Structural Lower Bounds on Black-Box Constructions of Pseudorandom Functions

Amos Beimel Tal Malkin Noam Mazor (Ben-Gurion University)(Columbia University)(Tel Aviv University)

What is the complexity of black-box PRF construction from PRGs?

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ such that $G(U_n)$ is indistinguishable from U_{2n} .

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ such that $G(U_n)$ is indistinguishable from U_{2n} .

Pseudorandom Functions (PRFs): $F = \left\{ F_k \colon \{0,1\}^n \to \{0,1\} \right\}_{k \in \{0,1\}^{\lambda}}$

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ such that $G(U_n)$ is indistinguishable from U_{2n} .

Pseudorandom Functions (PRFs): $F = \left\{ F_k \colon \{0,1\}^n \to \{0,1\} \right\}_{k \in \{0,1\}^{\lambda}}$

such that F_k is indistinguishable from a random function.

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ such that $G(U_n)$ is indistinguishable from U_{2n} .

Pseudorandom Functions (PRFs):

$$F = \left\{ F_k : \{0,1\}^n \to \{0,1\} \right\}_{k \in \{0,1\}^\lambda}$$

such that F_k is indistinguishable from a random function.

$$\left| \Pr_{\mathbf{k} \leftarrow \{0,1\}^{\lambda}} [A^{F_{k}} = 1] - \Pr_{\Pi \leftarrow \{\pi: \{0,1\}^{n} \to \{0,1\}\}} [A^{\Pi} = 1] \right| \le negl(n)$$

What is the complexity of black-box PRF construction from PRGs?

What is the complexity of black-box PRF construction from PRGs?

• How many calls to the PRG are needed to evaluate F_k on an input x?

What is the complexity of black-box PRF construction from PRGs?

- How many calls to the PRG are needed to evaluate F_k on an input x?
- [Goldreich-Goldwasser-Micali' 84]: Construction with *n* adaptive calls

What is the complexity of black-box PRF construction from PRGs?

- How many calls to the PRG are needed to evaluate F_k on an input x?
- [Goldreich-Goldwasser-Micali' 84]: Construction with n adaptive calls
- [Levin' 87]: Levin's trick: Construction with $\omega(\log n)$ adaptive calls

What is the complexity of black-box PRF construction from PRGs?

- How many calls to the PRG are needed to evaluate F_k on an input x?
- [Goldreich-Goldwasser-Micali' 84]: Construction with *n* adaptive calls
- [Levin' 87]: Levin's trick: Construction with $\omega(\log n)$ adaptive calls

<u>Question</u>: Can we do better?

What is the complexity of black-box PRF construction from PRGs?

- How many calls to the PRG are needed to evaluate F_k on an input x?
- [Goldreich-Goldwasser-Micali' 84]: Construction with *n* adaptive calls
- [Levin' 87]: Levin's trick: Construction with $\omega(\log n)$ adaptive calls

<u>Question</u>: Can we do better?

• [Naor-Reingold '99, Banerjee-Peikert-Rosen '12]: Construction of PRF in NC¹ based on DDH/lattices

• Fundamental question in Crypto

- Fundamental question in Crypto
- Efficiency of many primitives

- Fundamental question in Crypto
- Efficiency of many primitives
- Important beyond Crypto:

- Fundamental question in Crypto
- Efficiency of many primitives
- Important beyond Crypto:
 - Natural Proofs [Razborov-Rudich]
 - Barriers on circuits lower bounds
 - Lower bounds on learning

- Fundamental question in Crypto
- Efficiency of many primitives
- Important beyond Crypto:
 - Natural Proofs [Razborov-Rudich]
 - Barriers on circuits lower bounds
 - Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs [Gennero-Gertner-Katz-Trevisan, Holenstien]

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

<u>Thm</u> [Miles-Viola]: There is no black-box one call bit-projection construction $F_k(x) = G(S_{k,x})_i \text{ for } i = L(k,x) \in [2n]$

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

<u>Thm</u> [Miles-Viola]: There is no black-box one call bit-projection construction $F_k(x) = G(S_{k,x})_i \text{ for } i = L(k,x) \in [2n]$

 $P(y, k, x) = y_{L(k,x)}$, where $L(k, x) \in [2n]$

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

<u>Thm</u> [Miles-Viola]: There is no black-box one call bit-projection construction $F_k(x) = G(S_{k,x})_i \text{ for } i = L(k,x) \in [2n]$

 $P(y, k, x) = y_{L(k,x)}$, where $L(k, x) \in [2n]$

<u>Warm-up Thm</u> [This work]: There is no black-box one call constructions with P(y,k,x) = P(y,L(k,x)) for $|L(k,x)| = O(\log n)$

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

<u>TMI Thm</u> [This work]: Let *L* be a function with $O(\log n)$ output length, and *P* be a function with $n - \omega(\log n)$ output length. Let $O_{k,x}(s) = P(G(s), L(k, x))$.

Then there is no black-box constructions

$$F_k^G(x) = A^{O_{k,x}}(k, x)$$

For any oracle-aided algorithm A.

<u>Question</u>: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

<u>TMI Thm</u> [This work]: Let *L* be a function with $O(\log n)$ output length, and *P* be a function with $n - \omega(\log n)$ output length. Let $O_{k,x}(s) = P(G(s), L(k, x))$.

Then there is no black-box constructions

$$F_k^G(x) = A^{O_{k,x}}(k, x)$$

For any oracle-aided algorithm A.

To the best of our knowledge, one-call black-box PRF construction is still possible

We show that for a large class of constructions that naturally generalize GGM, GGM is essentially optimal.

We show that for a large class of constructions that naturally generalize GGM, GGM is essentially optimal.

• Some of the choices in the GGM constructions are optimal

We show that for a large class of constructions that naturally generalize GGM, GGM is essentially optimal.

- Some of the choices in the GGM constructions are optimal
- "Natural generalization" = Tree constructions

We show that for a large class of constructions that naturally generalize GGM, GGM is essentially optimal.

- Some of the choices in the GGM constructions are optimal
- "Natural generalization" = Tree constructions

The GGM Construction

<u>Thm[GGM]</u>: PRG \Rightarrow PRF

 $G: \{0,1\}^n \to \{0,1\}^{2n}$

The GGM Construction

<u>Thm[GGM]</u>: PRG \Rightarrow PRF

 $G: \{0,1\}^n \to \{0,1\}^{2n}$

<u>Thm[GGM]</u>: PRG \Rightarrow PRF

 $G: \{0,1\}^n \to \{0,1\}^{2n}$

 $F_k(x) = v_x$ v_z $v_{z0} = G(v_z)_{\leq n}$ $v_{z1} = G(v_z)_{>n}$

 $F_k(01) = v_{01}$

n

 $F_k(01) = v_{01}$

To compute $F_k(x)$, makes n adaptive calls to the PRG

n

 $F_k(01) = v_{01}$

To compute $F_k(x)$, makes n adaptive calls to the PRG Question: Can we do better?

46

n

<u>Thm[GGM]</u>: PRG \Rightarrow PRF

 $G\!:\!\{0,\!1\}^n\to\{0,\!1\}^{2n}$

<u>Thm[GGM]</u>: PRG \Rightarrow PRF

 $G\!:\!\{0,\!1\}^n\to\{0,\!1\}^{2n}$

Let $h: \{0,1\}^n \to \{0,1\}^{\omega(\log n)}$ is a two-universal hash function

<u>Thm[GGM]</u>: PRG \Rightarrow PRF

 $G\!:\!\{0,\!1\}^n\to\{0,\!1\}^{2n}$

Let
$$h: \{0,1\}^n \to \{0,1\}^{\omega(\log n)}$$
 is a two-universal hash function
 $F_{h,k}(x) = F_k(h(x)) = v_{h(x)}$

To compute $F_{h,k}(x)$, makes $\omega(\log n)$ adaptive calls to the PRG

 $\omega(\log n)$

To compute $F_{h,k}(x)$, makes $\omega(\log n)$ adaptive calls to the PRG <u>Question</u>: Can we do better?

 $\omega(\log n)$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

1. The root of the tree can be arbitrary function of k, x

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

1. The root of the tree can be arbitrary function of k, x

 $\ln \text{GGM}, S(k, x) = k$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$ (can be different in each level)

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$ (can be different in each level)

$$v_{\perp} = S(k, x)$$

 $v_{0} = P_{0}(G(v_{\perp}))$ $v_{1} = P_{1}(G(v_{\perp}))$

$$v_z$$

 $v_{z0} = P_0(G(v_z))$ $v_{z1} = P_1(G(v_z))$

 $\ln \text{GGM}, P_0(y) = y_{\leq n}$ $P_1(y) = y_{>n}$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

3. The choice of the path can be arbitrary function of *k*, *x*

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

3. The choice of the path can be arbitrary function of k, x

$$v_{\perp} = S(k, x)$$

 $v_{0} = P_{0}(G(v_{\perp})) \quad v_{1} = P_{1}(G(v_{\perp}))$

 $F_k(x) = v_{L(k,x)}$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

3. The choice of the path can be arbitrary function of k, x

$$v_{\perp} = S(k, x)$$

 $v_{0} = P_{0}(G(v_{\perp})) \quad v_{1} = P_{1}(G(v_{\perp}))$

 $F_k(x) = v_{L(k,x)}$

$$\ln \text{GGM}, L(k, x) = x [\text{or } h(x)]$$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

- 1. The root of the tree can be an arbitrary function of k, x
- 2. The label of the children can be an arbitrary function of $G(v_z)$
- 3. The choice of the path can be an arbitrary function of k, x

Thm [This work]: There is no fully black-box tree constructions with depth of $\log n - \log \log n$

Thm [This work]: There is no fully black-box tree constructions with depth of $\log n - \log \log n$

• GGM is fully black-box tree constructions with depth $\omega(\log n)$

Thm [This work]: There is no fully black-box tree constructions with depth of $\log n \, - \log \log n$

- GGM is fully black-box tree constructions with depth $\omega(\log n)$
- For any constant-degree tree

Thm [This work]: There is no fully black-box tree constructions with depth of $\log n - \log \log n$

- GGM is fully black-box tree constructions with depth $\omega(\log n)$
- For any constant-degree tree
- For any stretch of the PRG

Proof Overview

Proof Overview

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]
We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to which:

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to which:

• There is a secure PRG G

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to which:

- There is a secure PRG G
- There is an efficient algorithm Break that breaks the PRF implementation using G

• Our main contribution is a technique to deal with adaptive calls

- Our main contribution is a technique to deal with adaptive calls
- We use ideas from Miles-Viola to show it is enough to exclude sequential constructions

$$v_d = P^d(G(v_{d-1}))$$

- Our main contribution is a technique to deal with adaptive calls
- We use ideas from Miles-Viola to show it is enough to exclude sequential constructions
- We show that there are no such sequential constructions

$$v_d = P^d(G(v_{d-1}))$$

$$v_0 = S(k, x)$$
$$v_1 = P(G(v_0))$$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• We choose (a family of) PRGs G such that $F_k(x)$ can be computed from k, x without calling to G

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• We choose (a family of) PRGs G such that $F_k(x)$ can be computed from k, x without calling to G

 \Rightarrow Can break the security of F without breaking G

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

• Assume that *P* is a permutation

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$
 - Let $G = \pi \circ G'$ $[G(s) = \pi(G'(s))]$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$
 - Let $G = \pi \circ G'$ $[G(s) = \pi(G'(s))]$

 \Rightarrow G is a PRG

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$
 - Let $G = \pi \circ G'$ $[G(s) = \pi(G'(s))]$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$

• Let
$$G = \pi \circ G'$$
 $[G(s) = \pi(G'(s))]$
 $F_k(x) = P(G(S(k, x)))_1$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$

• Let
$$G = \pi \circ G'$$
 $[G(s) = \pi(G'(s))]$
 $F_k(x) = P(G(S(k,x)))_1$
 $= P(\pi(G'(S(k,x))))_1$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$

• Let
$$G = \pi \circ G'$$
 $[G(s) = \pi(G'(s))]$
 $F_k(x) = P(G(S(k,x)))_1$
 $= P(\pi(G'(S(k,x)))_1)_1$
 $= G'(S(k,x))_1$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$

• Let
$$G = \pi \circ G'$$
 $[G(s) = \pi(G'(s))]$
 $F_k(x) = P(G(S(k, x)))_1$
 $= P(\pi(G'(S(k, x))))_1$
 $= G'(S(k, x))_1$
 $= S(k, x)_1$

$$F_k(x) = P(G(v_0))_1 = P(G(S(k,x)))_1$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

$$v_0 = S(k, x)$$
$$v_1 = P(G(v_0))$$

- Assume that *P* is a permutation
 - Let $\pi = P^{-1}$

• Let
$$G = \pi \circ G'$$
 $[G(s) = \pi(G'(s))]$
 $F_k(x) = P(G(S(k,x)))_1$
 $= P(\pi(G'(S(k,x)))_1)_1$
 $= G'(S(k,x))_1$
 $= S(k,x)_1$

Key point: • $P(\pi(y))_1 = y_1$ where y = G'(s)

Key point: • $P(\pi(y))_1 = y_1$ where y = G'(s)

Key point: • $P(\pi(y))_1 = y_1$ where y = G'(s)

More generally, we need to find π such that for every i, $P(\pi(y))_{\leq i}$ can be computed from the first $\approx i$ bits of y

Key point: • $P(\pi(y))_1 = y_1$ where y = G'(s)

More generally, we need to find π such that for every i, $P(\pi(y))_{\leq i}$ can be computed from the first $\approx i$ bits of y

• For a permutation, $P(\pi(y))_{\leq i} = y_{\leq i}$

Key point: • $P(\pi(y))_1 = y_1$ where y = G'(s)

More generally, we need to find π such that for every i, $P(\pi(y))_{\leq i}$ can be computed from the first $\approx i$ bits of y

• For a permutation, $P(\pi(y))_{\leq i} = y_{\leq i}$

When *P* is a not a permutation?

The Pseudo-Inverse Lemma

<u>Lemma</u>: For any function $P: \{0,1\}^n \rightarrow \{0,1\}^n$ there exists a function $\pi: \{0,1\}^n \rightarrow \{0,1\}^n$ such that:

The Pseudo-Inverse Lemma

<u>Lemma</u>: For any function $P: \{0,1\}^n \rightarrow \{0,1\}^n$ there exists a function $\pi: \{0,1\}^n \rightarrow \{0,1\}^n$ such that:

1. π is almost a permutation ($\pi(U_n) \approx U_n$)

The Pseudo-Inverse Lemma

<u>Lemma</u>: For any function $P: \{0,1\}^n \rightarrow \{0,1\}^n$ there exists a function $\pi: \{0,1\}^n \rightarrow \{0,1\}^n$ such that:

- 1. π is almost a permutation ($\pi(U_n) \approx U_n$)
- 2. For every $i \in [n]$, $P(\pi(y))_{\leq i}$ can be computed from $y_{\leq i + \log^2 n}$

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

• GGM is of depth $\omega(\log n)$

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

• GGM is of depth $\omega(\log n)$

+ More lower bounds

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

• GGM is of depth $\omega(\log n)$

+ More lower bounds

Open questions:

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

• GGM is of depth $\omega(\log n)$

+ More lower bounds

Open questions:

• What is the complexity of black-box PRF constructions?
Summary

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

- GGM is of depth $\omega(\log n)$
- + More lower bounds

Open questions:

- What is the complexity of black-box PRF constructions?
- Can we construct one-call PRF?

Summary

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

- GGM is of depth $\omega(\log n)$
- + More lower bounds

Open questions:

- What is the complexity of black-box PRF constructions?
- Can we construct one-call PRF?

110

Thanks!