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Isogeny-based
cryptography g

+ A promising candidate for post-quantum
cryptography. E,

« The pure isogeny problem—finding an
explicit isogeny between two elliptic
curves.

+ Most isogeny-based protocols rely on the
pure isogeny problem or on some variants
of this problem.
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Deuring
correspondence

There is a bijection between
conjugacy classes of supersingular
j-invariants and maximal orders
(up to isomorphisms) of the
quaternion algebra.
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Deuring
correspondence

Let I be a supersingular elliptic curve

over finite field of characteristic p.

End(E) is a maximal order O in the

quaternion algebra Bp’oo. b

O =End(E)
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Deuring
correspondence

An equivalence of categories of
isogenies between supersingular elliptic
curves over [Fp and the left ideals of

maximal orders of B, .

End(El) = @1

End(Ez) = @2



Hard problems

e Computing the endomorphism ring
of a supersingular elliptic curve.

e Computing any isogeny between
two supersingular elliptic curves.

e Computing a degree d isogeny
between two supersingular elliptic
curves if it exists.

? (any degree)

i (degree d)



Implications of improved computation of degree-d isogeny

Security of some schemes

Exploring SIDH-based signature
parameters by Basso, Chen,
Fouotsa, Kutas, Laval, Marco,
Saah is based on on the hardness
of finding fixed-degree isogenies.

Performance

Speed-up of SQIsign: not being
able to compute an isogeny of
optimal length slows down the
protocol significantly.




Fixed degree
isogeny

Let ¢ > O such that d ~ p%“. Up to
what value of € can we compute an
isogeny of degree d?

(there exist strategies to compute an
1
isogeny of degree < pzand > p3)

End(El) = @1
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degree d)

End(Ez) = @2



State-of-the-art for
fixed degree isogeny

+ Exhaustive search over all outgoing
isogenies: cost O(d).

. Meet-in-the-middle: cost O*(\/;Z )
time and memory (smooth d).

- van Oorschot-Wiener collision
search variants: cost depends
heavily on available memory.



State of the art
(quantum)

- Grover’s algorithm improves
exhaustive search to 0*(\/6_1’ ).

- (Tani’s algorithm: d%)
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Our strategy

« Compute
End(El) —_ @I,End(Ez) — @2
(Eisentrager et al.).

- Compute connecting ideal I between
O®, and O, (Kirschmer-Voight).

End(E]) = @1
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Our strategy

? (degree d)

« Compute the norm form associated

to I (reduced Gram matrix):

xIx = Q(x1, Xy, X3, Xy). End(E;) = 0, End(E,) = 0,
- Represent d via this norm form: O (x;, Xy, X3, Xx3) = norm(l) - d

Q(xy, Xy, X3, x,) = norm(l) - d. i
- Compute an ideal J equivalent to /: Bpes ' v Y

i 0

norm(l)
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(¢ (degree d)
Ou r Strategy End(E)) = 0, End(E,) = 0,
- We have an ideal J of norm d and can Q(x;, X9, X3, %) = norm(l) - d
convert it to the isogeny of degree d.
B ! J
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Solving quadratic form:
Cornacchia and e
Coppersmith

- Cornacchia algorithm is an algorithm for End(E) = 0, End(Ey) = 0,

solving the Diophantine equation G () - d
x12+Ax22=mwherel < A < mand
A and m are coprime.

D, Yy, - -' ¢
- Coppersmith algorithm is a method to find 6
small integer zeroes of polynomials —t

modulo a given integer. o,
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Cornacchia algorithm "
- We guess x5 and x,.
End(E,)) = 6 End(E,) = 6
- Change of variables to get the form = S
.X12 + Ax22 = m. Q(xq, X9, X3, X4) = norm(l) - d

- If m does not have too many prime ‘st
factors, we get the solution. Otherwise, pio T
we make a new guess for x5 and x;. 0, ‘ ‘
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(¢ (degree d)

Coppersmith algorithm

- Used in attacks on RSA when parts of

the secret key are known. End(E) = 0, End(E,) = 0,

Q(xq, X9, X3, X4) = norm(l) - d

« Multiple variants: Coppersmith, Coron,
Bauer-Joux.

- We guess x; and x, (or only x). . i '
1 ] -_
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Bivariate Coron

- Guess x5 and x;.

+ Get two algebraically independent

polynomials.

+ Obtain the root by computing resultants.

q(z,y) =1+ az + aniy + anzy

W = llg(z X, yY )|l

W <n<2W

gij(z,y) = 'y XF 'Y q(z,y)
1 a0 Y Ty z? :rzy y2 zy2

XY aszY umXY2 (111/\'2}’2
XY anXY? | a10X%Y | a1 X%

Xy a X%y anXY? | anX?Y?
Xy a1 XY an XY?
X%n
X?Yn
Y2n
XY?%n
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Bauer-Joux

- Guess Xx;.

+ Get three algebraically independent
polynomials.

+ Obtain the root by computing resultants.

eVl

p(z,y,2) = 1+ axy + byz

Y/

X72Y71
e/

©C O O O O =
S O O O = O

10
0 1
b1 0 0
b2 0 0
bs 0 0
by 0 0
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Hybrid approach
. d — le R,Jp%+€
- Guess [“I-isogeny ¢, : E; = E.

. Use ¢, to compute End(E) from
End(E)).

+ Solve the fixed-degree isogeny
problem with E and E, for degree

[°~“1 to obtain ¢,, or guess again.

- Compose ¢, with ¢,.

b, .

(degree [°1)

(degree [¢7¢1) b,
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Results

* The best approach turned out to be the hybrid approach, it has a better time

1 3
complexity than meet-in-the-middle algorithms in the range 5 <e< Z on a

classical computer.

+ For quantum computers, Cornacchia provides the fastest quantum algorithm,

5

with that we improve the time complexity in the range 0 < € < —.

 Our strategy is essentially memory-free while meet-in-the-middle algorithms
require exponential memory storage.
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Method

State-of-the-art
(general d)

State-of-the-art
(large d)

State-of-the-art
(smooth d)

Cornacchia

Coppersmith
(bivariate)

Coppersmith
(trivariate)

Hybrid approach
(smooth d)

Cost (classical)
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Open problem: no
guessing

« Coron / Bauer-doux on four
variables.

« The problem of algebraic

dependency of the polynomials.
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Thank you!

@ PSE Discord
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Questions?
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