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Isogeny-based 
cryptography
• A promising candidate for post‐quantum 

cryptography.

• The pure isogeny problem—finding an 
explicit isogeny between two elliptic 
curves.

• Most isogeny-based protocols rely on the 
pure isogeny problem or on some variants 
of this problem.
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Deuring 
correspondence
There is a bijection between 
conjugacy classes of supersingular 
j-invariants and maximal orders 
(up to isomorphisms) of the 
quaternion algebra.
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Deuring 
correspondence
Let  be a supersingular elliptic curve 
over finite field of characteristic . 

 is a maximal order  in the 
quaternion algebra .
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Deuring 
correspondence
An equivalence of categories of 
isogenies between supersingular elliptic 
curves over  and the left ideals of 
maximal orders of .
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Hard problems
● Computing the endomorphism ring 

of a supersingular elliptic curve.
● Computing any isogeny between 

two supersingular elliptic curves.
● Computing a degree  isogeny 

between two supersingular elliptic 
curves if it exists.
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Implications of improved computation of degree-d isogeny 

Security of some schemes

Exploring SIDH-based signature 
parameters by Basso, Chen, 
Fouotsa, Kutas, Laval, Marco, 
Saah is based on on the hardness 
of finding fixed-degree isogenies.

Performance

Speed-up of SQIsign: not being 
able to compute an isogeny of 
optimal length slows down the 
protocol significantly.
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Fixed degree 
isogeny
Let  such that . Up to 
what value of  can we compute an 
isogeny of degree ?

(there exist strategies to compute an 
isogeny of degree  and )
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State-of-the-art for 
fixed degree isogeny
• Exhaustive search over all outgoing 

isogenies: cost .

• Meet-in-the-middle: cost  
time and memory (smooth ).

• van Oorschot-Wiener collision 
search variants: cost depends 
heavily on available memory.
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State of the art 
(quantum)
• Grover’s algorithm improves 

exhaustive search to .

• (Tani’s algorithm: )
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Our strategy
• Compute

 
(Eisenträger et al.).

• Compute connecting ideal  between 
 and  (Kirschmer-Voight).
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Our strategy
• Compute the norm form associated 

to  (reduced Gram matrix):
.

• Represent  via this norm form: 
.

• Compute an ideal  equivalent to : 
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Our strategy
• We have an ideal  of norm  and can 

convert it to the isogeny of degree .
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Solving quadratic form: 
Cornacchia and 
Coppersmith
• Cornacchia algorithm is an algorithm for 

solving the Diophantine equation 
 where  and 

 and  are coprime.

• Coppersmith algorithm is a method to find 
small integer zeroes of polynomials 
modulo a given integer.
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Cornacchia algorithm
• We guess  and .

• Change of variables to get the form 
.

• If  does not have too many prime 
factors, we get the solution. Otherwise, 
we make a new guess for  and .
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Coppersmith algorithm
• Used in attacks on RSA when parts of 

the secret key are known.

• Multiple variants: Coppersmith, Coron, 
Bauer-Joux.

• We guess  and  (or only ).x3 x4 x4
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Bivariate Coron
• Guess  and .

• Get two algebraically independent 
polynomials.

• Obtain the root by computing resultants.
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Bauer-Joux
• Guess .

• Get three algebraically independent 
polynomials.

• Obtain the root by computing resultants.
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Hybrid approach
•

• Guess -isogeny .

• Use  to compute  from 
.

• Solve the fixed-degree isogeny 
problem with  and  for degree 

 to obtain , or guess again.

• Compose  with .
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Results
• The best approach turned out to be the hybrid approach, it has a better time 

complexity than meet-in-the-middle algorithms in the range  on a 

classical computer.

• For quantum computers, Cornacchia provides the fastest quantum algorithm, 

with that we improve the time complexity in the range .

• Our strategy is essentially memory-free while meet-in-the-middle algorithms 
require exponential memory storage.
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Method Cost (classical) Cost (quantum) Condition on size

State-of-the-art 
(general d)

State-of-the-art 
(large d)

State-of-the-art 
(smooth d)
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Open problem: no 
guessing
• Coron / Bauer-Joux on four 

variables.

• The problem of algebraic 
dependency of the polynomials.
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QR CODE HERE

PSE Discord

Thank you!
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Questions?
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