Structural Lower Bounds on Black-Box Constructions of Pseudorandom Functions

Amos Beimel (Ben-Gurion University) Tal Malkin (Columbia University) Noam Mazor (Tel Aviv University)

What is the complexity of black-box PRF construction from PRGs?

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ such that $G(U_n)$ is indistinguishable from U_{2n} .

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs): $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ such that $G(U_n)$ is indistinguishable from U_{2n} .

Pseudorandom Functions (PRFs): $F = {F_k: \{0,1\}^n \rightarrow {0,1\}}_{k \in \{0,1\}^{\lambda}}$

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ such that $G(U_n)$ is indistinguishable from U_{2n} .

Pseudorandom Functions (PRFs): $F = {F_k: \{0,1\}^n \rightarrow {0,1\}}_{k \in \{0,1\}^{\lambda}}$

such that F_k is indistinguishable from a random function.

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$ such that $G(U_n)$ is indistinguishable from U_{2n} .

Pseudorandom Functions (PRFs): $F = {F_k: \{0,1\}^n \rightarrow {0,1\}}_{k \in \{0,1\}^{\lambda}}$

such that F_k is indistinguishable from a random function.

$$
\left| \Pr_{\mathbf{k} \leftarrow \{0,1\}^{\lambda}} [A^{F_k} = 1] - \Pr_{\Pi \leftarrow \{\pi : \{0,1\}^n \to \{0,1\}\}} [A^{\Pi} = 1] \right| \leq negl(n)
$$

٠

What is the complexity of black-box PRF construction from PRGs?

What is the complexity of black-box PRF construction from PRGs?

• How many calls to the PRG are needed to evaluate F_k on an input x ?

What is the complexity of black-box PRF construction from PRGs?

- How many calls to the PRG are needed to evaluate F_k on an input x ?
- [Goldreich-Goldwasser-Micali' 84]: Construction with n adaptive calls

What is the complexity of black-box PRF construction from PRGs?

- How many calls to the PRG are needed to evaluate F_k on an input x ?
- [Goldreich-Goldwasser-Micali' 84]: Construction with n adaptive calls
- [Levin' 87]: Levin's trick: Construction with $\omega(\log n)$ adaptive calls

What is the complexity of black-box PRF construction from PRGs?

- How many calls to the PRG are needed to evaluate F_k on an input x ?
- [Goldreich-Goldwasser-Micali' 84]: Construction with n adaptive calls
- [Levin' 87]: Levin's trick: Construction with $\omega(\log n)$ adaptive calls

Question: Can we do better?

What is the complexity of black-box PRF construction from PRGs?

- How many calls to the PRG are needed to evaluate F_k on an input x ?
- [Goldreich-Goldwasser-Micali' 84]: Construction with n adaptive calls
- [Levin' 87]: Levin's trick: Construction with $\omega(\log n)$ adaptive calls

Question: Can we do better?

• [Naor-Reingold '99, Banerjee-Peikert-Rosen '12]: Construction of PRF in NC^1 based on DDH/lattices 13

• Fundamental question in Crypto

- Fundamental question in Crypto
- Efficiency of many primitives

- Fundamental question in Crypto
- Efficiency of many primitives
- Important beyond Crypto:

- Fundamental question in Crypto
- Efficiency of many primitives
- Important beyond Crypto:
	- Natural Proofs [Razborov-Rudich]
	- Barriers on circuits lower bounds
	- Lower bounds on learning

- Fundamental question in Crypto
- Efficiency of many primitives
- Important beyond Crypto:
	- Natural Proofs [Razborov-Rudich]
	- Barriers on circuits lower bounds
	- Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs [Gennero-Gertner-Katz-Trevisan, Holenstien] ¹⁹

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

Thm [Miles-Viola]: There is no black-box one call bit-projection construction $F_k(x) = G(S_{k,x})$ for $i = L(k, x) \in [2n]$

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

Thm [Miles-Viola]: There is no black-box one call bit-projection construction $F_k(x) = G(S_{k,x})$ for $i = L(k, x) \in [2n]$

 $P(y, k, x) = y_{L(k, x)}$, where $L(k, x) \in [2n]$

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

Thm [Miles-Viola]: There is no black-box one call bit-projection construction $F_k(x) = G(S_{k,x})$ for $i = L(k, x) \in [2n]$

 $P(y, k, x) = y_{L(k, x)}$, where $L(k, x) \in [2n]$

Warm-up Thm [This work]: There is no black-box one call constructions with $P(y, k, x) = P(y, L(k, x))$ for $|L(k, x)| = O(\log n)$

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

TMI Thm [This work]: Let L be a function with $O(\log n)$ output length, and P be a function with $n - \omega(\log n)$ output length. Let $O_{k,x}(s) = P(G(s), L(k, x)).$

Then there is no black-box constructions

 $F_k^G(x) = A^{O_{k,x}}(k, x)$

For any oracle-aided algorithm A .

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

 $F_k(x) = P(G(S(k, x)), k, x)$

TMI Thm [This work]: Let L be a function with $O(\log n)$ output length, and P be a function with $n - \omega(\log n)$ output length. Let $O_{k,x}(s) = P(G(s), L(k, x)).$

Then there is no black-box constructions

$$
F_k^G(x) = A^{O_{k,x}}(k,x)
$$

For any oracle-aided algorithm A .

To the best of our knowledge, one-call black-box PRF construction is still possible

We show that for a large class of constructions that naturally generalize GGM, GGM is essentially optimal.

We show that for a large class of constructions that naturally generalize GGM, GGM is essentially optimal.

• Some of the choices in the GGM constructions are optimal

We show that for a large class of constructions that naturally generalize GGM, GGM is essentially optimal.

- Some of the choices in the GGM constructions are optimal
- "Natural generalization" = Tree constructions

We show that for a large class of constructions that naturally generalize GGM, GGM is essentially optimal.

- Some of the choices in the GGM constructions are optimal
- "Natural generalization" = Tree constructions

The GGM Construction

 $Thm[GGM]$: PRG \Rightarrow PRF

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$

The GGM Construction

 $Thm[GGM]$: PRG \Rightarrow PRF

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$

$Thm[GGM]$: PRG \Rightarrow PRF

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$

$$
v_1 = k
$$

$$
v_0 = G(k)_{\le n} \qquad v_1 = G(k)_{>n}
$$

$$
v_z
$$

$$
v_{z0} = G(v_z)_{\leq n} \qquad v_{z1} = G(v_z)_{>n}
$$

 $F_k(x) = v_x$ $v_{\rm z}$ $v_{z0} = G(v_z)_{\leq n}$ $v_{z1} = G(v_z)_{\geq n}$

 $F_k(01) = v_{01}$

 \boldsymbol{n}

 $F_k(01) = v_{01}$

To compute $F_k(x)$, makes *n* adaptive calls to the PRG

 \boldsymbol{n}

 $F_k(01) = v_{01}$

To compute $F_k(x)$, makes *n* adaptive calls to the PRG

Question: Can we do better?

 $\boldsymbol{\eta}$

 $Thm[GGM]$: PRG \Rightarrow PRF

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$

Thm [GGM]: PRG \Rightarrow PRF

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$

Let $h: \{0,1\}^n \rightarrow \{0,1\}^{\omega(\log n)}$ is a two-universal hash function

Thm [GGM]: PRG \Rightarrow PRF

 $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$

Let $h: \{0,1\}^n \rightarrow \{0,1\}^{\omega(\log n)}$ is a two-universal hash function $F_{h,k}(x) = F_k(h(x)) = v_{h(x)}$

49

To compute $F_{h,k}(x)$, makes $\omega(\log n)$ adaptive calls to the PRG

To compute $F_{h,k}(x)$, makes $\omega(\log n)$ adaptive calls to the PRG Question: Can we do better?

 $\omega(\log n)$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

1. The root of the tree can be arbitrary function of k, x

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

1. The root of the tree can be arbitrary function of k, x

In GGM, $S(k, x) = k$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$ (can be different in each level)

$$
v_{\perp} = S(k, x)
$$

$$
v_0 = P_0(G(v_{\perp})) \quad v_1 = P_1(G(v_{\perp}))
$$

$$
v_{Z}
$$

$$
v_{Z0} = P_0(G(v_Z)) \qquad v_{Z1} = P_1(G(v_Z))
$$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

2. The label of the children can be arbitrary function of $G(v_z)$ (can be different in each level)

In GGM, $P_0(y) = y_{\leq n}$

$$
v_{\perp} = S(k, x)
$$
\n
$$
v_0 = P_0(G(v_{\perp})) \quad v_1 = P_1(G(v_{\perp}))
$$

In GGM,
$$
P_0(y) = y_{\le n}
$$

\n
$$
v_z
$$
\n
$$
v_z
$$
\n
$$
v_z
$$
\n
$$
v_{z1} = P_1(G(v_z))
$$
\n
$$
v_{z1} = P_1(G(v_z))
$$
\n
$$
v_{z2} = P_1(G(v_z))
$$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

3. The choice of the path can be arbitrary function of k, x

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

3. The choice of the path can be arbitrary function of k, x

$$
v_{\perp} = S(k, x)
$$

$$
v_0 = P_0(G(v_{\perp})) \quad v_1 = P_1(G(v_{\perp}))
$$

 $F_k(x) = v_{L(k,x)}$

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

3. The choice of the path can be arbitrary function of k, x

$$
v_{\perp} = S(k, x)
$$

$$
v_0 = P_0(G(v_{\perp})) \quad v_1 = P_1(G(v_{\perp}))
$$

 $F_k(x) = v_{L(k,x)}$

In GGM,
$$
L(k, x) = x
$$
 [or $h(x)$]

We define Tree-Constructions - a generalization of the GGM's construction in three ways:

- 1. The root of the tree can be an arbitrary function of k, x
- 2. The label of the children can be an arbitrary function of $G(v_z)$
- 3. The choice of the path can be an arbitrary function of k, x

Thm [This work]: There is no fully black-box tree constructions with depth of $\log n - \log \log n$

Thm [This work]: There is no fully black-box tree constructions with depth of $\log n - \log \log n$

• GGM is fully black-box tree constructions with depth $\omega(\log n)$

Thm [This work]: There is no fully black-box tree constructions with depth of $\log n - \log \log n$

- GGM is fully black-box tree constructions with depth $\omega(\log n)$
- For any constant-degree tree

Thm [This work]: There is no fully black-box tree constructions with depth of $\log n - \log \log n$

- GGM is fully black-box tree constructions with depth $\omega(\log n)$
- For any constant-degree tree
- For any stretch of the PRG

Proof Overview

Proof Overview

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]
We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to which:

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to which:

• There is a secure PRG G

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to which:

- There is a secure PRG G
- There is an efficient algorithm $Break$ that breaks the PRF implementation using G

• Our main contribution is a technique to deal with adaptive calls

- Our main contribution is a technique to deal with adaptive calls
- We use ideas from Miles-Viola to show it is enough to exclude sequential constructions

$$
v_d = P^d(G(v_{d-1}))
$$

- Our main contribution is a technique to deal with adaptive calls
- We use ideas from Miles-Viola to show it is enough to exclude sequential constructions
- We show that there are no such sequential constructions

$$
v_d = P^d(G(v_{d-1}))
$$

$$
v_0 = S(k, x)
$$

$$
v_1 = P(G(v_0))
$$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• We choose (a family of) PRGs G such that $F_k(x)$ can be computed from k , x without calling to G

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• We choose (a family of) PRGs G such that $F_k(x)$ can be computed from k , x without calling to G

 \Rightarrow Can break the security of F without breaking G

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

- Let G' be a PRG such that $G'(s)_1 = s_1$
- Assume that P is a permutation

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$
	- Let $G = \pi \circ G'$ $[G(s) = \pi(G'(s))]$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$
	- Let $G = \pi \circ G'$ $[G(s) = \pi(G'(s))]$

 \Rightarrow G is a PRG

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$
	- Let $G = \pi \circ G'$ $[G(s) = \pi(G'(s))]$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$

• Let
$$
G = \pi \circ G'
$$
 $[G(s) = \pi(G'(s))]$
 $F_k(x) = P(G(S(k, x)))_1$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$

• Let
$$
G = \pi \circ G'
$$
 $[G(s) = \pi(G'(s))]$

$$
F_k(x) = P(G(S(k, x)))_1
$$

$$
= P(\pi(G'(S(k, x))))_1
$$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$

• Let
$$
G = \pi \circ G'
$$
 $[G(s) = \pi(G'(s))]$
\n
$$
F_k(x) = P(G(S(k, x)))_1
$$
\n
$$
= P(\pi(G'(S(k, x))))_1
$$
\n
$$
= G'(S(k, x))_1
$$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$

• Let
$$
G = \pi \circ G'
$$
 $[G(s) = \pi(G'(s))]$
\n
$$
F_k(x) = P(G(S(k, x)))_1
$$
\n
$$
= P(\pi(G'(S(k, x))))_1
$$
\n
$$
= G'(S(k, x))_1
$$
\n
$$
= S(k, x)_1
$$

$$
F_k(x) = P\big(G(v_0)\big)_1 = P\big(G\big(S(k,x)\big)\big)_1
$$

• Let G' be a PRG such that $G'(s)_1 = s_1$

$$
v_0 = S(k, x)
$$

$$
v_1 = P(G(v_0))
$$

- Assume that P is a permutation
	- Let $\pi = P^{-1}$

• Let
$$
G = \pi \circ G'
$$
 $[G(s) = \pi(G'(s))]$
\n
$$
F_k(x) = P(G(S(k, x)))_1
$$
\n
$$
= P(\pi(G'(S(k, x))))_1
$$
\n
$$
= G'(S(k, x))_1
$$
\nwhere $y = G'(s)$
\n
$$
= S(k, x)_1
$$

Key point: • $P(\pi(y))_1 = y_1$ where $y = G'(s)$

Key point: • $P(\pi(y))_1 = y_1$ where $y = G'(s)$

Key point: • $P(\pi(y))_1 = y_1$ where $y = G'(s)$

More generally, we need to find π such that for every *i*, $P(\pi(y))_{\leq i}$ can be computed from the first $\approx i$ bits of y

Key point: • $P(\pi(y))_1 = y_1$ where $y = G'(s)$

More generally, we need to find π such that for every *i*, $P(\pi(y))_{\leq i}$ can be computed from the first $\approx i$ bits of y

• For a permutation, $P(\pi(y))_{\leq i} = y_{\leq i}$

Key point: • $P(\pi(y))_1 = y_1$ where $y = G'(s)$

More generally, we need to find π such that for every *i*, $P(\pi(y))_{\leq i}$ can be computed from the first $\approx i$ bits of y

• For a permutation, $P(\pi(y))_{\leq i} = y_{\leq i}$

When P is a not a permutation?

The Pseudo-Inverse Lemma

Lemma: For any function $P: \{0,1\}^n \rightarrow \{0,1\}^n$ there exists a function $\pi: \{0,1\}^n \to \{0,1\}^n$ such that:

The Pseudo-Inverse Lemma

Lemma: For any function $P: \{0,1\}^n \rightarrow \{0,1\}^n$ there exists a function $\pi: \{0,1\}^n \to \{0,1\}^n$ such that:

1. π is almost a permutation $(\pi(U_n) \approx U_n)$

The Pseudo-Inverse Lemma

Lemma: For any function $P: \{0,1\}^n \rightarrow \{0,1\}^n$ there exists a function $\pi: \{0,1\}^n \to \{0,1\}^n$ such that:

- 1. π is almost a permutation $(\pi(U_n) \approx U_n)$
- 2. For every $i \in [n]$, $P(\pi(y))_{\leq i}$ can be computed from $y_{\leq i + \log^2 n}$

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

• GGM is of depth $\omega(\log n)$

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

• GGM is of depth $\omega(\log n)$ + More lower bounds

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

• GGM is of depth $\omega(\log n)$ + More lower bounds

Open questions:

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

• GGM is of depth $\omega(\log n)$

+ More lower bounds

Open questions:

• What is the complexity of black-box PRF constructions?
Summary

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

- GGM is of depth $\omega(\log n)$
- + More lower bounds

Open questions:

- What is the complexity of black-box PRF constructions?
- Can we construct one-call PRF?

Summary

Thm [This work]: There is no black-box tree constructions with depth of $\log n - \log \log n$

- GGM is of depth $\omega(\log n)$
- + More lower bounds

Open questions:

- What is the complexity of black-box PRF constructions?
- Can we construct one-call PRF?

Thanks!