How to construct Quantum FHE, Generically

Aparna Gupte MIT

Vinod Vaikuntanathan MIT

Input *x*

Input *x*

c, evk

 $pk, sk, evk \leftarrow KeyGen$

 $c \leftarrow \operatorname{Enc}_{pk}(x)$

Input *x*

c, evk

C'

 $pk, sk, evk \leftarrow KeyGen$

 $c \leftarrow \operatorname{Enc}_{pk}(x)$

 $C(x) \leftarrow \text{Dec}_{sk}(c')$

 $c' \leftarrow \text{Eval}(C, c, evk)$

C'

 $pk, sk, evk \leftarrow KeyGen$ $c \leftarrow \operatorname{Enc}_{pk}(x)$

 $C(x) \leftarrow \text{Dec}_{sk}(c')$

Client efficiency:

• Decryption should be more efficient than computing C

 $c' \leftarrow \text{Eval}(C, c, evk)$

Quantum Fully Homomorphic Encryption (QFHE)

C'

 $pk, sk, evk \leftarrow KeyGen$ $c \leftarrow \operatorname{Enc}_{pk}(x)$ $Q(x) \leftarrow \text{Dec}_{sk}(c')$

Client efficiency:

• Decryption should be more efficient than computing Q

 $c' \leftarrow \text{Eval}(Q, c, evk)$

Quantum Fully Homomorphic Encryption (QFHE)

C'

 $pk, sk, evk \leftarrow KeyGen$ $c \leftarrow \operatorname{Enc}_{pk}(x)$

 $Q(x) \leftarrow \text{Dec}_{sk}(c')$

Client efficiency:

- Decryption should be more efficient than computing Q
- Client should be classical!

 $c' \leftarrow \text{Eval}(Q, c, evk)$

	Quantum/Classical client	Assumptions needed
BJ15, DSS16	Quantum client	Any post-quantum (pq.) classical FHE*

	Quantum/Classical client	Assumptions needed
BJ15, DSS16	Quantum client 🙁	Any post-quantum (pq.) classical FHE*

	Quantum/Classical client	Assumptions needed
BJ15, DSS16	Quantum client 🙁	Any post-quantum (pq.) classical FHE* 🙂

	Quantum/Classical client	Assumptions needed
BJ15, DSS16	Quantum client 🙁	Any post-quantum (pq.) classical FHE* 🙂
Mahı8a, Braı8	Classical client	Learning With Errors (LWE)

	Quantum/Classical client	Assumptions needed
BJ15, DSS16	Quantum client 🙁	Any post-quantum (pq.) classical FHE* 🙂
Mah18a, Bra18	Classical client 🙂	Learning With Errors (LWE)

	Quantum/Classical client	Assumptions needed
BJ15, DSS16	Quantum client 🙁	Any post-quantum (pq.) classical FHE* 🙂
Mahı8a, Braı8	Classical client 🙂	Learning With Errors (LWE) 🙁

Why should we diversify assumptions?

Why should we diversify assumptions?

• Do not want all QFHE eggs in the LWE basket. What if we break LWE?

Quantum Algorithms for Lattice Problems

Yilei Chen*

April 18, 2024

Why should we diversify assumptions?

- Do not want all QFHE eggs in the LWE basket. What if we break LWE?
- Different properties useful in different contexts: different efficiency profiles

Quantum Algorithms for Lattice Problems

Yilei Chen*

April 18, 2024

E basket. What if we break LWE? t contexts: different efficiency profile

Why should we diversify assumptions?

- Do not want all QFHE eggs in the LWE basket. What if we break LWE?
- Different properties useful in different contexts: different efficiency profiles

Dream Theorem. Any post-quantum classical FHE \implies QFHE.

Quantum Algorithms for Lattice Problems

Yilei Chen*

April 18, 2024

Theorem 1 [G-Vaikuntanathan]

pq. Classical FHE* + pq. Dual-mode Trapdoor Functions \implies QFHE

Theorem 1 [G-Vaikuntanathan]

- LWE [BV11, BV14]
- pq. IO + pq. re-randomizable encryption [CLTV14]
- pq. IO + Group actions [CLTV14, Wichs'24]

pq. Classical FHE* + pq. Dual-mode Trapdoor Functions \implies QFHE

Theorem 1 [G-Vaikuntanathan]

pq. Classical FHE* + pq. Dual-mode Trapdoor Functions \implies QFHE

- LWE [BV11, BV14]
- pq. IO + pq. re-randomizable encryption [CLTV14]
- pq. IO + Group actions [CLTV14, Wichs'24]

- LWE [Mah18b]
- Group actions [GV24, Theorem 2]

Build on work of Alamati, Malavolta and Rahimi [AMR22]

Theorem 1 [G-Vaikuntanathan]

pq. Classical FHE* + pq. Dual-mode Trapdoor Functions \implies QFHE

- LWE [BV11, BV14]
- pq. IO + pq. re-randomizable encryption [CLTV14]
- pq. IO + Group actions [CLTV14, Wichs'24]

Corollary [GV24]. pq. IO + Group actions \implies QFHE

- LWE [Mah18b]
- Group actions [GV24, Theorem 2]

Build on work of Alamati, Malavolta and Rahimi [AMR22]

Client efficiency:

• Decryption should be more efficient than computing Q

Non-compact QFHE

$c' \leftarrow \text{Eval}(Q, c, evk)$

Client efficiency:

Decryption should be more efficient than computing Q Still useful for outsourcing quantum computation if we allow interaction and a non-

- Still useful for outsourcing quantum con **compact** poly(|Q|)-time client
- Client should be classical

Non-compact QFHE

 $c' \leftarrow \text{Eval}(Q, c, evk)$

Client efficiency:

Decryption should be more efficient than computing Q Still useful for outsourcing quantum computation if we allow interaction and a non-

- Still useful for outsourcing quantum con **compact** poly(|Q|)-time client
- Client should be classical

 $c' \leftarrow \text{Eval}(Q, c, evk)$

Our Results (Non-compact QFHE)

Theorem 1 [GV24] ++

pq. Dual-mode Trapdoor Functions \implies Non-compact QFHE

Our Results (Non-compact QFHE)

- **Theorem 1 [GV24]** ++
- pq. Dual-mode Trapdoor Functions \implies Non-compact QFHE

Group actions [GV24, Theorem 2]

Our Results (Non-compact QFHE)

- **Theorem 1 [GV24]** ++
- pq. Dual-mode Trapdoor Functions \implies Non-compact QFHE

Group actions [GV24, Theorem 2]

Our scheme for (compact) QFHE

Client efficiency:

- Decryption should be more efficient than computing Q
- Client should be classical!

$c' \leftarrow \text{Eval}(Q, c, evk)$

Starting point: Dulek-Schaffner-Speelman'16

- Client needs to be quantum 😕
- Needs to prepare and send quantum evaluation keys *evk* (which is a function of *sk*)

Remote State Preparation (RSP)

[Djunko-Kashefi'16, Gheorghiu-Vidick'19, Cojocaru-Colisson-Kashefi-Wallden'19, Gheorghiu-Metger-Poremba'22]

• Goal: Replace quantum communication in some protocols.

Remote State Preparation (RSP)

[Djunko-Kashefi'16, Gheorghiu-Vidick'19, Cojocaru-Colisson-Kashefi-Wallden'19, Gheorghiu-Metger-Poremba'22]

Hides *i*

• Goal: Replace quantum communication in some protocols.

Family of states $\{\bigotimes_{i}\}_{i \in I}$

Remote State Preparation (RSP)

[Djunko-Kashefi'16, Gheorghiu-Vidick'19, Cojocaru-Colisson-Kashefi-Wallden'19, Gheorghiu-Metger-Poremba'22]

Instructions to prepare state 3,

• Goal: Replace quantum communication in some protocols.

Family of states $\{\bigotimes_{i}\}_{i \in I}$

"Blindly" prepare \bigotimes_{i} Server does not learn *i*

Remote State Preparation (RSP)

[Djunko-Kashefi'16, Gheorghiu-Vidick'19, Cojocaru-Colisson-Kashefi-Wallden'19, Gheorghiu-Metger-Poremba'22]

Instructions to prepare state \mathcal{R}_{i}

Goal: Replace quantum communication in some protocols. •

Family of states $\{\bigotimes_{i}\}_{i \in I}$

Hides *i*

"Blindly" prepare \bigotimes_{i} Server does not learn *i*

• What is known? Can RSP BB84 states assuming dual-mode trapdoor functions [GV19, GMP22].

Our Main Technical Contribution **RSP the DSS evaluation keys**

• Can we do remote state preparation for the DSS quantum *evk*?
- Can we do remote state preparation for the DSS quantum *evk*?
- We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

- Can we do remote state preparation for the DSS quantum *evk*?
- We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

- Can we do remote state preparation for the DSS quantum *evk*?
- We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

 $c = \operatorname{Enc}(x),$ Instructions to prepare evk_{sk} that hide sk

- Can we do remote state preparation for the DSS quantum *evk*?
- We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

 $c = \operatorname{Enc}(x),$ Instructions to prepare evk_{sk} that hide sk

Prepares evk_{sk} & but learns nothing about sk

- Can we do remote state preparation for the DSS quantum *evk*?
- We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

C'

 $c = \operatorname{Enc}(x),$ Instructions to prepare evk_{sk} that hide sk

 $Q(x) \leftarrow \text{Dec}_{sk}(c')$

Prepares evk_{sk} & but learns nothing about sk $c' \leftarrow \text{Eval}(Q, c, evk_{sk})$

- Can we do remote state preparation for the DSS quantum *evk*?
- We show: Yes! Assuming post-quantum dual-mode trapdoor functions.

C'

Client is classical!

Prepares evk_{sk} & but learns nothing about sk $c' \leftarrow \text{Eval}(Q, c, evk_{sk})$

Step (1) It (essentially) suffices to RSP one of these two states:

Step (1) It (essentially) suffices to RSP one of these two states:

Step (2) Dual-mode trapdoor functions \implies RSP of \bigotimes_{1}^{1} or \bigotimes_{2}^{1} .

Definition. Family of pairs of injective functions $f_0, f_1 : X \rightarrow Y$ such that either

Definition. Family of pairs of injective functions $f_0, f_1 : X \rightarrow Y$ such that either

Definition. Family of pairs of injective functions $f_0, f_1 : X \rightarrow Y$ such that either

or (2) $\operatorname{Im}(f_0) \cap \operatorname{Im}(f_1) = \emptyset$.

Definition. Family of pairs of injective functions $f_0, f_1 : X \rightarrow Y$ such that either

• **Dual-mode:** Given keys for f_0, f_1 , it is hard to tell whether they are in mode (1) or (2).

or (2) $\operatorname{Im}(f_0) \cap \operatorname{Im}(f_1) = \emptyset$. \approx_c $X = f_0 = Y_0$ $Y_0 = Y_1$ $Y_1 = \emptyset$

Definition. Family of pairs of injective functions $f_0, f_1 : X \to Y$ such that either

- **Trapdoor:** allows efficient inversion in both modes.

(2) $\operatorname{Im}(f_0) \cap \operatorname{Im}(f_1) = \emptyset$. or f_0 Y_0 \approx_c X Y_1

Dual-mode: Given keys for f_0, f_1 , it is hard to tell whether they are in mode (1) or (2).

Warmup: Remote State Preparation of BB84 states [GV19, GMP22]

S 2]

Warmup: Remote State Preparation of BB84 states BB84 states: $\begin{cases} |0\rangle, |1\rangle, \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

S 2]

Warmup: Remote State Preparation of BB84 states [GV19, GMP22]

Warmup: Remote State Preparation of BB84 states [GV19, GMP22]

Warmup: Remote State Preparation of BB84 states $BB8_{4} \text{ states:} \left\{ \begin{array}{c} |0\rangle, & |1\rangle, & \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), & \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ & & & & \\ \end{array} \right\}$ [GV19, GMP22] [GV19, GMP22]

1. Prepare state $\sum_{b \in \{0,1\}} \sum_{x \in X} |b\rangle |x\rangle |f_b(x)\rangle$

- 2. Measure register #3 to get $y \in Y$
 - In mode (1) $Im(f_0) = Im(f_1)$

 $|0\rangle |x_0\rangle + |1\rangle |x_1\rangle$

• In mode (2) $\operatorname{Im}(f_0) \cap \operatorname{Im}(f_1) = \emptyset$

 $|b\rangle|x_b\rangle$

Warmup: Remote State Preparation of BB84 states [GV19, GMP22] BB84 states: $\left\{ \begin{array}{cc} |0\rangle, & |1\rangle, & \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right), & \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) \right\}$

Prepare state $\sum |b\rangle |x\rangle |f_b(x)\rangle$ 1. $b \in \{0,1\} \ x \in X$

- Measure register #3 to get $y \in Y$ 2.
 - In mode (1) $Im(f_0) = Im(f_1)$

 $|0\rangle |x_0\rangle + |1\rangle |x_1\rangle$

- Measure register #2 in Hadamard basis to get rid of x_h 3.
 - In mode (1) $\operatorname{Im}(f_0) = \operatorname{Im}(f_1)$ \mathfrak{S}_3 \mathfrak{S}_4

• In mode (2) $\operatorname{Im}(f_0) \cap \operatorname{Im}(f_1) = \emptyset$

 $|b\rangle |x_b\rangle$

• In mode (2) $\operatorname{Im}(f_0) \cap \operatorname{Im}(f_1) = \emptyset$ $\bigotimes_1^2 f_2$

Step (1) It (essentially) suffices to RSP one of these two states:

Step (2) Dual-mode trapdoor functions \implies RSP of \bigotimes_{1}^{1} or \bigotimes_{2}^{1} .

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \bigotimes_{1}^{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \bullet \\ 1 & \bullet \\ 3 & & \end{array} \right\} \xrightarrow{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \bullet \\ \bullet & & \bullet \\ 3 & & & 3 \end{array}$$

$$\sum_{1} = \frac{1}{2} \left(|000\rangle + |001\rangle + |110\rangle + |1$$

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \underbrace{\bigotimes}_{1}^{2} = \underbrace{1}_{2}^{2} \underbrace{\bigotimes}_{2}^{2} = \underbrace{1}_{2}^{2} \underbrace{\bigotimes}_{2}^{2} = \underbrace{1}_{3}^{2} \underbrace{i}_{3}^{2} = \underbrace{1}_{3}^{2} \underbrace{i}_{3}^$$

$$\sum_{n=1}^{\infty} \frac{1}{2} \left(|000\rangle + |001\rangle + |110\rangle + |111\rangle \right) = \sum_{u=v,w \in \{0,1\}} |uvw\rangle = \frac{1}{2} \left(|000\rangle + |001\rangle + |110\rangle + |111\rangle \right)$$

$$\bigotimes_{2} = \frac{1}{2} \left(|000\rangle + |010\rangle + |101\rangle + |1$$

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \underbrace{\bigotimes}_{1}^{2} = \underbrace{1}_{2}^{2} \underbrace{\bigotimes}_{2}^{2} = \underbrace{1}_{2}^{2} \underbrace{i}_{2}^{2} = \underbrace{i}_{2}^{2} = \underbrace{i}_{2$$

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \bigotimes_{1}^{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \bullet \\ 1 & \bullet \\ 3 & & \end{array} \right\} \xrightarrow{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \bullet \\ \bullet & & \bullet \\ 3 & & & 3 \end{array}$$

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \bigotimes_{1}^{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \bullet \\ 1 & \bullet \\ 3 & & \end{array} \right\} \xrightarrow{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \bullet \\ \bullet & & \bullet \\ 3 & & & 3 \end{array}$$

$$\Rightarrow \text{RSP for } \left\{ \underbrace{3}_{1} = \underbrace{1}_{2} \underbrace{3}_{2} = \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{3}_{2} = \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{1}_{3} \underbrace{1}_$$

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \underbrace{8}_{2} \underbrace{8}_{1} = \underbrace{1}_{2} \underbrace{2}_{2} \underbrace{8}_{2} \underbrace{2}_{2} \underbrace{1}_{2} \underbrace{1}_{2$$

Lemma [GV24]. Dual-mode trapdoor functions \implies

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \underbrace{2}_{1} = \begin{array}{c} 1 & 2 \\ \bullet & & \bullet \\ 1 & \bullet \\ 3 & & \end{array} \right\} \xrightarrow{2}_{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \bullet \\ \bullet & & \bullet \\ 3 & & & \end{array} \right\}$$

Lemma [GV24]. Dual-mode trapdoor functions \implies

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \underbrace{8}_{2} \underbrace{8}_{1} = \underbrace{1}_{2} \underbrace{2}_{2} \underbrace{8}_{2} \underbrace{2}_{2} \underbrace{1}_{2} \underbrace{1}_{2$$

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \underbrace{2}_{1} = \begin{array}{c} 1 & 2 \\ \bullet & & \\ 1 & \bullet \\ 3 & & \end{array} \right\} \xrightarrow{2}_{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \\ \bullet & & \\ 3 & & \end{array} \right\}$$

If client wants to prepare
$$\sum_{i=1}^{1} = \frac{1}{2\sqrt{2}} \left(|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |10$$

3. Measure 2nd register in Hadamard basis get rid of x_{uvw} .

$$\Rightarrow \operatorname{RSP} \operatorname{for} \left\{ \underbrace{2}_{1} = \begin{array}{c} 1 & 2 \\ \bullet & & \\ 1 & \bullet \\ 3 & & \end{array} \right\} \xrightarrow{2}_{2} = \begin{array}{c} 1 & 2 \\ \bullet & & \\ \bullet & & \\ 3 & & \end{array} \right\}$$

want to project to the blue basis vectors.

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions \implies QFHE.

Theorem 1. pq. Classical FHE + pq. Dual-mode Trapdoor Functions \implies QFHE. **Theorem 2.** Group actions \implies pq. Dual-mode Trapdoor Functions.

Theorem 2. Group actions \implies pq. Dual-mode Trapdoor Functions. **Corollary 3.** pq. IO + Group actions \implies QFHE.

- **Theorem 1.** pq. Classical FHE + pq. Dual-mode Trapdoor Functions \implies QFHE.

Theorem 2. Group actions \implies pq. Dual-mode Trapdoor Functions. **Corollary 3.** pq. IO + Group actions \implies QFHE. **Theorem 1.** ++ pq. Dual-mode Trapdoor Functions \implies Non-compact QFHE.

- **Theorem 1.** pq. Classical FHE + pq. Dual-mode Trapdoor Functions \implies QFHE.
Summary of Our Results

Theorem 2. Group actions \implies pq. Dual-mode Trapdoor Functions. **Corollary 3.** pq. IO + Group actions \implies QFHE. **Theorem 1.** ++ pq. Dual-mode Trapdoor Functions \implies Non-compact QFHE. **Corollary 4.** Group actions \implies Non-compact QFHE.

- **Theorem 1.** pq. Classical FHE + pq. Dual-mode Trapdoor Functions \implies QFHE.

Open Question #1

• Is the dream theorem true?

Dream Theorem. Any post-quantum classical FHE \implies QFHE.

Open Question #2

Non-compact QFHE from minimal assumptions

- We don't need classical FHE
- *Our work*: Dual-mode trapdoor functions suffice
- Information-theoretic security unlikely [Morimae-Nishimura-Takeuchi-Tani'18, Aaronson-Cojocaru-Gheorghiu-Kashefi'19]
- Can you construct non-compact QFHE from one-way functions?