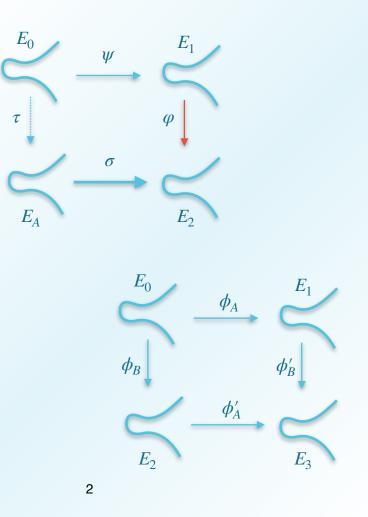
Improved algorithms for finding fixed-degree isogenies between supersingular elliptic curves

Benjamin Benčina, Péter Kutas, Simon-Philipp Merz, Christophe Petit, **Miha Stopar**, and Charlotte Weitkämper

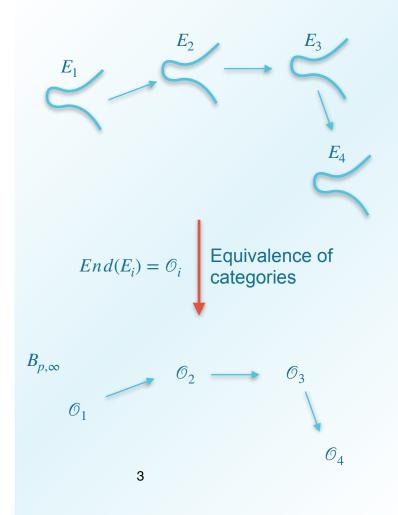
Isogeny-based cryptography

- A promising candidate for post-quantum cryptography.
- The *pure isogeny problem*—finding an explicit isogeny between two elliptic curves.
- Most isogeny-based protocols rely on the pure isogeny problem or on some variants of this problem.



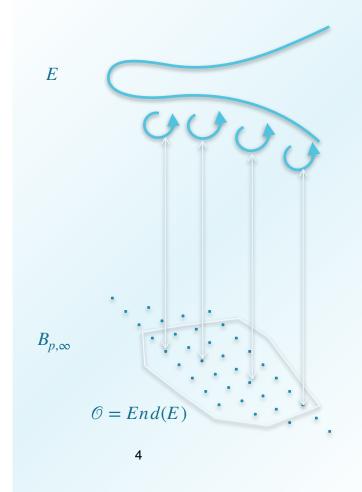
Deuring correspondence

There is a bijection between conjugacy classes of supersingular j-invariants and maximal orders (up to isomorphisms) of the quaternion algebra.



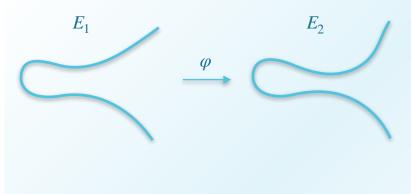
Deuring correspondence

Let *E* be a supersingular elliptic curve over finite field of characteristic *p*. End(E) is a maximal order \mathcal{O} in the quaternion algebra $B_{p,\infty}$.

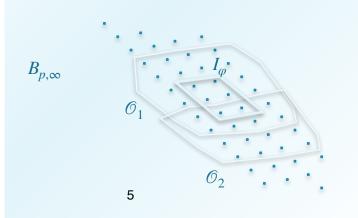


Deuring correspondence

An equivalence of categories of isogenies between supersingular elliptic curves over $\overline{\mathbb{F}}_p$ and the left ideals of maximal orders of $B_{p,\infty}$.

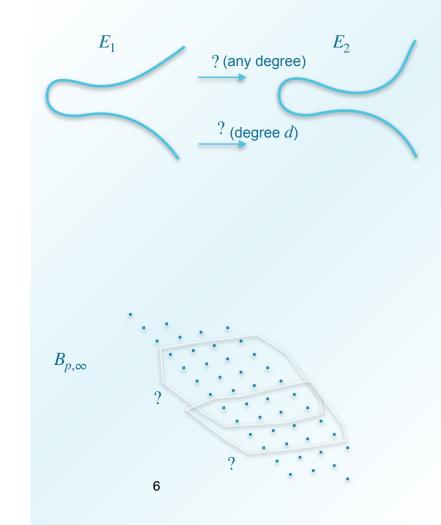


 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$



Hard problems

- Computing the endomorphism ring of a supersingular elliptic curve.
- Computing any isogeny between two supersingular elliptic curves.
- Computing a degree *d* isogeny between two supersingular elliptic curves if it exists.



Implications of improved computation of degree-d isogeny

Security of some schemes

Exploring SIDH-based signature parameters by Basso, Chen, Fouotsa, Kutas, Laval, Marco, Saah is based on on the hardness of finding fixed-degree isogenies.

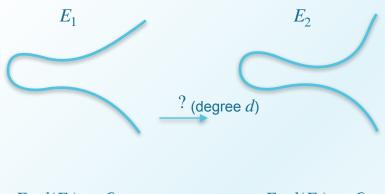
Performance

Speed-up of SQIsign: not being able to compute an isogeny of optimal length slows down the protocol significantly.

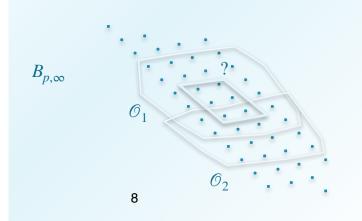
Fixed degree isogeny

Let $\epsilon > 0$ such that $d \approx p^{\frac{1}{2}+\epsilon}$. Up to what value of ϵ can we compute an isogeny of degree d?

(there exist strategies to compute an isogeny of degree $< p^{\frac{1}{2}}$ and $> p^{3}$)



 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$



State-of-the-art for fixed degree isogeny

- Exhaustive search over all outgoing isogenies: cost O(d).
- Meet-in-the-middle: cost $O^*(\sqrt{d})$ time and memory (smooth *d*).
- van Oorschot-Wiener collision search variants: cost depends heavily on available memory.

9	

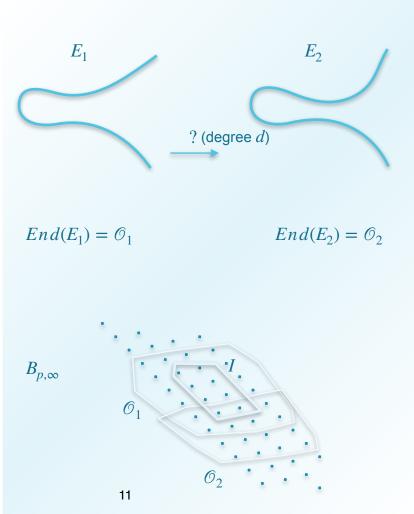
State of the art (quantum)

- Grover's algorithm improves exhaustive search to $O^*(\sqrt{d})$.
- (Tani's algorithm: $d^{\frac{1}{3}}$)

	2
10	

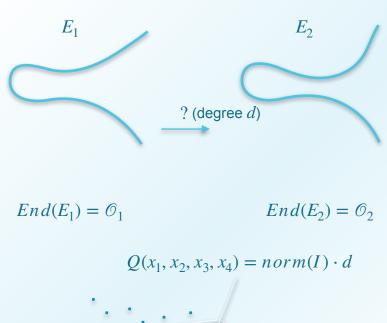
Our strategy

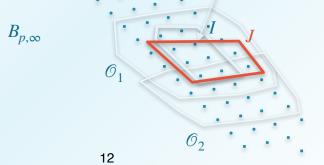
- Compute $End(E_1) = \mathcal{O}_1, End(E_2) = \mathcal{O}_2$ (Eisenträger et al.).
- Compute connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (Kirschmer-Voight).



Our strategy

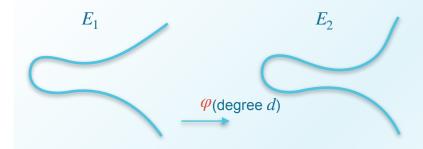
- Compute the norm form associated to *I* (reduced Gram matrix): $x^T \overline{I} I x = Q(x_1, x_2, x_3, x_4).$
- Represent *d* via this norm form: $Q(x_1, x_2, x_3, x_4) = norm(I) \cdot d.$
- Compute an ideal *J* equivalent to *I*: $J = I \frac{\overline{x}}{norm(I)}.$



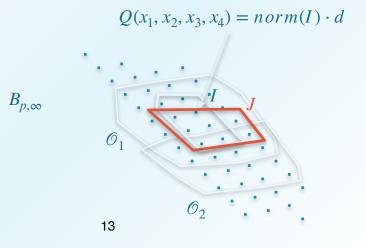


Our strategy

• We have an ideal J of norm d and can convert it to the isogeny of degree d.

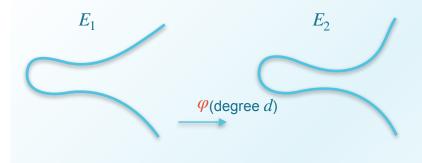


 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$



Solving quadratic form: Cornacchia and Coppersmith

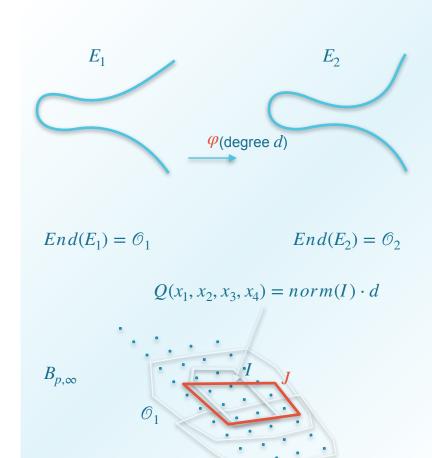
- Cornacchia algorithm is an algorithm for solving the Diophantine equation $x_1^2 + \Delta x_2^2 = m$ where $1 \le \Delta < m$ and Δ and *m* are coprime.
- Coppersmith algorithm is a method to find small integer zeroes of polynomials modulo a given integer.



 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$ $Q(x_1, x_2, x_3, x_4) = norm(I) \cdot d$ $B_{p,\infty}$ 6 14

Cornacchia algorithm

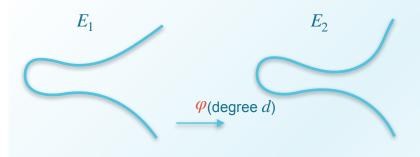
- We guess x_3 and x_4 .
- Change of variables to get the form $x_1^2 + \Delta x_2^2 = m$.
- If *m* does not have too many prime factors, we get the solution. Otherwise, we make a new guess for x₃ and x₄.



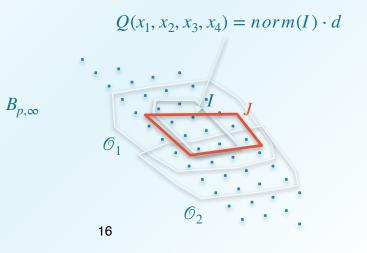
15

Coppersmith algorithm

- Used in attacks on RSA when parts of the secret key are known.
- Multiple variants: Coppersmith, Coron, Bauer-Joux.
- We guess x_3 and x_4 (or only x_4).



 $End(E_1) = \mathcal{O}_1$ $End(E_2) = \mathcal{O}_2$



Bivariate Coron

- Guess x_3 and x_4 .
- Get two algebraically independent polynomials.
- Obtain the root by computing resultants.

 $q(x,y) = 1 + a_{10}x + a_{01}y + a_{11}xy$

 $W = ||q(xX, yY)||_{\infty}$

 $W \leq n < 2W$

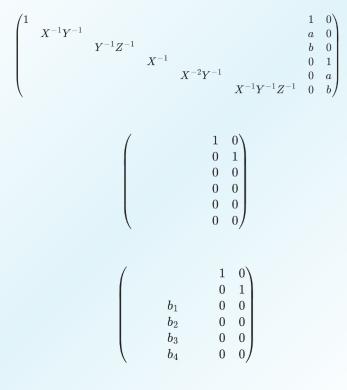
 $q_{ij}(x,y)=x^iy^jX^{k-1}Y^{k-j}q(x,y)$

1	x	y	xy	x^2	x^2y	y^2	xy^2	x^2y^2
XY	$a_{10}X^2Y$ XY	$a_{01}XY^2$ XY	$a_{11}X^2Y^2\ a_{01}XY^2\ a_{10}X^2Y\ XY$	$a_{10}X^2Y$ X^2n	$a_{11}X^2Y^2$ $a_{10}X^2Y$ X^2Yn	$a_{01}XY^2$	$a_{11}X^2Y^2 \ a_{01}XY^2$	x^2y^2 $a_{11}X^2Y^2$
						Y^2n	XY^2n	X^2Y^2n

p(x,y,z) = 1 + axy + byz

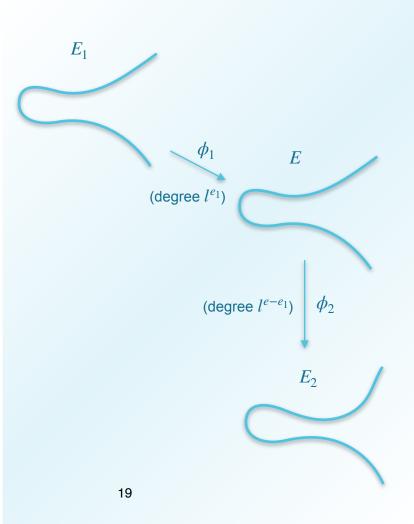
Bauer-Joux

- Guess x_4 .
- Get three algebraically independent polynomials.
- Obtain the root by computing resultants.



Hybrid approach

- $d = l^e \approx p^{\frac{1}{2} + \epsilon}$
- Guess l^{e_1} -isogeny $\phi_1: E_1 \to E$.
- Use ϕ_1 to compute End(E) from $End(E_1)$.
- Solve the fixed-degree isogeny problem with E and E_2 for degree l^{e-e_1} to obtain ϕ_2 , or guess again.
- Compose ϕ_2 with ϕ_1 .



Results

- The best approach turned out to be the hybrid approach, it has a better time complexity than meet-in-the-middle algorithms in the range $\frac{1}{2} \le \epsilon \le \frac{3}{4}$ on a classical computer.
- For quantum computers, Cornacchia provides the fastest quantum algorithm, with that we improve the time complexity in the range $0 < \epsilon < \frac{5}{2}$.
- Our strategy is essentially memory-free while meet-in-the-middle algorithms require exponential memory storage.

Method	Cost (classical)	Cost (quantum)	Condition on size
State-of-the-art (general d)	$\frac{1}{2} + \epsilon$	$\frac{1}{4} + \frac{\epsilon}{2}$	
State-of-the-art (large d)	$\frac{1}{2}$	$\frac{1}{4}$	$\epsilon > \frac{5}{2}$
State-of-the-art (smooth d)	$\frac{1}{4} + \frac{\epsilon}{2}$	$\frac{1}{4} + \frac{\epsilon}{2}$	
Cornacchia	$max\{\frac{1}{2},\epsilon\} + log_p L[\frac{1}{3}]$	$max\{\frac{1}{4},\frac{\epsilon}{2}\}$	
Coppersmith (bivariate)	$\frac{1}{2}$	$\frac{1}{4}$	$\epsilon < \frac{1}{2}$
Coppersmith (trivariate)	$\frac{1}{2}$	$\frac{1}{4}$	$\epsilon < \frac{1}{4}$
Hybrid approach (smooth d)	$max\{\frac{1}{2}, \varepsilon - \frac{1}{8}\}$	$\frac{1}{4} + \frac{\epsilon}{2}$	$\frac{1}{4} < \epsilon < \frac{3}{4}$

Open problem: no guessing

- Coron / Bauer-Joux on four variables.
- The problem of algebraic dependency of the polynomials.

Thank you!

Questions?