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Symmetric Cryptanalysis

- Differential cryptanalysis
- proposed by Biham and Shamir at CRYPTO 1990
- broke DES at CRYPTO 1992

- Linear cryptanalysis
- proposed by Matsui in 1993, broke DES again
- the first experimental cryptanalysis of DES at CRYPTO 1994
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Differential-Linear Cryptanalysis
- A combination of differential and linear cryptanalysis

- proposed by Langford and Hellman at CRYPTO 1994
- a chosen plaintext two-stage technique of cryptanalysis
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Differential-Linear Approximation

- Differential: Pr[∆I
p−→ ∆O] = p

- Linear approximation: Pr[λI
q−→ λO] = 1/2 + q

- Differential-linear approximation:
Pr[C · λO = C′ · λO|P ⊕ P′ = ∆I] = p(1/2 + 2q2) + (1 − p) · 1/2 = 1/2 + 2pq2
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Estimating the bias of a DL approximation in the middle
- Differential-Linear Connectivity Table (DLCT, EUROCRYPT 2019)

- inspired by Boomerang Connectivity Table
- more accurate than before
- applications: ICEPOLE, DES, Serpent, Ascon

P

P′

E0

X

X′

Em

Y

Y′

E1

C

C′

∆I ∆Op 1
2 + r λI λO1

2 + q

λI λO
1
2 + q

6 / 33



Estimating the bias of a DL approximation in the middle

P

P′

E0

X

X′

Em

Y

Y′

E1

C

C′

∆I ∆Op 1
2 + r λI λO1

2 + q

λI λO
1
2 + q

The theoretical bias of a differential-linear approximation:

E∆I,λO = 4p · DLCTEm(∆, λ) · q2 = 4prq2
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Differential-Linear Probability

Definition
For a t-round differential-linear approximation (∆

t round−−−−→ λ), where ∆ is the input
difference, and λ is the output difference, the differential-linear probability (DLP) is
defined by

DLP(∆, λ) = Pr[∆ t round−−−−→ λ] =
|{X|λ · (f(X)⊕ f(X ⊕∆)) = 0}|

2n

The differential-linear bias is ε = DLP(∆, λ)− 1
2 .
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An Important Observation on DLP

DLP(∆, λ) =
|{X|λ · (f(X)⊕ f(X ⊕∆)) = 0}|

2n

=

∑
∆i∈Fn

2,λ·∆i=0 |{X|f(X)⊕ f(X ⊕∆) = ∆i}|
2n

=
∑

∆i∈Fn
2,λ·∆i=0

DDTf(∆,∆i)

(1)
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An Important Observation on DLP

- λ ·∆i = λ{n−1}∆
{n−1}
i ⊕ λ{n−2}∆

{n−2}
i ⊕ · · ·λ{1}∆

{1}
i ⊕ λ{0}∆

{0}
i

- If λ{j} = 0, then λ{j}∆
{j}
i = 0 always holds, which means that the value of this bit

of ∆i does not affect the value of λ ·∆i.

- DLP(∆, λ) =
∑

∆i∈Fn
2,λ·∆i=0 DP(∆,∆i) =

∑
0≤j<2hw(λ)

λ·Tt,j=0
Pr[∆ t rounds−−−−→ Tt,j]
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The Truncated Difference Distribution Table

Definition
Let f: {0, 1}n → {0, 1}n be a bijective vectorial boolean function. the TDT of f is a
three-dimensional table whose first parameter ∆I ∈ {0, 1}n is an input difference of f,
and whose second parameter M ∈ {0, 1}n is the TD mask of a truncated output
difference T ∈ {∗, 0, 1}n of f and whose third parameter is Z ∈ {0, 1}n. Define the
TDT entry (∆I,M,Z) of f as

TDTf(∆I,M,Z) = |{X|M&(f(X)⊕ f(X ⊕∆I)) = Z}|

where the TDT entry is equal to zero when M&Z ̸= M.
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The Truncated Difference Distribution Table

Proposition 1
The TDT is an extension of the DDT. There is a connection between DDT and TDT:

TDTf(∆I,M,Z) =
∑

∆:M&∆=Z

DDTf(∆I,∆)

Proposition 2
Let f: {0, 1}n → {0, 1}n be a bijective vectorial boolean function, ∆ and λ denote an
input difference and an output mask of f respectively.

DLP(∆, λ)− 1
2 =

∑
0≤Z<2n
λ·Z=0

TDTP(∆, λ,Z)− 1
2
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Properties of the TDT
Property 1

TDTf(0,M,Z) =

{
2n, if Z = 0
0, if Z ̸= 0

Property 2

TDTf(∆I, 0,Z) =

{
2n, if Z = 0
0, if Z ̸= 0

Property 3
TDTf(∆I, 2n − 1,Z) = DDTf(∆I,Z)

Property 4
Given ∆I and M, there are at most 2hw(M) non-zero entries in the TDT.
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Estimation of the DLP based on TDT

The probability of a truncated differential characteristic

Pr[T0
R−→ T1

R−→ · · · R−→ Tt] =
t−1∏
i=0

∏
|Ti[j]|=1

TDT(Ti[j],Mi[j],Zi[j]) (2)

The probability of a truncated differential

Pr[T0
t rounds−−−−−→ Tt] =

∑
T1,··· ,Tt−1

t−1∏
i=0

∏
|Ti[j]|=1

TDT(Ti[j],Mi[j],Zi[j]) (3)
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Estimation of the DLP based on TDT

The relationship between DLP and TDT

DLP(∆, λ) =
∑

0≤k<2hw(λ)

λ·Tt,k=0

Pr[∆ t rounds−−−−→ Tt,k]

=
∑

0≤k<2hw(λ)

λ·Tt,k=0

∑
T1,··· ,Tt−1

t−1∏
i=0

∏
|Ti[j]|=1

TDT(Ti[j],Mi[j],Zi[j])
(4)
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Computing the Differential-Linear Pattern

ΛX0 = ∆

ΛY0

ΛX1

ΛY1

ΛX2

ΛY2

ΛX3

(a) The forward propagation of ∆: a blank
cell indicates a bit difference always inactive;
a gray cell indicates an active bit difference;
a blue cell indicates a bit difference undeter-
mined

∇X3 = λ

∇Y2

∇X2

∇Y1

∇X1

∇Y0

∇X0

(b) The backward propagation of λ: a yellow
cell indicates a bit of which the bit difference
need to be determined; a red cell indicates a
bit of which the bit difference is arbitrary

Figure: The propagations of 3-round Serpent
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Computing the Differential-Linear Pattern

T D0

T D1

T D2

Figure: The DL pattern (T D0, T D1, T D2) of 3-round Serpent: an orange cell indicates a bit of which the bit
difference always be inactive or arbitrary, which is of no concern; a green cell indicates a bit difference need to
be determined

- If ΛY{j}
i = 0, T D{j}

i = 0.
- If ∇Y{j}

i = 0, T D{j}
i = 0.

- If ΛY{j}
i = 1 and ∇Y{j}

i = 1, T D{j}
i = 1.
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Estimate of the DL Bias when Em Consists of Multiple Rounds

- Phase 1: Computing the differential-linear bias of Em using the breadth-first method

- Phase 2: Extending a differential with high-probability in the differential part E0 and
a linear approximation with high-bias in the linear part E1

- Phase 3: Computing the overall bias of the differential-linear bias of E
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Computing the differential-linear bias of Em

- For the S layer in the 0-th round and for each 0 ≤ j < |A0|

Pr[∆ 1 round−−−−→ A0,j] =
∏

k:T D0[k] ̸=0
TDT(∆[k], T D0[k],A0,j[k])

- For the S layer in the i-th round (1 ≤ i < Rm), and for each 0 ≤ j < |Ai|

Pr[∆ i rounds−−−−→ Ai,j] =

|Bi−1|−1∑
t=0

TDPi−1,t · Pr[Bi−1,t
S−→ Ai,j]

=

|Bi−1|−1∑
t=0

TDPi−1,t ·

( ∏
k:T Di[k] ̸=0

TDT(Bi−1,t[k], T Di[k],Ai,j[k])
)

- Finally, DLP(∆, λ) =
∑|BRm−1|−1

j=0 TDPRm−1,j · π(λ · BRm−1,j).
where π(x) = 1 if x = 0 and π(x) = 0 otherwise. Finally, the bias of Em is
DLP(∆, λ)− 1

2 .
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The complexity

- The computational complexity:

|A0|+ |ARm−1|+
Rm−1∑

i=1
|Ai−1| · |Ai| = 2hw(T D0) + 2hw(T DRm−1) +

Rm−1∑
i=1

2hw(T Di−1∥T Di)

- The memory complexity:

max
1≤i<Rm

(|Ai−1|+ |Ai|+ |TDPi−1|+ |TDPi|) = max
1≤i<Rm

(2 × (2hw(T Di−1) + 2hw(T Di)))
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Estimate of the DL Bias when Em Consists of One Rounds

- Phase 1: Computing the probability of a truncated differential of E0 using the
depth-first method

- Phase 2: Searching a linear approximation with high-bias for the linear part E1

- Phase 3: Using DLCT to connect the strong truncated differential and the strong
biased linear approximation
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Computing the probability of a truncated differential of E0

Procedure Round-0
Begin the program.
Let PTD = 0.
For each candidate for Z0 with fixed T D0, do the following:

Let p0 = TDT(∆X0, T D0,Z0).
If p0 ≥ TS, then call Procedure Round-1.

Exit the program.

Procedure Round-i (1 ≤ i < R0 − 1)
For each candidate for Zi with fixed T Di, do the following:

Let ∆X1 = L(Z0) and pi = TDT(∆Xi, T Di,Zi).
If
∏i

k=0 pk ≥ TS, then call Procedure Round-(i + 1).
Reture to the upper procedure.
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Computing the probability of a truncated differential of E0

Procedure Round-(R0 − 1)
For each candidate for ZR0−1 with fixed T DR0−1, do the following:

Let ∆XR0−1 = L(ZR0−2).
Let pR0−1 = TDT(∆XR0−1, T DR0−1,ZR0−1).
If p =

∏R0−1
k=0 pk ≥ TS, then a linear transformation is performed, i.e.,

∆XR0 = L(ZR0−1).
Let ZR0 = λ&T . If ∆XR0 = ZR0 , then PTD = PTD + p.

Reture to the upper procedure.
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Applications

- Authenticated encryption
- Ascon
- KNOT

- Bit-wise block cipher
- Serpent

- Byte-wise block cipher
- AES
- CLEFIA
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Conclusion: Ascon

Cipher Rounds Experimental
value

Theoretical estimate
DLCT

[1]
DATF

[2]
HATF

[3]
Method in
Sect.4.2

Method in
Sect.4.3

Ascon
4/12 2−2 2−5 2−2.365 2−2.09 2−2

5/12 2−10 2−10.1

6/12‡ 2−22.43

- 4-round DL distinguisher: the same as the experimental result
- 5-round DL distinguisher: extrmely close to the experimental result
- 6-round DL distinguisher: first introduced
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Conclusion: Serpent

Cipher Rounds Experimental
value

Theoretical estimate
DLCT [1] DATF [2] HATF [3] Method in

Sect.4.2

Serpent

3/32† 2−1.415 2−1.415

4/32 2−13.75 2−13.68 2−13.736 2−13.696

4/32† 2−5.30 2−5.415

5/32 2−17.75 2−17.736 2−17.696

5/32† 2−11.44 2−11.415

6/32† 2−19.61

7/32† 2−29.45

8/32† 2−39.45

9/32 2−57.68 2−57.736 2−57.696

9/32† 2−52

9/32† 2−55.33
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Conclusion: Serpent

- revisiting 4-round and 5-round DL distinguisher

- searching for the DL distinguisher up to 9 rounds

- ignoring the key recovery, a 9-round DL distinguisher with bias of 2−52

- considering the key recovery, two better 9-round DL distinguishers with bias of
2−55.33
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Conclusion: KNOT256

Cipher Rounds Experimental
value

Theoretical estimate
DLCT [1] DATF [2] HATF [3] Method in

Sect.4.2

KNOT-
256

9/52 2−1.20 2−1.20

10/52 2−3.27 2−3.66

11/52 2−4.31 2−6.38

12/52 2−9.91 2−9.27

13/52 2−14.04 2−12.27

14/52 2−16.23

15/52 2−23.31

16/52 2−30.52
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Conclusion: KNOT256

- focusing on the initialization phase

- searching for the DL distinguishers up to 16 rounds

- 16-round DL distinguisher: 2−30.52

29 / 33



Conclusion: AES, CLEFIA

Cipher Rounds Experimental
value

Theoretical estimate
DLCT [1] DATF [2] HATF [3] Method in

Sect.4.2

AES

2/10 2−1 2−1

3/10 2−8.66 2−8.66

4/10 2−27.85

5/10 2−51.85

CLEFIA

4/18 2−1 2−1

5/18 2−2.415 2−2.415

6/18 2−6.81 2−6.80

7/18 2−11.81 2−11.80

8/18 2−32.70

9/18 2−54.37
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Conclusion: AES, CLEFIA

- 3/4/5-round AES’s DL distinguishers: 2−8.66/2−27.85/2−51.85

- searching for CLEFIA’s DL distinguishers up to 9 round

- 9-round CLEFIA DL distinguisher: 2−54.37
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The End
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