Quantum One-Wayness of the Single Round Sponge with Invertible Permutations

Joseph Carolan¹, Alexander Poremba²

1. University of Maryland, 2. MIT

Motivation: SHA3

- International hash standard: SHA3
- SHA3 uses the sponge to achieve variable input length

Image credit: [https://www.vecteezy.com/free-vector/garbage-can, Garbage Can Vectors by Vecteezy](https://www.vecteezy.com/free-vector/garbage-can">Garbage Can Vectors by Vecteezy)

Sponge Construction

- Based on permutation φ on RATE + CAPACITY bits
- Both φ and φ^{-1} have a public description
- Oracles can be implemented given this description:

$$
O_{\varphi} |x\rangle |y\rangle = |x\rangle |y \oplus \varphi(x)\rangle
$$

$$
O_{\varphi^{-1}} |x\rangle |y\rangle = |x\rangle |y \oplus \varphi^{-1}(x)\rangle
$$

- \bullet We model adversaries as having black-box access $O_{\varphi}, O_{\varphi^{-1}}$
- It is standard to model φ as random permutations

Sponge Security

- We then show security in the Random Permutation Model
- Strong classical results in this model ("Indifferentiability")
	- (\rightarrow) This is the classical theory basis of the Sponge/SHA3
	- (\rightarrow) We want a similar basis for quantum security
- Post-quantum security of the sponge is a major open problem
- Very few quantum results allowing inverse queries
- Problem: quantum adversaries can query φ and φ^{-1}
	- (\rightarrow) No compressed oracle! How to analyze?
	- (\rightarrow) In fact, few techniques whatsoever.

Quantum Security of the Sponge

• For simplicity, restrict to one round:

Quantum Security of the Sponge

- Single-round sponge is reset indifferentiable from a random oracle when $\text{RATE} \leq \text{CAPACITY}$ [Zhandry 21]
- \bullet "As good as a random oracle" when RATE \leq CAPACITY
- Problem:

- Reset indifferentiability is *impossible* when $\text{RATE} > \text{CAPACITY}$
- Even when $\text{RATE} \leq \text{CAPACITY}$, known bounds are only super-polynomial (not tight)
- We need more techniques!

Double Sided Zero Search [Unruh 21, 23]

Problem (DSZS)

In: Queries to permutation φ and φ^{-1} on 2n bits **Out:** A "zero pair" (x, y) s.t.

 $\varphi(x||0^n) = y||0^n$

- \bullet DSZS \approx zero pre-image in one-round sponge
- \bullet DSZS $>$ collision in (full) sponge

Zero Pairs Intuition

Some facts [CP'24]:

- Exactly one zero pair on average
- At least one with probability $1 1/e + o(1)$
- More than k with probability $exp(-\Omega(k))$
- $\Omega(2^n)$ classical queries required to find one (if it exists)

[Motivation: The Sponge](#page-1-0) **[Double Sided Zero Search](#page-6-0)** [Quantum Lower Bounds](#page-10-0)

000000 000000000000 0000

Double Sided Zero Search Hardness

Conjecture [Unruh 21, 23]

Finding a zero pair requires $\Omega\left(\sqrt{2^n}\right)$ quantum queries

- Would provide evidence of post-quantum security of sponge
- Motivates new techniques
- "Even simple questions relating to (superposition access to) random permutations are to the best of our knowledge not in the scope of existing techniques" [Unruh 23]

Double Sided Zero Search Hardness

Theorem [CP'24]

Finding a zero pair requires $\Omega\left(\sqrt{2^{n}}\right)$ quantum queries

- We prove Unruh's conjecture
- Tight up to constant, even for small success probabilities
- Technique: worst-to-average case reduction, inspired by Young subgroups
- Leads to quantum one-wayness of the single round sponge

Proof outline

Theorem [CP'24]

Finding a zero pair requires $\Omega\left(\sqrt{2^{n}}\right)$ quantum queries

Proof.

A worst-to-average case reduction:

- (1) Construct a worst-case instance from unstructured search
- (2) Rerandomize to an average-case instance, by symmetrizing

[Motivation: The Sponge](#page-1-0) **[Double Sided Zero Search](#page-6-0) [Quantum Lower Bounds](#page-10-0)**
 $\begin{array}{ccc}\n 00000 & 00000 \\
 00000 & 00000000000\n\end{array}$

Worst-Case Hardness

• In the worst case, solution may not exist!

 $\varphi_w(x||y) := x|| (y \oplus 1^n)$

Worst-Case Hardness with K solutions

• Let f be a function on n bits that marks K many inputs,

$$
\varphi_w(x||y) = \begin{cases} x||y & \text{if } f(x) = 1 \\ x||(y \oplus 1^n) & \text{if } f(x) = 0 \end{cases}
$$

• x is in a zero pair of φ_w if and only if $f(x) = 1$ Inverse queries don't help, because $\varphi_{\sf w}=\varphi_{\sf w}^{-1}$

Symmetrization

- Let ω, σ be random permutations that preserve suffix 0^n
- Sandwich a worst-case instance to get an average-case instance (with K zero pairs)

$$
\varphi:=\omega\circ\varphi_{\mathsf{w}}\circ\sigma
$$

Symmetrization

- Let ω, σ be random permutations that preserve suffix 0^n
- Sandwich a worst-case instance to get an average-case instance (with K zero pairs)

$$
\varphi:=\omega\circ\varphi_{\sf w}\circ\sigma
$$

Symmetrization Soundness

- Let H be the symmetric subgroup which preserves the suffix $0ⁿ$
- Given zero pair (x, y) in $\varphi = \omega \circ \varphi_w \circ \sigma$, have a zero pair $(\sigma(\mathsf{x}), \omega^{-1}(\mathsf{y}))$ in φ_{w} , hence $\sigma(\mathsf{x})$ is marked by t

Symmetrization Soundness

- \bullet Let H be the symmetric subgroup which preserves the suffix 0ⁿ
- Given zero pair (x, y) in $\varphi = \omega \circ \varphi_w \circ \sigma$, have a zero pair $(\sigma(\mathsf{x}), \omega^{-1}(\mathsf{y}))$ in φ_{w} , hence $\sigma(\mathsf{x})$ is marked by t

Symmetrization Soundness

- Let H be the symmetric subgroup which preserves the suffix $0ⁿ$
- Given zero pair (x, y) in $\varphi = \omega \circ \varphi_w \circ \sigma$, have a zero pair $(\sigma(\mathsf{x}), \omega^{-1}(\mathsf{y}))$ in φ_{w} , hence $\sigma(\mathsf{x})$ is marked by t

Symmetrization Soundness

- Let G be the symmetric group on 2^{2n} elements
- \bullet Let H be the symmetric subgroup which preserves the suffix 0^n
- Consider double cosets $\{C_0, C_1, ..., C_{2^n}\} = H\setminus G\diagup H$
- From the theory of Young subgroups:

Characterization Lemma [CP'24]

The double coset C_K is the set of permutations with K Zero Pairs

Symmetrization Lemma [CP'24]

If $\omega, \sigma \sim H$ are uniformly random, and any fixed $\varphi_w \in C_K$, then $ω \circ φ_w \circ σ$ is uniform random over C_K

Summary of results

• Prior argument plus tail bounds on Zero Pairs gives:

Theorem [CP'24]

A quantum algorithm making q queries to random φ, φ^{-1} on 2n bits finds a Zero Pair with probability at most 50 \cdot $\frac{q^2}{2^n}$ $rac{q}{2^n}$.

• A similar proof gives:

Theorem [CP'24]

A quantum algorithm making q queries to random φ, φ^{-1} on $r + c$ bits breaks one-wayness of the single-round sponge with probability at most 80 · $\frac{q^2}{2\pi i n(r)}$ $\frac{q^2}{2^{\min(r,c)}}$.

• These are tight up to a constant factor, for all success probabilities

Future Directions

- Other applications of symmetrizing over double cosets?
- One-wayness beyond a single round?
- Query lower bounds for collision resistance, second preimage resistance, etc?
- Indifferentiability?
- See also concurrent work by Majenz, Malavolta, and Walter (\rightarrow) Similar results, different techniques, [\[eprint:2024/1140\]](https://eprint.iacr.org/2024/1140)

Thank you!

[CP24] Quantum One-Wayness of the Single Round Sponge with Invertible Permutations, eprint:2024/414 [Unruh 21 (23)] (Towards) Compressed Permutation Oracles, eprint:2021/062(2023/770) [Zhandry 21] Redeeming Reset Indifferentiability and Post-Quantum Groups eprint:2021/288