## Improved Reductions from Noisy to Bounded and Probing Leakages via Hockey-Stick Divergences

Maciej Obremski National University of Singapore

João Ribeiro Univ<br/> Nova Lisboa $\longrightarrow$ Técnico Lisboa

Lawrence Roy Aarhus University

François-Xavier Standaert Catholic University of Louvain

Daniele Venturi Sapienza University of Rome



What does Z leak about X?

### Primitive-level countermeasures

- Leakage resilient cryptography
- Typical simplified model: bounded leakage
  - Realistic?



## Implementation-level countermeasures

- Masking / secret sharing
- Typical simplified model: random probing



#### Primitive-level countermeasures

## $\ell\text{-}Bounded$ leakage model

- Secret  $X \leftarrow \mathcal{X}$  is sampled.
- Adversary chooses leakage function  $f: \mathcal{X} \to \{0,1\}^{\ell}$ .
- Z = f(X) is leaked to Adversary

## Mother of all leakages (Brian et al. 2021)

Noisy leakage: randomized function  $f: \mathcal{X} \to \mathcal{Z}$ .

- Real world
  - Secret  $X \leftarrow \mathcal{X}$  is sampled.

- Z = f(X) is leaked to Adversary.

- Simulation
  - Secret  $X \leftarrow \mathcal{X}$  is sampled.
  - Simulator chooses bounded leakage function  $g: \mathcal{X} \to \{0,1\}^{\ell}$ .
  - U = g(X) is leaked to Simulator
  - Simulator chooses Z.
  - Z is leaked to adversary.

 $\epsilon = \text{simulation error} = \text{distinguishing advantage}$ 

## Limitations of statistical distance and mutual information

- Some common leakage measures:
  - Statistical distance:  $SD(P_{XZ}, P_X \otimes P_Z)$
  - Mutual information: I(X; Z)
- Decrease slowly with noise
- No graceful security degradation
  - Example: leak all of X with probability  $\delta$ , else leak nothing
  - $\mathsf{SD}(P_{XZ}, P_X \otimes P_Z) \approx \delta$ , so simulation from no leakage for  $\epsilon \geq \delta$ .
  - No security at all with probability  $\delta$ . Even with n-1 bits of bounded leakage we have  $\epsilon \geq \delta/2$ .

#### Mother of all leakages (Brian et al. 2021)

- Dense leakages
  - Simulation from bounded leakage
  - Relations with several other leakage models

- In comparison, we get:
  - Tighter simulator analysis
  - Composition Theorem

# Hockey-stick divergence

• 
$$\mathsf{SD}_t(P;Q) = \sup_{\mathcal{S}} \left[ P(\mathcal{S}) - 2^t Q(\mathcal{S}) \right]$$
  
=  $\sum_x \max(0, P(x) - 2^t Q(x))$ 

- Equivalent to statistical distance when t=0
- Asymmetrical in P vs Qwhen t > 0
- Used in Differential Privacy



 $(t, \delta)$ -SD-noisy leakage

• Z = f(X) has  $(t, \delta)$ -SD-noisy leakage when

 $\delta \geq \mathsf{SD}_t(P_{XZ}, P_X \otimes P_Z)$ 

- Generalization:
  - $(t, \delta)$ -GSD-Noisy leakage:  $\delta \ge \mathsf{SD}_t(P_{XZ}, P_X \otimes Q)$ for some distribution Q
  - Q "simulates" leakage Z without knowing X



## Simulation via bounded leakage

- $(t,\delta)$ -GSD-noisy leakage can be simulated from  $\ell$  bits of bounded leakage with simulation error  $\epsilon$ 
  - $-\ell = t + \log(\ln(1/\alpha))$
  - $-\epsilon = \delta + \alpha$
  - Holds for any  $\alpha\!>\!0$

# Rejection sampling simulator

- For i := 0 to  $2^{\ell} 1$ :
  - Sample  $z \leftarrow Q$  (according to random tape R)
  - With probability min  $\left(2^{-t} \cdot \frac{P_{XZ}(x,z)}{P_x(x) \cdot Q(z),1}\right)$ :
    - Return *i* as leakage
  - Return  $2^\ell 1$  as leakage
- Simulator returns  $z_i$ , the *i*th sample of z (according to random tape R)

## Rejection sampling simulator

- For i := 0 to  $2^{\ell} 1$ :
  - Sample  $z \leftarrow Q$  (according to random tape R)
  - With probability min  $\left(2^{-t} \cdot \frac{P_{XZ}(x,z)}{P_x(x) \cdot Q(z),1}\right)$ :
    - Return *i* as leakage
  - Return  $2^\ell 1$  as leakage

Simulation error 
$$\delta + \alpha$$
,  
for  $\ell = t + \log(\ln(1/\alpha))$ 



# Composition

- Typical leakage occurs multiple times (e.g., once for each round)
- Let  $Z_1$  and  $Z_2$  be conditionally independent  $(t_1, \delta_1)/(t_2, \delta_2)$ -GSD-noisy leakages from X
  - $\implies$   $(Z_1, Z_2)$  is a  $(t_1+t_2, \delta_1+\delta_2)$ -GSD-noisy leakage.
    - Adapted from differential privacy's basic composition theorem (Dwork and Lei 2009)
- Does advanced composition of m leakages work?
  - Yes, but only for small t (e.g.  $t < 1/\sqrt{m})$  and a more limited class of leakages.

#### Parameter computation

- $\operatorname{SD}_t(P;Q) = \sup_{\mathcal{S}} \left[ P(\mathcal{S}) 2^t Q(\mathcal{S}) \right]$
- Worst case:

$$- S = \{(x, z) \mid P(x, z) > 2^t Q(x, z)\}$$

- Evaluate 
$$P(\mathcal{S}) - 2^t Q(\mathcal{S})$$

- For  $(t, \delta)$ -SD-Noisy Leakage,  $\delta = SD_t(P_{XZ}, P_X \otimes P_Z)$
- For  $(t, \delta)$ -GSD-Noisy Leakage,  $\delta = \mathsf{SD}_t(P_{XZ}, P_X \otimes Q)$ 
  - Future research: how to choose Q optimally?

#### Evaluation model





#### Evaluation: SD



# Implementation-level countermeasures

# Random probing

- Duc et al. 2014
  - p-random probing leakage:
    - Leak Z = X with probability p
    - Else, leak  $Z\!=\!\perp$
  - Relationship with statistical distance
    - If X is uniform in  $\mathcal{X}$  then  $p \leq |\mathcal{X}| \cdot \mathsf{SD}_0(P_X \otimes P_Z, P_{XZ})$
    - Note p's dependence on  $|\mathcal{X}|$ .

# Reverse SD Leakage

• Z = f(X) has  $(t, \delta)$ -RevSDnoisy leakage when

 $\delta \geq \mathsf{SD}_t(P_X \otimes P_Z, P_{XZ})$ 

- Note swap of product and joint distributions
- Has similar generalization to  $(t, \delta)$ -RevGSD-Noisy leakage



## Simulation via Random Probing

- Let X be uniform on  $\mathcal{X}$ 
  - Let Z = f(X) be a  $(t,\delta)$ -RevSD-noisy leakage.
- $\implies Z \text{ can be simulated} \\ \text{from } p\text{-random} \\ \text{probing, where} \end{cases}$

$$p = (1 - 2^{-t}) + 2^{-t}\delta \cdot |\mathcal{X}|$$



#### Evaluation: RevSD



The  $\delta \cdot |\mathcal{X}|$  term is hidden by rapidly decreasing  $\delta$ 

### Evaluation: RevSD

• Comparison with Average Relative Error (ARE) (Prest et al. 2019)



## Conclusion

- SD-noisy and RevSD-noisy leakage models
- Reduction to bounded leakage (resp. random probing).
  - This is tight for SD-noisy leakage
  - Provides a bridge between theory and practice
- Composition of SD-noisy leakages
- Evaluation on Hamming weight model
  - Non-trivial concrete bounds