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The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs): 
       𝐺: 0,1 ! → 0,1 "! such that 𝐺(U#) is indistinguishable from U"#.

Pseudorandom Functions (PRFs): 
𝐹 = 𝐹$: 0,1 ! → 0,1 $∈ &,( !

 such that 𝐹$  is indistinguishable from a random function.

Pr
)← &,( !

𝐴+" = 1 − Pr
,←{.: &,( #→{&,(}}

𝐴, = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)
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The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$  on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛  adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF 
in NC( based on DDH/lattices 

8



The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$  on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛  adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF 
in NC( based on DDH/lattices 

9



The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$  on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛  adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF 
in NC( based on DDH/lattices 

10



The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$  on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛  adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF 
in NC( based on DDH/lattices 

11



The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$  on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛  adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF 
in NC( based on DDH/lattices 

12



The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$  on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛  adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF 
in NC( based on DDH/lattices 

13



Why Should We Care?

• Fundamental question in Crypto
• Efficiency of many primitives
• Important beyond Crypto:
• Natural Proofs [Razborov-Rudich]
• Barriers on circuits lower bounds
• Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs 

[Gennero-Gertner-Katz-Trevisan, Holenstien] 14
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Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?
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Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

TMI Thm [This work]: Let 𝐿 be a function with 𝑂(log 𝑛) output length, and 𝑃 be a 
function with 𝑛 − 𝜔(log 𝑛) output length. Let 𝑂!,#(𝑠) = 𝑃(𝐺 𝑠 , 𝐿(𝑘, 𝑥)). 
 Then there is no black-box constructions

𝐹!& 𝑥 = 𝐴'!,#(𝑘, 𝑥) 
For any oracle-aided algorithm 𝐴.

To the best of our knowledge, one-call black-box PRF construction is still possible
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The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 ( → 0,1 )(

𝐹! 𝑥 = 𝑣#	
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The GGM Construction

Thm[GGM]: PRG ⇒ PRF
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Question: Can we do better?
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Levin’s Trick (Domain Extention)

Thm[GGM]: PRG ⇒ PRF
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3.  The choice of the path can be an arbitrary function of 𝑘, 𝑥
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• For any stretch of the PRG
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PRF implementation using 𝐺.
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Depth-One Sequential Construction

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& ( = 𝑃 𝐺 𝑆 𝑘, 𝑥
(

 

•  We choose (a family of) PRGs 𝐺 such that 𝐹$(𝑥) can 
be computed from 𝑘, 𝑥 without calling to 𝐺

⇒ Can break the security of 𝐹 without breaking 𝐺
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Key point:
• 𝑃 𝜋 𝑦 ( = 𝑦(
where  𝑦 = 𝐺′(𝑠)



General Post-Processing

More generally, we need to find 𝜋 such that for every 𝑖,
  𝑃(𝜋 𝑦 )24  can be computed from the first ≈ 𝑖 bits of 𝑦

• For a permutation, 𝑃(𝜋 𝑦 )24 = 𝑦24

When 𝑃 is a not a permutation?
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The Pseudo-Inverse Lemma

Lemma: For any function 𝑃: 0,1 ! → 0,1 ! there exists a function 
  𝜋: 0,1 ! → 0,1 ! such that:

1. 𝜋 is almost a permutation (𝜋 𝑈! ≈ 𝑈!)

2. For every 𝑖 ∈ 𝑛 , 	 𝑃 𝜋 𝑦
24

 can be computed 
from 𝑦245678$ ! 
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Summary

Thm [This work]: There is no black-box tree constructions with depth of 
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
+ More lower bounds

Open questions:
• What is the complexity of Black-Box PRF constructions?
• Can we construct one-call PRF?
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Thanks!


