Double Sided Zero Search

Quantum Lower Bounds

# Quantum One-Wayness of the Single Round Sponge with Invertible Permutations

#### Joseph Carolan<sup>1</sup>, Alexander Poremba<sup>2</sup>

1. University of Maryland, 2. MIT



Double Sided Zero Search

Quantum Lower Bounds

### Motivation: SHA3

- International hash standard: SHA3
- SHA3 uses the sponge to achieve variable input length



Image credit: https://www.vecteezy.com/free-vector/garbage-can, Garbage Can Vectors by Vecteezy

Motivation: The Sponge ○●○○○ Double Sided Zero Search

Quantum Lower Bounds

## Sponge Construction

- Based on permutation  $\varphi$  on RATE + CAPACITY bits
- Both  $\varphi$  and  $\varphi^{-1}$  have a public description
- Oracles can be implemented given this description:

$$egin{aligned} & O_arphi \left| x 
ight
angle \left| y 
ight
angle = \left| x 
ight
angle \left| y \oplus arphi(x) 
ight
angle \ & O_{arphi^{-1}} \left| x 
ight
angle \left| y 
ight
angle = \left| x 
ight
angle \left| y \oplus arphi^{-1}(x) 
ight
angle \end{aligned}$$

- ullet We model adversaries as having black-box access  $\mathit{O}_{\!arphi}, \mathit{O}_{\!arphi^{-1}}$
- It is standard to model  $\varphi$  as random permutations

Motivation: The Sponge ○○●○○ Double Sided Zero Search

Quantum Lower Bounds

# Sponge Security

- We then show security in the Random Permutation Model
- Strong classical results in this model ("Indifferentiability")
   (→) This is the classical theory basis of the Sponge/SHA3
  - (
    ightarrow) We want a similar basis for quantum security
- Post-quantum security of the sponge is a major open problem
- Very few quantum results allowing inverse queries
- $\bullet$  Problem: quantum adversaries can query  $\varphi$  and  $\varphi^{-1}$ 
  - $(\rightarrow)$  No compressed oracle! How to analyze?
  - $(\rightarrow)$  In fact, few techniques whatsoever.

Double Sided Zero Search

Quantum Lower Bounds

## Quantum Security of the Sponge

• For simplicity, restrict to one round:



Motivation: The Sponge ○○○○● Double Sided Zero Search

Quantum Lower Bounds

## Quantum Security of the Sponge

- Single-round sponge is reset indifferentiable from a random oracle when  $RATE \leq CAPACITY$  [Zhandry 21]
- "As good as a random oracle" when  ${\rm RATE} \leq {\rm CAPACITY}$
- Problem:

| Hash     | Rate | Capacity |
|----------|------|----------|
| SHA3-224 | 1152 | 448      |
| SHA3-256 | 1088 | 512      |
| SHA3-384 | 832  | 768      |
| SHA3-512 | 576  | 1024     |

- Reset indifferentiability is *impossible* when RATE > CAPACITY
- Even when RATE  $\leq$  CAPACITY, known bounds are only super-polynomial (not tight)
- We need more techniques!

Double Sided Zero Search

Quantum Lower Bounds

### Double Sided Zero Search [Unruh 21, 23]

#### Problem (DSZS)

**In:** Queries to permutation  $\varphi$  and  $\varphi^{-1}$  on 2n bits **Out:** A "zero pair" (x, y) s.t.

 $\varphi(x||0^n) = y||0^n$ 

- $\bullet~\text{DSZS}\approx$  zero pre-image in one-round sponge
- DSZS ≥ collision in (full) sponge



Double Sided Zero Search ○●○○ Quantum Lower Bounds

## Zero Pairs Intuition

Some facts [CP'24]:

- Exactly one zero pair on average
- At least one with probability 1 1/e + o(1)
- More than k with probability  $\exp(-\Omega(k))$
- $\Omega(2^n)$  classical queries required to find one (if it exists)



Double Sided Zero Search

Quantum Lower Bounds

## Double Sided Zero Search Hardness

Conjecture [Unruh 21, 23]

Finding a zero pair requires  $\Omega\left(\sqrt{2^n}\right)$  quantum queries

- Would provide evidence of post-quantum security of sponge
- Motivates new techniques
- "Even simple questions relating to (superposition access to) random permutations are to the best of our knowledge not in the scope of existing techniques" [Unruh 23]

Double Sided Zero Search ○○○● Quantum Lower Bounds

### Double Sided Zero Search Hardness

#### Theorem [CP'24]

Finding a zero pair requires  $\Omega\left(\sqrt{2^n}\right)$  quantum queries

- We prove Unruh's conjecture
- Tight up to constant, even for small success probabilities
- Technique: worst-to-average case reduction, inspired by *Young subgroups*
- Leads to quantum one-wayness of the single round sponge

Double Sided Zero Search

Quantum Lower Bounds

## Proof outline

Theorem [CP'24]

Finding a zero pair requires  $\Omega\left(\sqrt{2^n}\right)$  quantum queries

Proof.

A worst-to-average case reduction:

- (1) Construct a worst-case instance from unstructured search
- (2) Rerandomize to an average-case instance, by symmetrizing

Double Sided Zero Search

Quantum Lower Bounds

#### Worst-Case Hardness

In the worst case, solution may not exist!

 $\varphi_w(x||y) := x||(y \oplus 1^n)$ 



Double Sided Zero Search

Quantum Lower Bounds

## Worst-Case Hardness with K solutions

• Let f be a function on n bits that marks K many inputs,

$$\varphi_w(x||y) = \begin{cases} x||y & \text{if } f(x) = 1\\ x||(y \oplus 1^n) & \text{if } f(x) = 0 \end{cases}$$

• x is in a zero pair of  $\varphi_w$  if and only if f(x) = 1

• Inverse queries don't help, because  $\varphi_{w} = \varphi_{w}^{-1}$ 



Double Sided Zero Search

Quantum Lower Bounds

## Symmetrization

- Let  $\omega, \sigma$  be random permutations that preserve suffix  $0^n$
- Sandwich a worst-case instance to get an average-case instance (with *K* zero pairs)

$$\varphi := \omega \circ \varphi_{w} \circ \sigma$$



Double Sided Zero Search

Quantum Lower Bounds

## Symmetrization

- Let  $\omega, \sigma$  be random permutations that preserve suffix  $0^n$
- Sandwich a worst-case instance to get an average-case instance (with *K* zero pairs)

$$\varphi := \omega \circ \varphi_{w} \circ \sigma$$



Double Sided Zero Search

Quantum Lower Bounds

### Symmetrization Soundness

- Let H be the symmetric subgroup which preserves the suffix  $0^n$
- Given zero pair (x, y) in φ = ω ∘ φ<sub>w</sub> ∘ σ, have a zero pair (σ(x), ω<sup>-1</sup>(y)) in φ<sub>w</sub>, hence σ(x) is marked by f



Double Sided Zero Search

Quantum Lower Bounds

#### Symmetrization Soundness

- Let H be the symmetric subgroup which preserves the suffix  $0^n$
- Given zero pair (x, y) in φ = ω ∘ φ<sub>w</sub> ∘ σ, have a zero pair (σ(x), ω<sup>-1</sup>(y)) in φ<sub>w</sub>, hence σ(x) is marked by f



Double Sided Zero Search

Quantum Lower Bounds

## Symmetrization Soundness

- Let H be the symmetric subgroup which preserves the suffix  $0^n$
- Given zero pair (x, y) in  $\varphi = \omega \circ \varphi_w \circ \sigma$ , have a zero pair  $(\sigma(x), \omega^{-1}(y))$  in  $\varphi_w$ , hence  $\sigma(x)$  is marked by f



Double Sided Zero Search

Quantum Lower Bounds

## Symmetrization Soundness

- Let G be the symmetric group on  $2^{2n}$  elements
- Let *H* be the symmetric subgroup which preserves the suffix 0<sup>*n*</sup>
- Consider double cosets  $\{C_0, C_1, ..., C_{2^n}\} = H \ G \not H$
- From the theory of Young subgroups:

#### Characterization Lemma [CP'24]

The double coset  $C_K$  is the set of permutations with K Zero Pairs

#### Symmetrization Lemma [CP'24]

If  $\omega, \sigma \sim H$  are uniformly random, and any fixed  $\varphi_w \in C_K$ , then  $\omega \circ \varphi_w \circ \sigma$  is uniform random over  $C_K$ 

Double Sided Zero Search

Quantum Lower Bounds

## Summary of results

• Prior argument plus tail bounds on Zero Pairs gives:

```
Theorem [CP'24]
```

A quantum algorithm making q queries to random  $\varphi, \varphi^{-1}$  on 2n bits finds a Zero Pair with probability at most  $50 \cdot \frac{q^2}{2^n}$ .

• A similar proof gives:

Theorem [CP'24]

A quantum algorithm making q queries to random  $\varphi, \varphi^{-1}$  on r + c bits breaks one-wayness of the single-round sponge with probability at most  $80 \cdot \frac{q^2}{2^{\min(r,c)}}$ .

• These are tight up to a constant factor, for all success probabilities

Double Sided Zero Search

Quantum Lower Bounds

## **Future Directions**

- Other applications of symmetrizing over double cosets?
- One-wayness beyond a single round?
- Query lower bounds for collision resistance, second preimage resistance, etc?
- Indifferentiability?
- See also concurrent work by Majenz, Malavolta, and Walter
   (→) Similar results, different techniques, [eprint:2024/1140]

Double Sided Zero Search

Quantum Lower Bounds

## Thank you!



[CP24] Quantum One-Wayness of the Single Round Sponge with Invertible Permutations, eprint:2024/414
 [Unruh 21 (23)] (Towards) Compressed Permutation Oracles, eprint:2021/062(2023/770)
 [Zhandry 21] Redeeming Reset Indifferentiability and Post-Quantum Groups eprint:2021/288