Adaptively Secure 5 Round Threshold Signatures from MLWE / MSIS and DL with Rewinding

- Shuichi Katsumata
- Michael Reichle
- Kaoru Takemure
- PQShield AIST
- ETH Zurich
- PQShield AIST

sk₄ sk₃

(T-out-of-N) Threshold Signatures Protocol

(T-out-of-N) Threshold Signatures Protocol

(T-out-of-N) Threshold Signatures Protocol

- signers
- Selective: corrupted signers are initially fixed
- Adaptive: signers are corrupted adaptively

• It is hard to find a non-trivial forgery, even in presence of at most T-1 corrupted

Unforgeability:

- Many efficient protocols (Threshold Raccoon, Threshold Schnorr, …)
-

State-of-the-Art Fiat-Shamir based Threshold Signatures

Selective Security:

- Often relies on ROM and standard assumptions (MLWE / MSIS, DLOG, …)

- Many efficient protocols (Threshold Raccoon, Threshold Schnorr, …)
-

State-of-the-Art Fiat-Shamir based Threshold Signatures

Selective Security:

- Often relies on ROM and standard assumptions (MLWE / MSIS, DLOG, …)

Adaptive Security:

- [CKM23]: Adaptive security under AGM, ROM and AOMDL for Schnorr
- [BLTWZ24]: Adaptive security under ROM and DDH for Schnorr-variant

Results:

• **Main Result:** Techniques for adaptive security under minimal assumptions in the ROM

- **Main Result:** Techniques for adaptive security under minimal assumptions in the ROM
	- **Schnorr:** 5 round protocol under DL

- **Main Result:** Techniques for adaptive security under minimal assumptions in the ROM
	- **Schnorr:** 5 round protocol under DL
	- **Raccoon:** 5 round protocol under MLWE / MSIS

- **Main Result:** Techniques for adaptive security under minimal assumptions in the ROM
	- **Schnorr:** 5 round protocol under DL
	- **Raccoon:** 5 round protocol under MLWE / MSIS
- **• Others:**

- **Main Result:** Techniques for adaptive security under minimal assumptions in the ROM
	- **Schnorr:** 5 round protocol under DL
	- **Raccoon:** 5 round protocol under MLWE / MSIS
- **• Others:**
	- State-free security proof for Threshold Raccoon

- **Main Result:** Techniques for adaptive security under minimal assumptions in the ROM
	- **Schnorr:** 5 round protocol under DL
	- **Raccoon:** 5 round protocol under MLWE / MSIS
- **• Others:**
	- State-free security proof for Threshold Raccoon
	- Techniques to proof stronger unforgeability notions for simulation-based signatures

Threshold Raccoon **Masking-based Threshold Signature**

Key Material:

- $vk = As$
- $sk_i = s_i$
- Signature:
- $\sigma = (W, z)$
-
-

such that $s = \sum_{i \in S} L_{S,i} \cdot s_i$ with $A = [\bar{A} | I]$

such that (i) $Az = c \cdot vk + w$ (iii) *z* is short (ii) $c = H(\nu k, w, m)$

Key Material:

- $\nu k = A s$
- $sk_i = s_i$
- Signature:
- $\sigma = (W, z)$

Security:

-
-

such that $s = \sum_{i \in S} L_{S,i} \cdot s_i$ with $A = [\bar{A} | I]$

such that (i) $Az = c \cdot vk + w$ (iii) *z* is short (ii) $c = H(\nu k, w, m)$

Key Material:

- $\nu k = A s$
- $sk_i = s_i$

Signature:

• $\sigma = (W, z)$

Security:

• EUF-CMA under MLWE / MSIS in the ROM

such that $s = \sum_{i \in S} L_{S,i} \cdot s_i$ with $A = [\overline{A} | I]$

such that (i) $Az = c \cdot vk + w$ (iii) *z* is short (ii) $c = H(\nu k, w, m)$

Round 1:

- $r_i \leftarrow \chi$
- $w_i \leftarrow A \cdot r_i$
- $cmt_i = G(w_i)$
- *send i*

Round 1:

- $r_i \leftarrow \chi$
- $w_i \leftarrow A \cdot r_i$
- $cmt_i = G(w_i)$
- *send i*

Round 2:

• *send wi*

Round 1:

- $r_i \leftarrow \chi$
- $w_i \leftarrow A \cdot r_i$
- $cmt_i = G(w_i)$
- *send i*
- *sample 0-share* Δ*i*
- *send* $z_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$

Round 2:

• *send wi*

Round 3:

• *check* $cmt_i = G(w_i)$

$$
\bullet \ \ W = \ \sum_{j \in S} w_i
$$

$$
\bullet \ \ c = H(\nu k, w, m)
$$

Round 1:

- $r_i \leftarrow \chi$ • *send wi*
- $w_i \leftarrow A \cdot r_i$
- $cmt_i = G(w_i)$
- *send i*

, $\mathsf{sid}) - \mathsf{PRF}(k_{j,i}, \mathsf{sid})$

Round 2:

Round 3:

• *check* $cmt_i = G(w_i)$

$$
\bullet \ \ W = \ \sum_{j \in S} w_i
$$

$$
\bullet \ \ c = H(\nu k, w, m)
$$

- *sample 0-share* Δ*i*
- *send zi* = *c* ⋅ *LS*,*ⁱ* ⋅ *si* + *r* ^Δ*ⁱ* ⁼ [∑]*j*∈*^S ⁱ* + Δ*ⁱ* (*ki*,*^j*

Selective Security:

• Simulation of signing oracles without shares *s*:

i

- Simulation of signing oracles without shares *s*: *i*
	- Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

- Simulation of signing oracles without shares *s*: *i*
	- Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

$$
\rightarrow Az = c \cdot vk + w_i
$$

 v_i is unknown

Threshold Raccoon [dKMMPS24]

- Simulation of signing oracles without shares *s*: *i*
	- Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

$$
\blacktriangleright \quad Az = c \cdot vk + w_i \qquad \text{but } r_i \text{ is unknown}
$$

- Use properties of zero-share Δ_i to embed ζ into the signing session
-

- Simulation of signing oracles without shares *s*: *i*
	- Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

- Use properties of zero-share Δ_i to embed ζ into the signing session
- Rewind to extract MSIS solution s

$$
\blacktriangleright \quad Az = c \cdot vk + w_i \qquad \text{but } r_i \text{ is unknown}
$$

Adaptive Security:

Adaptive Security:

• Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

Adaptive Security:

$$
\rightarrow Az = c \cdot vk + w_i
$$

• Simulate a commitment-response pair (w_i, z) for challenge c via HVZK b but r_i is unknown

Adaptive Security:

• Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

$$
A z = c \cdot vk + w_i \qquad \text{but } r_i \text{ is unknown}
$$

- Use properties of zero-share Δ_i to embed ζ into the signing session
-

Adaptive Security:

• Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

$$
A z = c \cdot vk + w_i \qquad \text{but } r_i \text{ is unknown}
$$

- Use properties of zero-share Δ_i to embed ζ into the signing session
- If signer i is corrupted: PANIC

Adaptive Security:

• Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

$$
A z = c \cdot vk + w_i \qquad \text{but } r_i \text{ is unknown}
$$

- Use properties of zero-share Δ_i to embed ζ into the signing session
- If signer i is corrupted: PANIC

Scenario:

- $\mathscr A$ observes (w₂, z₂), (w₃, z₃), (w_{4,} z₄)
- $\mathscr A$ corrupts signer 2 and 3

Scenario:

- $\mathscr A$ observes (w₂, z₂), (w₃, z₃), (w_{4,} z₄)
- $\mathscr A$ corrupts signer 2 and 3
- During rewinding, $\mathscr A$ corrupts user 4

Scenario:

- $\mathscr A$ observes (w₂, z₂), (w₃, z₃), (w_{4,} z₄)
- $\mathscr A$ corrupts signer 2 and 3
- During rewinding, $\mathscr A$ corrupts user 4

 r_i such that $w_i = Ar_i$ is expected in st_i

- The reduction has no space to embed a simulated wi

Scenario:

- $\mathscr A$ observes (w₂, z₂), (w₃, z₃), (w_{4,} z₄)
- $\mathscr A$ corrupts signer 2 and 3
- During rewinding, $\mathscr A$ corrupts user 4

Conclusion:

- The reduction has no space to embed a simulated wi
- The secret keys ski cannot be fixed in advance

Scenario:

- $\mathscr A$ observes (w₂, z₂), (w₃, z₃), (w_{4,} z₄)
- $\mathscr A$ corrupts signer 2 and 3
- During rewinding, $\mathscr A$ corrupts user 4

Conclusion:

Our Solution

More masking solves the problem

Round 1:

- $r_i \leftarrow \chi$
- $w_i \leftarrow A \cdot r_i$
- *sample 0-share* Δ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $\tilde{w}_i \leftarrow w_i + \Delta$ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $cmt_i = G(\tilde{w})$ *i*)
- *send i*

Round 1:

- $r_i \leftarrow \chi$
- $w_i \leftarrow A \cdot r_i$
- *sample 0-share* Δ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $\tilde{w}_i \leftarrow w_i + \Delta$ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $cmt_i = G(\tilde{w})$ *i*)
- *send i*

0-shares are sampled via RO $\Delta_i = \sum_{j \in S} F(k_{i,j}, \text{sid}) - F(k_{j,i}, \text{sid})$

Note: Requires non-repeating *sid* which requires state-keeping

This *sid* can be established in additional round

Round 1:

- $r_i \leftarrow \chi$ • *sign view*
- $w_i \leftarrow A \cdot r_i$
- *sample 0-share* Δ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $\tilde{w}_i \leftarrow w_i + \Delta$ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $cmt_i = G(\tilde{w})$ *i*)
- *send i*

0-shares are sampled via RO $\Delta_i = \sum_{j \in S} F(k_{i,j}, \text{sid}) - F(k_{j,i})$

Round 2:

$$
)-F(k_{j,i}, \text{sid})
$$

- $r_i \leftarrow \chi$ • *sign view* • *check*
- $w_i \leftarrow A \cdot r_i$
- *sample 0-share* Δ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $\tilde{w}_i \leftarrow w_i + \Delta$ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $cmt_i = G(\tilde{w})$ *i*)
- *send i*

0-shares are sampled via RO $\Delta_i = \sum_{j \in S} F(k_{i,j}, \text{sid}) - F(k_{j,i}, \text{sid})$

Round 1: Round 2: Round 3:

- *signature*
- *send w* ˜ *i*

- $r_i \leftarrow \chi$ • *sign view* • *check*
- $w_i \leftarrow A \cdot r_i$
- *sample 0-share* Δ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $\tilde{w}_i \leftarrow w_i + \Delta$ $\boldsymbol{\widetilde{\Lambda}}$ *i*
- $cmt_i = G(\tilde{w})$ *i*)
- *send i*

• *check* cmt_i = $G(\tilde{w})$ *i*)

0-shares are sampled via RO $\Delta_i = \sum_{j \in S} F(k_{i,j}, \text{sid}) - F(k_{j,i}, \text{sid})$

Round 1: Round 2: Round 3:

Round 4:

$$
\bullet \ \ W = \ \sum_{j \in S} \tilde{w}_i
$$

$$
\bullet \ \ c = H(\nu k, w, m)
$$

- *sample 0-share* Δ*i*
- $z_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$
- send *zi*

signature

• *send w* ˜ *i*

sessions: ˜ $_i$ and Δ_i

Simplified

$$
s = \sum_{j \in S} L_{S,j} s_i
$$

- $\tilde{w}_i = w_i + \tilde{\Delta}_i$
- $\tilde{z}_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$

• The masking via 0-shares Δ_i and Δ_i minimize information learned from signing

$$
- w_i = [A | I] r_i
$$

$$
- 0 = \sum_{j \in S} \tilde{\Delta}_j = \sum_{j \in S} \Delta_j
$$

statistically hidden determined

sessions: ˜ $_i$ and Δ_i

Simplified

$$
s = \sum_{j \in S} L_{S,j} s_i
$$

- $\tilde{w}_i = w_i + \tilde{\Delta}_i$
- $\tilde{z}_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$

• The masking via 0-shares Δ_i and Δ_i minimize information learned from signing

$$
- w_i = [A \mid I] r_i
$$

$$
- 0 = \sum_{j \in S} \tilde{\Delta}_j = \sum_{j \in S} \Delta_j
$$

The protocol message are uniform conditioned on the final signature verifying

statistically hidden determined

The protocol message are uniform conditioned on the final signature verifying

Security Proof Simplified

The protocol message are uniform conditioned on the final signature verifying

Security Proof Simplified

Security Proof Simplified

The protocol message are uniform conditioned on the final signature verifying

• Simulate one w_i via HVZK and the others honestly π (allows to simulate signing)

-
-

Security Proof Simplified

The protocol message are uniform conditioned on the final signature verifying

• Simulate one w_i via HVZK and the others honestly (allows to simulate signing)

• On corruption, sample s_i at random and choose one honest w_i per session

- Simulate one w_i via HVZK and the others honestly α (allows to simulate signing)
- On corruption, sample s_i at random and choose one honest w_i per session
- Program RO for 0-shares for consistency

Security Proof Simplified

The protocol message are uniform conditioned on the final signature verifying

Results:

- Proof technique for adaptive security in the ROM
- State-free security proof for Threshold Raccoon
- Techniques to prove stronger unforgeability notions

Summary