
Structural Lower Bounds on
 Black-Box Constructions of
Pseudorandom Functions

Amos Beimel (Ben-Gurion University)
Tal Malkin (Columbia University)
Noam Mazor (Tel Aviv University)

1

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
 𝐺: 0,1 ! → 0,1 "! such that 𝐺(U#) is indistinguishable from U"#.

Pseudorandom Functions (PRFs):
𝐹 = 𝐹$: 0,1 ! → 0,1 $∈ &,(!

 such that 𝐹$ is indistinguishable from a random function.

Pr
)← &,(!

𝐴+" = 1 − Pr
,←{.: &,(#→{&,(}}

𝐴, = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)
2

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
 𝐺: 0,1 ! → 0,1 "! such that 𝐺(U#) is indistinguishable from U"#.

Pseudorandom Functions (PRFs):
𝐹 = 𝐹$: 0,1 ! → 0,1 $∈ &,(!

 such that 𝐹$ is indistinguishable from a random function.

Pr
)← &,(!

𝐴+" = 1 − Pr
,←{.: &,(#→{&,(}}

𝐴, = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)
3

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
 𝐺: 0,1 ! → 0,1 "! such that 𝐺(U#) is indistinguishable from U"#.

Pseudorandom Functions (PRFs):
𝐹 = 𝐹$: 0,1 ! → 0,1 $∈ &,(!

 such that 𝐹$ is indistinguishable from a random function.

Pr
)← &,(!

𝐴+" = 1 − Pr
,←{.: &,(#→{&,(}}

𝐴, = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)
4

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
 𝐺: 0,1 ! → 0,1 "! such that 𝐺(U#) is indistinguishable from U"#.

Pseudorandom Functions (PRFs):
𝐹 = 𝐹$: 0,1 ! → 0,1 $∈ &,(!

 such that 𝐹$ is indistinguishable from a random function.

Pr
)← &,(!

𝐴+" = 1 − Pr
,←{.: &,(#→{&,(}}

𝐴, = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)
5

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
 𝐺: 0,1 ! → 0,1 "! such that 𝐺(U#) is indistinguishable from U"#.

Pseudorandom Functions (PRFs):
𝐹 = 𝐹$: 0,1 ! → 0,1 $∈ &,(!

 such that 𝐹$ is indistinguishable from a random function.

Pr
)← &,(!

𝐴+" = 1 − Pr
,←{.: &,(#→{&,(}}

𝐴, = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)
6

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
 𝐺: 0,1 ! → 0,1 "! such that 𝐺(U#) is indistinguishable from U"#.

Pseudorandom Functions (PRFs):
𝐹 = 𝐹$: 0,1 ! → 0,1 $∈ &,(!

 such that 𝐹$ is indistinguishable from a random function.

Pr
)← &,(!

𝐴+" = 1 − Pr
,←{.: &,(#→{&,(}}

𝐴, = 1 ≤ 𝑛𝑒𝑔𝑙(𝑛)
7

The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$ on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛 adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF
in NC(based on DDH/lattices

8

The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$ on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛 adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF
in NC(based on DDH/lattices

9

The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$ on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛 adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF
in NC(based on DDH/lattices

10

The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$ on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛 adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF
in NC(based on DDH/lattices

11

The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$ on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛 adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF
in NC(based on DDH/lattices

12

The Main Question

What is the complexity of black-box PRF construction from PRGs?
• How many calls to the PRG are needed to evaluate 𝐹$ on an input 𝑥?

• [Goldreich-Goldwasser-Micali’ 84]: Construction with 𝑛 adaptive calls
• [Levin’ 87]: Levin’s trick: Construction with 𝜔 log	𝑛 adaptive calls

Question: Can we do better?

• [Naor-Reingold ‘99, Banerjee-Peikert-Rosen ‘12]: Construction of PRF
in NC(based on DDH/lattices

13

Why Should We Care?

• Fundamental question in Crypto
• Efficiency of many primitives
• Important beyond Crypto:
• Natural Proofs [Razborov-Rudich]
• Barriers on circuits lower bounds
• Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs

[Gennero-Gertner-Katz-Trevisan, Holenstien] 14

Why Should We Care?

• Fundamental question in Crypto
• Efficiency of many primitives
• Important beyond Crypto:
• Natural Proofs [Razborov-Rudich]
• Barriers on circuits lower bounds
• Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs

[Gennero-Gertner-Katz-Trevisan, Holenstien] 15

Why Should We Care?

• Fundamental question in Crypto
• Efficiency of many primitives
• Important beyond Crypto:
• Natural Proofs [Razborov-Rudich]
• Barriers on circuits lower bounds
• Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs

[Gennero-Gertner-Katz-Trevisan, Holenstien] 16

Why Should We Care?

• Fundamental question in Crypto
• Efficiency of many primitives
• Important beyond Crypto:
• Natural Proofs [Razborov-Rudich]
• Barriers on circuits lower bounds
• Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs

[Gennero-Gertner-Katz-Trevisan, Holenstien] 17

Why Should We Care?

• Fundamental question in Crypto
• Efficiency of many primitives
• Important beyond Crypto:
• Natural Proofs [Razborov-Rudich]
• Barriers on circuits lower bounds
• Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs

[Gennero-Gertner-Katz-Trevisan, Holenstien] 18

Why Should We Care?

• Fundamental question in Crypto
• Efficiency of many primitives
• Important beyond Crypto:
• Natural Proofs [Razborov-Rudich]
• Barriers on circuits lower bounds
• Lower bounds on learning

• PRFs from PRGs are much less understood than PRGs from OWFs

[Gennero-Gertner-Katz-Trevisan, Holenstien] 19

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

Thm [Miles-Viola]: There is no black-box one call bit-projection construction

𝐹! 𝑥 = 𝐺 𝑆!,# $ for i = 𝐿 𝑘, 𝑥 ∈ [2𝑛]

𝑃(𝑦, 𝑘, 𝑥) = 𝑦% !,# , where 𝐿 𝑘, 𝑥 ∈ [2𝑛]

Warm-up Thm [This work]: There is no black-box one call constructions with

𝑃 𝑦, 𝑘, 𝑥 = 𝑃 𝑦, 𝐿 𝑘, 𝑥 for 𝐿 𝑘, 𝑥 = 𝑂(log 𝑛)

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

Thm [Miles-Viola]: There is no black-box one call bit-projection construction

𝐹! 𝑥 = 𝐺 𝑆!,# $ for 𝑖 = 𝐿 𝑘, 𝑥 ∈ [2𝑛]

𝑃(𝑦, 𝑘, 𝑥) = 𝑦% !,# , where 𝐿 𝑘, 𝑥 ∈ [2𝑛]

Warm-up Thm [This work]: There is no black-box one call constructions with

𝑃 𝑦, 𝑘, 𝑥 = 𝑃 𝑦, 𝐿 𝑘, 𝑥 for 𝐿 𝑘, 𝑥 = 𝑂(log 𝑛)

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

Thm [Miles-Viola]: There is no black-box one call bit-projection construction

𝐹! 𝑥 = 𝐺 𝑆!,# $ for 𝑖 = 𝐿 𝑘, 𝑥 ∈ [2𝑛]

𝑃(𝑦, 𝑘, 𝑥) = 𝑦% !,# , where 𝐿 𝑘, 𝑥 ∈ [2𝑛]

Warm-up Thm [This work]: There is no black-box one call constructions with

𝑃 𝑦, 𝑘, 𝑥 = 𝑃 𝑦, 𝐿 𝑘, 𝑥 for 𝐿 𝑘, 𝑥 = 𝑂(log 𝑛)

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

Thm [Miles-Viola]: There is no black-box one call bit-projection construction

𝐹! 𝑥 = 𝐺 𝑆!,# $ for 𝑖 = 𝐿 𝑘, 𝑥 ∈ [2𝑛]

𝑃(𝑦, 𝑘, 𝑥) = 𝑦% !,# , where 𝐿 𝑘, 𝑥 ∈ [2𝑛]

Warm-up Thm [This work]: There is no black-box one call constructions with

𝑃 𝑦, 𝑘, 𝑥 = 𝑃 𝑦, 𝐿 𝑘, 𝑥 for 𝐿 𝑘, 𝑥 = 𝑂(log 𝑛)

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

TMI Thm [This work]: Let 𝐿 be a function with 𝑂(log 𝑛) output length, and 𝑃 be a
function with 𝑛 − 𝜔(log 𝑛) output length. Let 𝑂!,#(𝑠) = 𝑃(𝐺 𝑠 , 𝐿(𝑘, 𝑥)).
 Then there is no black-box constructions

𝐹!& 𝑥 = 𝐴'!,#(𝑘, 𝑥)
For any oracle-aided algorithm 𝐴.

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

𝐹! 𝑥 = 𝑃(𝐺(𝑆(𝑘, 𝑥)), 𝑘, 𝑥)	

TMI Thm [This work]: Let 𝐿 be a function with 𝑂(log 𝑛) output length, and 𝑃 be a
function with 𝑛 − 𝜔(log 𝑛) output length. Let 𝑂!,#(𝑠) = 𝑃(𝐺 𝑠 , 𝐿(𝑘, 𝑥)).
 Then there is no black-box constructions

𝐹!& 𝑥 = 𝐴'!,#(𝑘, 𝑥)
For any oracle-aided algorithm 𝐴.

To the best of our knowledge, one-call black-box PRF construction is still possible

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

• Some of the choices in the GGM constructions are optimal
• “Natural generalization” = Tree constructions.

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

• Some of the choices in the GGM constructions are optimal
• “Natural generalization” = Tree constructions.

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

• Some of the choices in the GGM constructions are optimal
• “Natural generalization” = Tree constructions.

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

• Some of the choices in the GGM constructions are optimal
• “Natural generalization” = Tree constructions

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

• Some of the choices in the GGM constructions are optimal
• “Natural generalization” = Tree constructions

𝑣!

𝑣""

𝑣" 𝑣#

𝑣"# 𝑣#" 𝑣##

𝑣$

𝑣$" 𝑣$#

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 𝑥 = 𝑣#	

35

𝑣! = 𝑘

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 𝑥 = 𝑣#	

36

𝑣! = 𝑘

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 𝑥 = 𝑣#	

𝑣! = 𝑘

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣$" = 𝐺 𝑣$ %& 𝑣$# = 𝐺 𝑣$ '&

𝑣$

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 𝑥 = 𝑣#	

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝑣$" = 𝐺 𝑣$ %& 𝑣$# = 𝐺 𝑣$ '&

𝑣$

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 𝑥 = 𝑣#	

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝑣$" = 𝐺 𝑣$ %& 𝑣$# = 𝐺 𝑣$ '&

𝑣$

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 01 = 𝑣*+	

40

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 01 = 𝑣*+	

41

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝑥+ = 0

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 01 = 𝑣*+	

42

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝑥+ = 0

𝑥) = 1

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 01 = 𝑣*+	

43

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝑥+ = 0

𝑥) = 1

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 01 = 𝑣*+	

44

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝑥+ = 0

𝑥) = 1

𝑛

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 01 = 𝑣*+	

To compute 𝐹! 𝑥 , makes 𝑛 adaptive calls to the PRG
Question: Can we do better?

45

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝑥+ = 0

𝑥) = 1

𝑛

The GGM Construction

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

𝐹! 01 = 𝑣*+	

To compute 𝐹! 𝑥 , makes 𝑛 adaptive calls to the PRG
Question: Can we do better?

46

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑘 %& 𝑣# = 𝐺 𝑘 '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝑥+ = 0

𝑥) = 1

𝑛

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

Let ℎ: 0,1 (→ 0,1 , -./	(is a two-universal hash function
𝐹1,! 𝑥 = 𝐹! ℎ 𝑥 = 	𝑣1(#)	

47

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

Let ℎ: 0,1 (→ 0,1 , -./	(is a two-universal hash function
𝐹1,! 𝑥 = 𝐹! ℎ 𝑥 = 	𝑣1(#)	

48

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

Let ℎ: 0,1 (→ 0,1 , -./	(is a two-universal hash function
𝐹1,! 𝑥 = 𝐹! ℎ 𝑥 = 	𝑣1(#)	

49

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

Let ℎ: 0,1 (→ 0,1 , -./	(is a two-universal hash function
𝐹1,! 𝑥 = 𝐹! ℎ 𝑥 = 	𝑣1(#)	

To compute 𝐹1,! 𝑥 , need to make 𝜔(log 𝑛) adaptive calls to the PRG
Question: Can we do better?

50

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑣! %& 𝑣# = 𝐺 𝑣! '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝜔(log 𝑛)

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

Let ℎ: 0,1 (→ 0,1 , -./	(is a two-universal hash function
𝐹1,! 𝑥 = 𝐹! ℎ 𝑥 = 	𝑣1(#)	

To compute 𝐹1,! 𝑥 , makes 𝜔(log 𝑛) adaptive calls to the PRG
Question: Can we do better?

51

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑣! %& 𝑣# = 𝐺 𝑣! '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝜔(log 𝑛)

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG ⇒ PRF

𝐺: 0,1 (→ 0,1)(

Let ℎ: 0,1 (→ 0,1 , -./	(is a two-universal hash function
𝐹1,! 𝑥 = 𝐹! ℎ 𝑥 = 	𝑣1(#)	

To compute 𝐹1,! 𝑥 , makes 𝜔(log 𝑛) adaptive calls to the PRG
Question: Can we do better?

52

𝑣! = 𝑘

𝑣"" = 𝐺 𝑣" %&

𝑣" = 𝐺 𝑣! %& 𝑣# = 𝐺 𝑣! '&

𝑣"# = 𝐺 𝑣" '& 𝑣#" = 𝐺 𝑣# %& 𝑣## = 𝐺 𝑣# '&

𝜔(log 𝑛)

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

1. The root of the tree can be arbitrary
 function of 𝑘, 𝑥

In GGM, S 𝑘, 𝑥 = 𝑘

55

𝑣! = 𝑆(𝑘, 𝑥)𝑣! = 𝑆(𝑘, 𝑥)

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

1. The root of the tree can be arbitrary
 function of 𝑘, 𝑥

In GGM, S 𝑘, 𝑥 = 𝑘

56

𝑣! = 𝑆(𝑘, 𝑥)𝑣! = 𝑆(𝑘, 𝑥)

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

2. The label of the children
 can be arbitrary function
 of 𝐺(𝑣4)
(can be different in each level)

In GGM, 𝑃& y = y2!
57

𝑣! = 𝑆(𝑘, 𝑥)

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

2. The label of the children
 can be arbitrary function
 of 𝐺(𝑣4)
(can be different in each level)

In GGM, 𝑃& y = y2!
58

𝑣! = 𝑆(𝑘, 𝑥)

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

2. The label of the children
 can be arbitrary function
 of 𝐺(𝑣4)
(can be different in each level)

In GGM, 𝑃& y = y2!
59

𝑣! = 𝑆(𝑘, 𝑥)

𝑣" = 𝑃"(𝐺 𝑣!) 𝑣# = 𝑃#(𝐺(𝑣!))

𝑣$" = 𝑃"(𝐺(𝑣$)) 𝑣$# = 𝑃#(𝐺(𝑣$))

𝑣$

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

2. The label of the children
 can be arbitrary function
 of 𝐺(𝑣4)
(can be different in each level)

In GGM, 𝑃& y = y2!
60

𝑣! = 𝑆(𝑘, 𝑥)

𝑣" = 𝑃"(𝐺 𝑣!) 𝑣# = 𝑃#(𝐺(𝑣!))

𝑣$" = 𝑃"(𝐺(𝑣$)) 𝑣$# = 𝑃#(𝐺(𝑣$))

𝑣$

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

2. The label of the children
 can be arbitrary function
 of 𝐺(𝑣4)
(can be different in each level)

In GGM, 𝑃& y = y2!
. 𝑃# y = y'& 61

𝑣! = 𝑆(𝑘, 𝑥)

𝑣" = 𝑃"(𝐺 𝑣!) 𝑣# = 𝑃#(𝐺(𝑣!))

𝑣$" = 𝑃"(𝐺(𝑣$)) 𝑣$# = 𝑃#(𝐺(𝑣$))

𝑣$

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

3. The choice of the path can be
 arbitrary function of
 𝑘, 𝑥

𝐹! 𝑥 = 𝑣%(!,#)

In GGM, 𝐿 𝑘, 𝑥 = 𝑥 or ℎ(𝑥)
62

𝑣! = 𝑆(𝑘, 𝑥)

𝑣" = 𝑃"(𝐺 𝑣!) 𝑣# = 𝑃#(𝐺(𝑣!))

𝑣$" = 𝑃"(𝐺(𝑣$)) 𝑣$" = 𝑃#(𝐺(𝑣$))

𝑣$

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

3. The choice of the path can be
 arbitrary function of
 𝑘, 𝑥

𝐹! 𝑥 = 𝑣%(!,#)

In GGM, 𝐿 𝑘, 𝑥 = 𝑥 or ℎ(𝑥)
63

𝑣! = 𝑆(𝑘, 𝑥)

𝑣" = 𝑃"(𝐺 𝑣!) 𝑣# = 𝑃#(𝐺(𝑣!))

𝑣$" = 𝑃"(𝐺(𝑣$)) 𝑣$" = 𝑃#(𝐺(𝑣$))

𝑣$

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

3. The choice of the path can be
 arbitrary function of
 𝑘, 𝑥

𝐹! 𝑥 = 𝑣%(!,#)

In GGM, 𝐿 𝑘, 𝑥 = 𝑥 [or ℎ(𝑥)]
64

𝑣! = 𝑆(𝑘, 𝑥)

𝑣" = 𝑃"(𝐺 𝑣!) 𝑣# = 𝑃#(𝐺(𝑣!))

𝑣$" = 𝑃"(𝐺(𝑣$)) 𝑣$" = 𝑃#(𝐺(𝑣$))

𝑣$

Tree constructions
We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

1. The root of the tree can be an arbitrary function of 𝑘, 𝑥

2. The label of the children can be an arbitrary function of 𝐺 𝑣4

3. The choice of the path can be an arbitrary function of 𝑘, 𝑥

Main Result: Lower Bounds on Tree
Constructions

66

Main Result: Lower Bounds on Tree
Constructions

Thm [This work]: There is no fully black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
• For any constant-degree tree
• For any stretch of the PRG

67

Main Result: Lower Bounds on Tree
Constructions

Thm [This work]: There is no fully black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is fully black-box tree constructions with depth 𝜔(log 𝑛)
• For any constant-degree tree
• For any stretch of the PRG

68

Main Result: Lower Bounds on Tree
Constructions

Thm [This work]: There is no fully black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is fully black-box tree constructions with depth 𝜔(log 𝑛)
• For any constant-degree tree
• For any stretch of the PRG

69

Main Result: Lower Bounds on Tree
Constructions

Thm [This work]: There is no fully black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is fully black-box tree constructions with depth 𝜔(log 𝑛)
• For any constant-degree tree
• For any stretch of the PRG

70

Proof Overview

We show an oracle separation [Impagliazzo-Rudich,
Gertner-Malkin-Reingold]

For every such PRF construction, we show an oracle
with respect to which:
• There is a secure PRG 𝐺
• There is an efficeint algorithm 𝐵𝑟𝑒𝑎𝑘 that breaks the

PRF implementation using 𝐺.

Proof Overview

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every such PRF construction, we show an oracle with respect to which:
• There is a secure PRG 𝐺
• There is an efficeint algorithm 𝐵𝑟𝑒𝑎𝑘 that breaks the PRF implementation

using 𝐺.

Proof Overview

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to
which:
• There is a secure PRG 𝐺
• There is an efficeint algorithm 𝐵𝑟𝑒𝑎𝑘 that breaks the PRF implementation

using 𝐺.

Proof Overview

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to
which:
• There is a secure PRG 𝐺
• There is an efficeint algorithm 𝐵𝑟𝑒𝑎𝑘 that breaks the PRF implementation

using 𝐺.

Proof Overview

We use oracle methodology [Impagliazzo-Rudich, Gertner-Malkin-Reingold]

For every low depth tree construction, we show an oracle with respect to
which:
• There is a secure PRG 𝐺
• There is an efficient algorithm 𝐵𝑟𝑒𝑎𝑘 that breaks the PRF implementation

using 𝐺

Proof Overview

• Our main contribution is a technique to deal with
adaptive calls

• We use ideas from Miles-Viola to show it is enough
 to exclude sequential constructions

• We show that there are no such sequential
constructions

Proof Overview

• Our main contribution is a technique to deal with
adaptive calls

• We use ideas from Miles-Viola to show it is enough
 to exclude sequential constructions

• We show that there are no such sequential
constructions

Proof Overview

• Our main contribution is a technique to deal with
adaptive calls

• We use ideas from Miles-Viola to show it is enough
 to exclude sequential constructions

• We show that there are no such sequential
constructions

78

𝑣" = 𝑆(𝑘, 𝑥)

𝑣(= 𝑃((𝐺(𝑣#))

𝑣# = 𝑃#(𝐺 𝑣")

𝑣) = 𝑃)(𝐺(𝑣)*#))

Proof Overview

• Our main contribution is a technique to deal with
adaptive calls

• We use ideas from Miles-Viola to show it is enough
 to exclude sequential constructions

• We show that there are no such sequential
constructions

79

𝑣" = 𝑆(𝑘, 𝑥)

𝑣(= 𝑃((𝐺(𝑣#))

𝑣# = 𝑃#(𝐺 𝑣")

𝑣) = 𝑃)(𝐺(𝑣)*#))

Depth-One Sequential Construction

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• We choose (a family of) PRGs 𝐺 such that 𝐹$(𝑥) can
be computed from 𝑘, 𝑥 without calling to 𝐺

⇒ Can break the security of 𝐹 without breaking 𝐺

80

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Depth-One Sequential Construction

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• We choose (a family of) PRGs 𝐺 such that 𝐹$(𝑥) can
be computed from 𝑘, 𝑥 without calling to 𝐺

⇒ Can break the security of 𝐹 without breaking 𝐺

81

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Depth-One Sequential Construction

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• We choose (a family of) PRGs 𝐺 such that 𝐹$(𝑥) can
be computed from 𝑘, 𝑥 without calling to 𝐺

⇒ Can break the security of 𝐹 without breaking 𝐺

82

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Depth-One Sequential Construction

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• We choose (a family of) PRGs 𝐺 such that 𝐹$(𝑥) can
be computed from 𝑘, 𝑥 without calling to 𝐺

⇒ Can break the security of 𝐹 without breaking 𝐺

83

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

⇒ 	𝐺 is a PRG

84

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

⇒ 	𝐺 is a PRG

85

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

⇒ 	𝐺 is a PRG

86

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

⇒ 	𝐺 is a PRG

87

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

⇒ 	𝐺 is a PRG

88

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

⇒ 	𝐺 is a PRG

89

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

𝐹$ 𝑥 = 𝑃 𝐺(𝑆(𝑘, 𝑥)) (
= 𝑃(𝜋(𝐺′(𝑆(𝑘, 𝑥))))(

=𝐺′(𝑆(𝑘, 𝑥))(
= 𝑆 𝑘, 𝑥 (90

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

𝐹$ 𝑥 = 𝑃 𝐺(𝑆(𝑘, 𝑥)) (
= 𝑃(𝜋(𝐺′(𝑆(𝑘, 𝑥))))(

=𝐺′(𝑆(𝑘, 𝑥))(
= 𝑆 𝑘, 𝑥 (91

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

𝐹$ 𝑥 = 𝑃 𝐺(𝑆(𝑘, 𝑥)) (
= 𝑃(𝜋(𝐺′(𝑆(𝑘, 𝑥))))(

=𝐺′(𝑆(𝑘, 𝑥))(
= 𝑆 𝑘, 𝑥 (92

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

𝐹$ 𝑥 = 𝑃 𝐺(𝑆(𝑘, 𝑥)) (
= 𝑃(𝜋(𝐺′(𝑆(𝑘, 𝑥))))(

=𝐺′(𝑆(𝑘, 𝑥))(
= 𝑆 𝑘, 𝑥 (93

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

𝐹$ 𝑥 = 𝑃 𝐺(𝑆(𝑘, 𝑥)) (
= 𝑃(𝜋(𝐺′(𝑆(𝑘, 𝑥))))(

=𝐺′(𝑆(𝑘, 𝑥))(
= 𝑆 𝑘, 𝑥 (94

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Constructing the PRG

𝐹$ 𝑥 = 𝑃 𝐺 𝑣& (= 𝑃 𝐺 𝑆 𝑘, 𝑥
(

• Let 𝐺′ be a PRG such that 𝐺′ 𝑠 (= 𝑠(

• Assume that 𝑃 is a permutation
• Let 𝜋 = 𝑃3(
• Let 𝐺 = 𝜋 ∘ 𝐺′ [𝐺(𝑠) = 𝜋(𝐺′(𝑠))]

𝐹$ 𝑥 = 𝑃 𝐺(𝑆(𝑘, 𝑥)) (
= 𝑃(𝜋(𝐺′(𝑆(𝑘, 𝑥))))(

=𝐺′(𝑆(𝑘, 𝑥))(
= 𝑆 𝑘, 𝑥 (95

𝑣" = 𝑆(𝑘, 𝑥)

𝑣# = 𝑃(𝐺 𝑣")

Key point:
• 𝑃 𝜋 𝑦 (= 𝑦(
where 𝑦 = 𝐺′(𝑠)

General Post-Processing

More generally, we need to find 𝜋 such that for every 𝑖,
 𝑃(𝜋 𝑦)24 can be computed from the first ≈ 𝑖 bits of 𝑦

• For a permutation, 𝑃(𝜋 𝑦)24 = 𝑦24

When 𝑃 is a not a permutation?

96

Key point:
• 𝑃 𝜋 𝑦 (= 𝑦(
where 𝑦 = 𝐺′(𝑠)

General Post-Processing

More generally, we need to find 𝜋 such that for every 𝑖,
 𝑃(𝜋 𝑦)24 can be computed from the first ≈ 𝑖 bits of 𝑦

• For a permutation, 𝑃(𝜋 𝑦)24 = 𝑦24

When 𝑃 is a not a permutation?

97

Key point:
• 𝑃 𝜋 𝑦 (= 𝑦(
where 𝑦 = 𝐺′(𝑠)

General Post-Processing

More generally, we need to find 𝜋 such that for every 𝑖,
 𝑃(𝜋 𝑦)24 can be computed from the first ≈ 𝑖 bits of 𝑦

• For a permutation, 𝑃(𝜋 𝑦)24 = 𝑦24

When 𝑃 is a not a permutation?

98

Key point:
• 𝑃 𝜋 𝑦 (= 𝑦(
where 𝑦 = 𝐺′(𝑠)

General Post-Processing

More generally, we need to find 𝜋 such that for every 𝑖,
 𝑃(𝜋 𝑦)24 can be computed from the first ≈ 𝑖 bits of 𝑦

• For a permutation, 𝑃(𝜋 𝑦)24 = 𝑦24

When 𝑃 is a not a permutation?

99

Key point:
• 𝑃 𝜋 𝑦 (= 𝑦(
where 𝑦 = 𝐺′(𝑠)

The Pseudo-Inverse Lemma

Lemma: For any function 𝑃: 0,1 ! → 0,1 ! there exists a function
 𝜋: 0,1 ! → 0,1 ! such that:

1. 𝜋 is almost a permutation (𝜋 𝑈! ≈ 𝑈!)

2. For every 𝑖 ∈ 𝑛 , 	 𝑃 𝜋 𝑦
24

 can be computed
from 𝑦245678$!

100

The Pseudo-Inverse Lemma

Lemma: For any function 𝑃: 0,1 ! → 0,1 ! there exists a function
 𝜋: 0,1 ! → 0,1 ! such that:

1. 𝜋 is almost a permutation (𝜋 𝑈! ≈ 𝑈!)

2. For every 𝑖 ∈ 𝑛 , 	 𝑃 𝜋 𝑦
24

 can be computed
from 𝑦245678$!

101

The Pseudo-Inverse Lemma

Lemma: For any function 𝑃: 0,1 ! → 0,1 ! there exists a function
 𝜋: 0,1 ! → 0,1 ! such that:

1. 𝜋 is almost a permutation (𝜋 𝑈! ≈ 𝑈!)

2. For every 𝑖 ∈ 𝑛 , 	 𝑃 𝜋 𝑦
24

 can be computed
from 𝑦245678$!

102

Summary

103

Summary

Thm [This work]: There is no black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
+ More lower bounds

Open questions:
• What is the complexity of Black-Box PRF constructions?
• Can we construct one-call PRF?

104

Summary

Thm [This work]: There is no black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
+ More lower bounds

Open questions:
• What is the complexity of Black-Box PRF constructions?
• Can we construct one-call PRF?

105

Summary

Thm [This work]: There is no black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
+ More lower bounds

Open questions:
• What is the complexity of Black-Box PRF constructions?
• Can we construct one-call PRF?

106

Summary

Thm [This work]: There is no black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
+ More lower bounds

Open questions:
• What is the complexity of Black-Box PRF constructions?
• Can we construct one-call PRF?

107

Summary

Thm [This work]: There is no black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
+ More lower bounds

Open questions:
• What is the complexity of black-box PRF constructions?
• Can we construct one-call PRF?

108

Summary

Thm [This work]: There is no black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
+ More lower bounds

Open questions:
• What is the complexity of black-box PRF constructions?
• Can we construct one-call PRF?

109

Summary

Thm [This work]: There is no black-box tree constructions with depth of
log 𝑛 	− loglog	𝑛

• GGM is of depth 𝜔(log 𝑛)
+ More lower bounds

Open questions:
• What is the complexity of black-box PRF constructions?
• Can we construct one-call PRF?

110

Thanks!

