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The Main Question

What is the complexity of black-box PRF construction from PRGs?
* How many calls to the PRG are needed to evaluate F; on an input x?

° | ]: Construction with n adaptive calls
° | ]: Levin’s trick: Construction with w(log n) adaptive calls

Question: Can we do better?

° [ ]: Construction of PRF
in NC! based on DDH/Iattices
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Why Should We Care?

* Fundamental question in Crypto
e Efficiency of many primitives

* Important beyond Crypto:
* Natural Proofs | ]
* Barriers on circuits lower bounds
* Lower bounds on learning

* PRFs from PRGs are much less understood than PRGs from OWFs
[ ]
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Question: Can we rule out black-box PRF constructions that make one call to the PRG?

F,(x) = P(G(S(k, X)), k, x)

TMI Thm [This work]: Let L be a function with O(logn) output length, and P be a
function with n — w(logn) output length. Let O . (s) = P(G(s), L(k, x)).

Then there is no black-box constructions
FE (x) = A% (k, x)

For any oracle-aided algorithm A.

To the best of our knowledge, one-call black-box PRF construction is still possible
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Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

= S(k,
3. The choice of the path can be ‘vl (k, x) ‘
arbitrary function of
k,x ‘Uo = Po(G(vy)) ‘V1 =P (G(vy)) ‘

Fi.(x) = vkx)

In GGM, L(k,x) = x [or h(x)]

| vs0 = Po(G(1,)) | Va0 = PL(G(1)) |
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Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

1. The root of the tree can be an arbitrary function of k, x
2. The label of the children can be an arbitrary function of G(v,)

3. The choice of the path can be an arbitrary function of k, x
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* For any constant-degree tree
* For any stretch of the PRG




Proof Overview



Proof Overview

We use oracle methodology |



Proof Overview

We use oracle methodology |

For every low depth tree construction, we show an oracle with respect to
which:



Proof Overview

We use oracle methodology |

For every low depth tree construction, we show an oracle with respect to
which:

e There is a secure PRG G



Proof Overview

We use oracle methodology | ]

For every low depth tree construction, we show an oracle with respect to
which:

e There is a secure PRG G

* There is an efficient algorithm Break that breaks the PRF implementation
using G
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Proof Overview

* Our main contribution is a technique to deal with ‘ vo = S(k, x) ‘
adaptive calls l
‘V1 = Pl(G(Vo)) ‘
* We use ideas from to show it is enough l
to exclude sequential constructions ‘ v, = P2(G(vy)) ‘

* We show that there are no such sequential
constructions

| va = PA(G(va_1)) |
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Depth-One Sequential Construction

| v = Sk, x) |

Fi(x) = P(G(UO))1 =P (G(S(k’ x)))l l

‘ v, = P(G(vp)) ‘

* We choose (a family of) PRGs G such that Fj, (x) can
be computed from k, x without calling to G

= Can break the security of F without breaking G
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* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]
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General Post-Processing

Key point:

¢ P(ﬂ(Y))1 = V1
where y = G'(s)

More generally, we need to find m such that for every i,
P(m(y))<; can be computed from the first = i bits of y

* For a permutation, P(t(¥))<; = y<;

When P is a not a permutation?
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Lemma: For any function P:{0,1}"* — {0,1}" there exists a function
m:{0,1}" - {0,1}" such that:

1. mis almost a permutation (m(U,,) = U,)

2. Foreveryi € [n], P(n(y)) can be computed

from YSi+log n
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Summary

Thm [This work]: There is no black-box tree constructions with depth of
logn — loglogn

* GGM is of depth w(logn)
+ More lower bounds

Open questions:
* What is the complexity of black-box PRF constructions?

e Can we construct one-call PRF? |
Thanks!



