Structural Lower Bounds on
Black-Box Constructions of

Pseudorandom Functions

Amos Beimel (Ben-Gurion University)
Tal Malkin (Columbia University)
Noam Mazor (Tel Aviv University)

The Main Question

The Main Question

What is the complexity of black-box PRF construction from PRGs?

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
G:{0,1}" - {0,1}*™ such that G(U,) is indistinguishable from U,,,.

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
G:{0,1}" - {0,1}*™ such that G(U,) is indistinguishable from U,,,.

Pseudorandom Functions (PRFs):
F={F:{013" > {013}, .0

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):
G:{0,1}" - {0,1}*™ such that G(U,) is indistinguishable from U,,,.

Pseudorandom Functions (PRFs):
F={F:{013" > {013}, .0

such that Fy, is indistinguishable from a random function.

The Main Question

What is the complexity of black-box PRF construction from PRGs?

Pseudorandom Generators (PRGs):

G:{0,1}" - {0,1}*™ such that G(U,) is indistinguishable from U,,,.

Pseudorandom Functions (PRFs):
F={F:{013" > {013}, .0

such that Fy, is indistinguishable from a random function.

Pr [Afk =1]— Pr AH=1‘Sneln
k<—{0,1}’1[| H<—{7T!{0;1}"—>{0;1}}[| gtn)

7

The Main Question

What is the complexity of black-box PRF construction from PRGs?

The Main Question

What is the complexity of black-box PRF construction from PRGs?
* How many calls to the PRG are needed to evaluate F; on an input x?

The Main Question

What is the complexity of black-box PRF construction from PRGs?
* How many calls to the PRG are needed to evaluate F; on an input x?

° |]: Construction with n adaptive calls

The Main Question

What is the complexity of black-box PRF construction from PRGs?
* How many calls to the PRG are needed to evaluate F; on an input x?

° |]: Construction with n adaptive calls
° |]: Levin’s trick: Construction with w(log n) adaptive calls

The Main Question

What is the complexity of black-box PRF construction from PRGs?
* How many calls to the PRG are needed to evaluate F; on an input x?

° |]: Construction with n adaptive calls
° |]: Levin’s trick: Construction with w(log n) adaptive calls

Question: Can we do better?

The Main Question

What is the complexity of black-box PRF construction from PRGs?
* How many calls to the PRG are needed to evaluate F; on an input x?

° |]: Construction with n adaptive calls
° |]: Levin’s trick: Construction with w(log n) adaptive calls

Question: Can we do better?

° []: Construction of PRF
in NC! based on DDH/Iattices

13

Why Should We Care?

Why Should We Care?

* Fundamental question in Crypto

Why Should We Care?

* Fundamental question in Crypto
e Efficiency of many primitives

Why Should We Care?

* Fundamental question in Crypto
e Efficiency of many primitives
* Important beyond Crypto:

Why Should We Care?

* Fundamental question in Crypto
e Efficiency of many primitives

* Important beyond Crypto:
* Natural Proofs |]
* Barriers on circuits lower bounds
* Lower bounds on learning

Why Should We Care?

* Fundamental question in Crypto
e Efficiency of many primitives

* Important beyond Crypto:
* Natural Proofs |]
* Barriers on circuits lower bounds
* Lower bounds on learning

* PRFs from PRGs are much less understood than PRGs from OWFs
[]

Even Simpler Open Question

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

Fie(x) = 5(k, x)

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

F.(x) = G(S(k, x))

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

F,(x) = P(G(S(k, X)), k, x)

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

F,(x) = P(G(S(k, X)), k, x)

Thm |]: There is no black-box one call bit-projection construction
F.(x) = G(Sk,x)l, for i = L(k,x) € [2n]

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

F,(x) = P(G(S(k, X)), k, x)

Thm |]: There is no black-box one call bit-projection construction
F.(x) = G(Sk,x)l, for i = L(k,x) € [2n]

P(y,k,X) = Yp1(k.x), Wwhere L(k, x) € [2n]

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

F,(x) = P(G(S(k, X)), k, x)

Thm |]: There is no black-box one call bit-projection construction
F.(x) = G(Sk,x)l, for i = L(k,x) € [2n]

P(y,k,X) = Yp1(k.x), Wwhere L(k, x) € [2n]

Warm-up Thm [This work]: There is no black-box one call constructions with
P(y,k,x) = P(y,L(k,x)) for |L(k, x)| = O(logn)

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

F,(x) = P(G(S(k, X)), k, x)

TMI Thm [This work]: Let L be a function with O(logn) output length, and P be a
function with n — w(logn) output length. Let O . (s) = P(G(s), L(k, x)).

Then there is no black-box constructions
FE (x) = A% (k, x)

For any oracle-aided algorithm A.

Even Simpler Open Question

Question: Can we rule out black-box PRF constructions that make one call to the PRG?

F,(x) = P(G(S(k, X)), k, x)

TMI Thm [This work]: Let L be a function with O(logn) output length, and P be a
function with n — w(logn) output length. Let O . (s) = P(G(s), L(k, x)).

Then there is no black-box constructions
FE (x) = A% (k, x)

For any oracle-aided algorithm A.

To the best of our knowledge, one-call black-box PRF construction is still possible

Our results

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

* Some of the choices in the GGM constructions are optimal

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

* Some of the choices in the GGM constructions are optimal

* “Natural generalization” = Tree constructions

Our results

We show that for a large class of constructions that naturally generalize GGM,
GGM is essentially optimal.

* Some of the choices in the GGM constructions are optimal

* “Natural generalization” = Tree constructions

The GGM Construction

Thm[GGM]: PRG = PRF

G:{0,1}" - {0,1}°"

35

The GGM Construction

Thm[GGM]: PRG = PRF v, =k

G:{0,1}" - {0,1}?" [v0=60)en | v1=6U0)s5, |

36

The GGM Construction

Thm[GGM]: PRG = PRF v, =k
G:{0,1}" - {0,1}2" | vo = G(k)<n ‘ v =G(K)sy |

‘ Vz0 = G(Vz)<n ‘ Vz1 = G(Vz)sn ‘

The GGM Construction

Thm[GGM]: PRG = PRF v =k
G:{0,1}" — {01} ‘ Vo = G(k)<n ‘ vy = G(k)>qn ‘
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vo)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)>n ‘

‘ Vz0 = G(Vz)<n ‘ Vz1 = G(Vz)sn ‘

The GGM Construction

Thm[GGM]: PRG = PRF v =k
G:{0,1}" — {01} ‘ Vo = G(k)<n ‘ vy = G(k)>qn ‘

‘ Voo = G(Vo)<n ‘ Vo1 = G(Vo)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)>n ‘
Fi(x) = v,

‘ Vz0 = G(Vz)<n ‘ Vz1 = G(Vz)sn ‘

The GGM Construction

Thm[GGM]: PRG = PRF v =k
G:{0,1}" — {01} ‘ Vo = G(k)<n ‘ vy = G(k)>qn ‘
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)sn ‘

Fr(01) = voq

40

The GGM Construction

Thm[GGM]: PRG = PRF v =k
X1 = 0
G:{0,1}" — {01} ‘ Vo = G(k)<n ‘ vy = G(k)>qn ‘
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)sn ‘

Fr(01) = voq

41

The GGM Construction

Thm[GGM]: PRG = PRF v =k
X1 = 0
G:{0,1}" — {01} ‘ Vo = G(Kk)<n ‘ vy = G(k)>qn ‘
%xz — 1 N
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)sn ‘

Fr(01) = voq

42

The GGM Construction

Thm[GGM]: PRG = PRF v =k
X1 = 0
G:{0,1}" — {01} ‘ Vo = G(Kk)<n ‘ vy = G(k)>qn ‘
%xz — 1 N
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)sn ‘

Fr(01) = voq

43

The GGM Construction

Thm[GGM]: PRG = PRF v =k
X1 = 0
G:{0,1}" — {01} ‘ Vo = G(Kk)<n ‘ vy = G(k)>n ‘
%xz — 1 l\‘
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)>n ‘

Fr(01) = voq

44

<

The GGM Construction

Thm[GGM]: PRG = PRF v =k
X1 = 0
G:{0,1}" — {01} ‘ Vo = G(Kk)<n ‘ vy = G(k)>n ‘
%xz — 1 l\‘
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)>n ‘
Fi,(01) = vy,

To compute Fi (x), makes n adaptive calls to the PRG

45

The GGM Construction

Thm[GGM]: PRG = PRF v =k
X1 = 0
G:{0,1}" — {01} ‘ Vo = G(Kk)<n ‘ vy = G(k)>n ‘
%xz — 1 l\‘
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)>n ‘
Fi,(01) = vy,

To compute Fi (x), makes n adaptive calls to the PRG
Question: Can we do better?

46

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG = PRF

G:{0,1}" - {0,1}°"

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG = PRF

G:{0,1}" - {0,1}°"

Let h: {0,1}" — {0,1}*1°8™) js 3 two-universal hash function

Levin’s Trick (Domain Extention)

Thm[GGM]: PRG = PRF

G:{0,1}" - {0,1}°"

Let h: {0,1}" — {0,1}*1°8™) js 3 two-universal hash function
Fri(x) = Fe(h(0)) = vneo

Levin’s Trick (Domain Extention) '

Thm[GGM]: PRG = PRF v =k
G:{0,1}" — {01} [vo=6()en | v1=6w)sn |
‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)>n ‘

Let h: {0,1}" — {0,1}*1°8™) js 3 two-universal hash function
Fr(x) = F(R(x)) = vp

w(logn)

50

Levin’s Trick (Domain Extention) '

Thm[GGM]: PRG = PRF v, =k

_ 2
G:{0,1)" - {0,1)2" [0 =6WDen | 11 =6W1)sn |

% —

‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)>n ‘

Let h: {0,1}" — {0,1}*1°8™) js 3 two-universal hash function
Fr(x) = F(R(x)) = vp

\/
To compute Fy, . (x), makes w(logn) adaptive calls to the PRG w(logn)

51

Levin’s Trick (Domain Extention) '

Thm[GGM]: PRG = PRF v, =k

_ 2
G:{0,1)" - {0,1)2" [0 =6WDen | 11 =6W1)sn |

% —

‘ Voo = G(Vo)<n ‘ Vo1 = G(Vg)>n ‘ ‘ V19 = G(V1)<n ‘ V11 = G(V1)>n ‘

Let h: {0,1}" — {0,1}*1°8™) js 3 two-universal hash function
Fr(x) = F(R(x)) = vp

To compute Fy, . (x), makes w(logn) adaptive calls to the PRG

w(logn)

Question: Can we do better?

52

Tree constructions

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

v, = S(k,x)

1. The root of the tree can be arbitrary

function of k, x

55

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

. Vv, = S(kr x)
1. The root of the tree can be arbitrary

function of k, x

In GGM, S(k,x) = k

56

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

v, = S(k,x) |

2. The label of the children

can be arbitrary function
of G(v,)

57

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

v, = S(k,x) |

2. The label of the children

can be arbitrary function
of G(v,)

58

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

= S(k,
2. The label of the children [rs =Sk |
can be arbitrary function
of G (v,) ‘Vo = Po(G(vy)) ‘V1 = P1(G(vy)) ‘

Vs0 = Po(G(1,)) | v = PL(G(1,)) |

59

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

‘vl = S(k, x) ‘

2. The label of the children

can be arbitrary function
of G (v,) ‘Vo = Po(G(vy)) ‘V1 = P1(G(vy)) ‘

(can be different in each level)

Vs0 = Po(G(1,)) | v = PL(G(1,)) |

60

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

‘vl = S(k, x) ‘

2. The label of the children

can be arbitrary function
of G (v,) ‘Vo = Po(G(vy)) ‘V1 = P1(G(vy)) ‘

(can be different in each level)

In GGM, Py(y) = Y<n
| pf&y)LyZ,; Vs0 = Po(G(1,)) | v = PL(G(1,)) |

61

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

= S(k,
3. The choice of the path can be ‘vl (k, x) ‘
arbitrary function of
k,x ‘Uo = Po(G(vy)) ‘V1 =P (G(vy)) ‘

Vs = Po(G(1,)) | Va0 = PL(G(1)) |

62

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

= S(k,
3. The choice of the path can be ‘vl (k, x) ‘
arbitrary function of
k,x ‘Uo = Po(G(vy)) ‘V1 =P (G(vy)) ‘

Fi.(x) = vkx)

Vs = Po(G(1,)) | Va0 = PL(G(1)) |

63

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

= S(k,
3. The choice of the path can be ‘vl (k, x) ‘
arbitrary function of
k,x ‘Uo = Po(G(vy)) ‘V1 =P (G(vy)) ‘

Fi.(x) = vkx)

In GGM, L(k,x) = x [or h(x)]

| vs0 = Po(G(1,)) | Va0 = PL(G(1)) |

64

Tree constructions

We define Tree-Constructions - a generalization of the GGM’s construction in
three ways:

1. The root of the tree can be an arbitrary function of k, x
2. The label of the children can be an arbitrary function of G(v,)

3. The choice of the path can be an arbitrary function of k, x

Main Result: Lower Bounds on Tree
Constructions

Main Result: Lower Bounds on Tree
Constructions

Thm [This work]: There is no fully black-box tree constructions with depth of
logn — loglogn

Main Result: Lower Bounds on Tree
Constructions

Thm [This work]: There is no fully black-box tree constructions with depth of
logn — loglogn

* GGM is fully black-box tree constructions with depth w(logn)

Main Result: Lower Bounds on Tree
Constructions

Thm [This work]: There is no fully black-box tree constructions with depth of
logn — loglogn

* GGM is fully black-box tree constructions with depth w(logn)

e For any constant-degree tree

Main Result: Lower Bounds on Tree
Constructions

Thm [This work]: There is no fully black-box tree constructions with depth of
logn — loglogn

* GGM is fully black-box tree constructions with depth w(logn)
* For any constant-degree tree
* For any stretch of the PRG

Proof Overview

Proof Overview

We use oracle methodology |

Proof Overview

We use oracle methodology |

For every low depth tree construction, we show an oracle with respect to
which:

Proof Overview

We use oracle methodology |

For every low depth tree construction, we show an oracle with respect to
which:

e There is a secure PRG G

Proof Overview

We use oracle methodology |]

For every low depth tree construction, we show an oracle with respect to
which:

e There is a secure PRG G

* There is an efficient algorithm Break that breaks the PRF implementation
using G

Proof Overview

Proof Overview

* Our main contribution is a technique to deal with
adaptive calls

Proof Overview

* Our main contribution is a technique to deal with ‘ vo = S(k, x) ‘
adaptive calls l
‘V1 = Pl(G(Vo)) ‘
* We use ideas from to show it is enough l
to exclude sequential constructions ‘ v, = P2(G(vy)) ‘

| va = PA(G(va_1)) |

78

Proof Overview

* Our main contribution is a technique to deal with ‘ vo = S(k, x) ‘
adaptive calls l
‘V1 = Pl(G(Vo)) ‘
* We use ideas from to show it is enough l
to exclude sequential constructions ‘ v, = P2(G(vy)) ‘

* We show that there are no such sequential
constructions

| va = PA(G(va_1)) |

79

Depth-One Sequential Construction

| v = Sk, x) |

l

‘ v, = P(G(vp)) ‘

80

Depth-One Sequential Construction

| v = Sk, x) |

Fi(x) = P(G(UO))1 =P (G(S(k’ x)))l l

‘ v, = P(G(vp)) ‘

Depth-One Sequential Construction

| v = Sk, x) |

Fi(x) = P(G(UO))1 =P (G(S(k’ x)))l l

‘ v, = P(G(vp)) ‘

* We choose (a family of) PRGs G such that Fj, (x) can
be computed from k, x without calling to G

82

Depth-One Sequential Construction

| v = Sk, x) |

Fi(x) = P(G(UO))1 =P (G(S(k’ x)))l l

‘ v, = P(G(vp)) ‘

* We choose (a family of) PRGs G such that Fj, (x) can
be computed from k, x without calling to G

= Can break the security of F without breaking G

83

Constructing the PRG

| v = Sk, x) |

Fi(x) = P(G(UO))1 =P (G(S(k’ x)))l l

‘ v, = P(G(vp)) ‘

Constructing the PRG

| v = Sk, x) |

Fi(x) = P(G(UO))1 =P (G(S(k’ x)))l l

* Let G' be a PRG such that G'(s); = s | v, = P(G(vy)) |

Constructing the PRG

= S(k,
Fe) = P(6(), = P (6(5Ck.0))), 5 [‘
* Let G’ be a PRG such that G'(s); = 54 | v1 = P(G(vy)) |

* Assume that P is a permutation

86

Constructing the PRG

— S(k,
Fe) = P(6(), = P (6(5Ck.0))), 5 [‘
* Let G’ be a PRG such that G'(s); = 54 | v1 = P(G(vy)) |

* Assume that P is a permutation
eletm =P 1

87

Constructing the PRG

F.(x) = P(G(Uo))l =P (G(S(k’ x)))l

* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]

| v = Sk, x) |

‘ v, = P(G(vp)) ‘

88

Constructing the PRG

F.(x) = P(G(Uo))l =P (G(S(k’ x)))l

* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]

= (is a PRG

| v = Sk, x) |

‘ v, = P(G(vp)) ‘

89

Constructing the PRG

F.(x) = P(G(Uo))l =P (G(S(k’ x)))l

* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]

| v = Sk, x) |

‘ v, = P(G(vp)) ‘

90

Constructing the PRG

F.(x) = P(G(Uo))l =P (G(S(k’ x)))l

* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]

F(x) = P(G(S(k,x)))1

| v = Sk, x) |

l

‘ v, = P(G(vp)) ‘

91

Constructing the PRG

F.(x) = P(G(Uo))l =P (G(S(k’ x)))l

* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]

Fie(x) = P(G(S(k,x)))1
= P(m(G'(S(k, X))

| v = Sk, x) |

l

‘ v, = P(G(vp)) ‘

Constructing the PRG

F.(x) = P(G(Uo))l =P (G(S(k’ x)))l

* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]
Fi(x) = P(G(S(k,x)))1

= P((G'(S(k,x)))),
=G'(S(k,x))4

| v = Sk, x) |

l

‘ v, = P(G(vp)) ‘

Constructing the PRG

F.(x) = P(G(Uo))l =P (G(S(k’ x)))l

* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]

F(x) = P(G(S(k,x)))1
= P((G'(S(k,x))))1
=G'(S(k, %))
= S(k,x),

| v = Sk, x) |

l

‘ v, = P(G(vp)) ‘

Constructing the PRG

F.(x) = P(G(Uo))l =P (G(S(k’ x)))l

* Let G' be a PRG such that G'(s); = s

* Assume that P is a permutation
eletm =P 1
cletG=mo G [G(s) =mn(G'(s))]

F(x) = P(G(S(k,x)))1
= P((G'(S(k,x))))1
=G'(S(k, %))
= S(k,x),

| v = Sk, x) |

l

‘ v, = P(G(vp)) ‘

Key point:

‘ P(ﬂ()’))l =M1
where y = G'(s)

General Post-Processing

Key point:

¢ P(”()’))l = V1
where y = G'(s)

96

General Post-Processing

Key point:

¢ P(ﬂ(Y))1 = V1
where y = G'(s)

More generally, we need to find m such that for every i,
P(m(y))<; can be computed from the first = i bits of y

97

General Post-Processing

Key point:

* P(ﬂ(Y))1 = V1
where y = G'(s)

More generally, we need to find m such that for every i,
P(m(y))<; can be computed from the first = i bits of y

* For a permutation, P(m(y))<; = y<;

98

General Post-Processing

Key point:

¢ P(ﬂ(Y))1 = V1
where y = G'(s)

More generally, we need to find m such that for every i,
P(m(y))<; can be computed from the first = i bits of y

* For a permutation, P(t(¥))<; = y<;

When P is a not a permutation?

99

The Pseudo-lnverse Lemma

Lemma: For any function P:{0,1}"* — {0,1}" there exists a function
m:{0,1}" - {0,1}" such that:

The Pseudo-lnverse Lemma

Lemma: For any function P:{0,1}"* — {0,1}" there exists a function
m:{0,1}" - {0,1}" such that:

1. mis almost a permutation (m(U,,) = U,)

The Pseudo-lnverse Lemma

Lemma: For any function P:{0,1}"* — {0,1}" there exists a function
m:{0,1}" - {0,1}" such that:

1. mis almost a permutation (m(U,,) = U,)

2. Foreveryi € [n], P(n(y)) can be computed

from YSi+log n

Summary

Summary

Thm [This work]: There is no black-box tree constructions with depth of
logn — loglogn

Summary

Thm [This work]: There is no black-box tree constructions with depth of
logn — loglogn

* GGM is of depth w(logn)

Summary

Thm [This work]: There is no black-box tree constructions with depth of
logn — loglogn

* GGM is of depth w(logn)
+ More lower bounds

Summary

Thm [This work]: There is no black-box tree constructions with depth of
logn — loglogn

* GGM is of depth w(logn)
+ More lower bounds

Open questions:

Summary

Thm [This work]: There is no black-box tree constructions with depth of
logn — loglogn

* GGM is of depth w(logn)
+ More lower bounds

Open questions:
* What is the complexity of black-box PRF constructions?

Summary

Thm [This work]: There is no black-box tree constructions with depth of
logn — loglogn

* GGM is of depth w(logn)
+ More lower bounds

Open questions:
* What is the complexity of black-box PRF constructions?
* Can we construct one-call PRF?

Summary

Thm [This work]: There is no black-box tree constructions with depth of
logn — loglogn

* GGM is of depth w(logn)
+ More lower bounds

Open questions:
* What is the complexity of black-box PRF constructions?

e Can we construct one-call PRF? |
Thanks!

