Improved algorithms for finding fixed-degree isogenies between supersingular elliptic curves

Benjamin Benčina, Péter Kutas, Simon-Philipp Merz, Christophe Petit, **Miha Stopar**, and Charlotte Weitkämper

Isogeny-based cryptography

- A promising candidate for post-quantum cryptography.
- The *pure isogeny problem*—finding an explicit isogeny between two elliptic curves.
- Most isogeny-based protocols rely on the pure isogeny problem or on some variants of this problem.

Deuring correspondence

There is a bijection between conjugacy classes of supersingular j-invariants and maximal orders (up to isomorphisms) of the quaternion algebra.

Deuring correspondence

Let E be a supersingular elliptic curve over finite field of characteristic p . $End(E)$ is a maximal order $\mathscr O$ in the quaternion algebra $B_{p,\infty}$.

Deuring correspondence

An equivalence of categories of isogenies between supersingular elliptic curves over $\bar{\mathbb{F}}_n$ and the left ideals of maximal orders of $B_{p,\infty}^{}$. *p*

 E_1 $E₂$ *φ*

 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$

Hard problems

- Computing the endomorphism ring of a supersingular elliptic curve.
- Computing any isogeny between two supersingular elliptic curves.
- Computing a degree d isogeny between two supersingular elliptic curves if it exists.

Implications of improved computation of degree-d isogeny

Security of some schemes

Exploring SIDH-based signature parameters by Basso, Chen, Fouotsa, Kutas, Laval, Marco, Saah is based on on the hardness of finding fixed-degree isogenies.

Performance

Speed-up of SQIsign: not being able to compute an isogeny of optimal length slows down the protocol significantly.

Fixed degree isogeny

Let $\epsilon > 0$ such that $d \approx p^{\frac{1}{2}+\epsilon}$. Up to what value of ϵ can we compute an isogeny of degree d ?

(there exist strategies to compute an isogeny of degree $< p^{1\over 2}$ and $> p^{3})$

 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$

State-of-the-art for fixed degree isogen y

- Exhaustive search over all outgoing isogenies: cost $O(d)$.
- Meet-in-the-middle: cost $O^*(\sqrt{d})$ time and memory (smooth d).
- van Oorschot-Wiener collision search variants: cost depends heavily on available memory .

State of the art (quantum)

- Grover's algorithm improves exhaustive search to $O^*(\sqrt{d})$.
- $\boldsymbol{\cdot}$ (Tani's algorithm: $d^{\frac{1}{3}}$)

Our strategy

- Compute (Eisenträger et al.). $End(E_1) = \mathcal{O}_1$, $End(E_2) = \mathcal{O}_2$
- Compute connecting ideal I between $_1$ and \mathcal{O}_2 (Kirschmer-Voight).

Our strategy

- Compute the norm form associated to I (reduced Gram matrix): $x^T \overline{I} I x = Q(x_1, x_2, x_3, x_4).$
- Represent d via this norm form: $Q(x_1, x_2, x_3, x_4) = norm(I) \cdot d.$
- Compute an ideal J equivalent to I : $J = I$ — $\frac{I}{\sqrt{I}}$. *x*¯ *norm*(*I*)

Our strategy

 \bullet We have an ideal J of norm d and can convert it to the isogeny of degree $d.$

 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$

Solving quadratic form: Cornacchia and Coppersmith

- Cornacchia algorithm is an algorithm for solving the Diophantine equation $x_1^2 + \Delta x_2^2 = m$ where $1 \leq \Delta < m$ and Δ and m are coprime.
- Coppersmith algorithm is a method to find small integer zeroes of polynomials modulo a given integer.

14 $B_{p,\infty}$ 1 2 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$ *I* $Q(x_1, x_2, x_3, x_4) = norm(I) \cdot d$ *J*

Cornacchia algorithm

- We guess x_3 and x_4 .
- Change of variables to get the form $x_1^2 + \Delta x_2^2 = m.$
- If *m* does not have too many prime factors, we get the solution. Otherwise, we make a new guess for x_3 and x_4 .

2

15

Coppersmith algorithm

- Used in attacks on RSA when parts of the secret key are known.
- Multiple variants: Coppersmith, Coron, Bauer-Joux.
- We guess x_3 and x_4 (or only x_4).

 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$

Bivariate Coron

- Guess x_3 and x_4 .
- Get two algebraically independent polynomials.
- Obtain the root by computing resultants.

 $q(x,y) = 1 + a_{10}x + a_{01}y + a_{11}xy$

 $W = ||q(xX, yY)||_{\infty}$

 $W \leq n < 2W$

 $q_{ij}(x,y)=x^iy^jX^{k-1}Y^{k-j}q(x,y)$

 $p(x, y, z) = 1 + axy + byz$

Bauer-Joux

- Guess x_4 .
- Get three algebraically independent polynomials.
- Obtain the root by computing resultants.

Hybrid approach

- $d = l^e \approx p^{\frac{1}{2} + \epsilon}$
- Guess l^{e_1} -isogeny $\phi_1 : E_1 \to E$.
- Use ϕ_1 to compute $End(E)$ from $End(E_1)$.
- Solve the fixed-degree isogeny problem with E and E_{2} for degree l^{e-e_1} to obtain ϕ_2 , or guess again.
- $\bm{\cdot}$ Compose ϕ_2 with ϕ_1 .

Results

- The best approach turned out to be the hybrid approach, it has a better time complexity than meet-in-the-middle algorithms in the range $\frac{1}{\epsilon} \leq \epsilon \leq \frac{1}{\epsilon}$ on a classical computer. 1 $\frac{1}{2} \leq \epsilon \leq$ 3 4
- For quantum computers, Cornacchia provides the fastest quantum algorithm, with that we improve the time complexity in the range $0 < \epsilon < \frac{1}{\epsilon}$. 5 2
- Our strategy is essentially memory-free while meet-in-the-middle algorithms require exponential memory storage.

Open problem: no guessing

- Coron / Bauer-Joux on four variables.
- The problem of algebraic dependency of the polynomials.

Thank you!

Questions?