Measure 3rd register, get y € 1, Zblue v |luvw) | x,,.,.,.)- °
fred uvw

3. Measure 2nd register in Hadamard basis getrid of x,,,,,. e
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Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions = QFHE.
Theorem 2. Group actions = pq. Dual-mode Trapdoor Functions.

Corollary 3. pg. 10 + Group actions = QFHE.

Theorem 1. ++ pqg. Dual-mode Trapdoor Functions = Non-compact QFHE.

Corollary 4. Group actions = Non-compact QFHE.



Open Question #1

* [sthe dream theorem true?




Open Question #2

We don't need classical FHE
Our work: Dual-mode trapdoor functions suffice
Information'theoretic Security unlikely [Morimae-Nishimura-Takeuchi-Tani’18, Aaronson-Cojocaru-Gheorghiu-Kashefi'19]

Can you construct non-compact QFHE from one-way functions?



