Improved Reductions from Noisy to Bounded and Probing Leakages via Hockey-Stick Divergences

Maciej Obremski National University of Singapore

João Ribeiro Univ Nova Lisboa \longrightarrow Técnico Lisboa

Lawrence Roy Aarhus University

François-Xavier Standaert Catholic University of Louvain

Daniele Venturi Sapienza University of Rome

What does Z leak about X ?

Primitive-level countermeasures

- Leakage resilient cryptography
- Typical simplified model: bounded leakage
	- Realistic?

Implementation-level countermeasures

- Masking / secret sharing
- Typical simplified model: random probing

Primitive-level countermeasures

ℓ-Bounded leakage model

- Secret $X \leftarrow \mathcal{X}$ is sampled.
- Adversary chooses leakage function $f: \mathcal{X} \to \{0,1\}^{\ell}$.
- $Z = f(X)$ is leaked to Adversary

Mother of all leakages (Brian et al. 2021) Noisy leakage: randomized function $f: \mathcal{X} \to \mathcal{Z}$.

- Real world
	- Secret $X \leftarrow \mathcal{X}$ is sampled.

- $Z = f(X)$ is leaked to Adversary.

- Simulation
	- Secret $X \leftarrow \mathcal{X}$ is sampled.
	- Simulator chooses bounded leakage function $g: \mathcal{X} \to \{0,1\}^{\ell}$.
	- $-U = g(X)$ is leaked to Simulator
	- Simulator chooses Z.
	- Z is leaked to adversary.

 $\epsilon =$ simulation error = distinguishing advantage

Limitations of statistical distance and mutual information

- Some common leakage measures:
	- Statistical distance: $SD(P_{XZ}, P_X \otimes P_Z)$
	- Mutual information: $I(X; Z)$
- Decrease slowly with noise
- No graceful security degradation
	- Example: leak all of X with probability δ , else leak nothing
	- $SD(P_{XZ}, P_X \otimes P_Z) \approx \delta$, so simulation from no leakage for $\epsilon \geq \delta$.
	- No security at all with probability δ. Even with n−1 bits of bounded leakage we have $\epsilon \geq \delta/2$.

Mother of all leakages (Brian et al. 2021)

- Dense leakages
	- Simulation from bounded leakage
	- Relations with several other leakage models
- In comparison, we get:
	- Tighter simulator analysis
	- Composition Theorem

Hockey-stick divergence

• SD_t(P; Q) = sup_S[P(S) - 2^tQ(S)]
=
$$
\sum_x \max(0, P(x) - 2tQ(x))
$$

- Equivalent to statistical distance when $t = 0$
- Asymmetrical in P vs Q when $t > 0$
- Used in Differential Privacy

(t, δ) -SD-noisy leakage

• $Z = f(X)$ has (t, δ) -SD-noisy leakage when

 $\delta \geq SD_t(P_{XZ}, P_X \otimes P_Z)$

- Generalization:
	- (t, δ) -GSD-Noisy leakage: $\delta \geq SD_t(P_{XZ}, P_X \otimes Q)$ for some distribution Q
	- Q "simulates" leakage Z without knowing X

Simulation via bounded leakage

• (t,δ) -GSD-noisy leakage can be simulated from ℓ bits of bounded leakage with simulation error ϵ

$-\ell = t + \log(\ln(1/\alpha))$

- $-\epsilon = \delta + \alpha$
- Holds for any $\alpha > 0$

Rejection sampling simulator

- For $i := 0$ to $2^{\ell} 1$:
	- Sample $z \leftarrow Q$ (according to random tape R)
	- With probability min $\left(2^{-t} \cdot \frac{P_{XZ}(x,z)}{P_{X}(x) \cdot Q(z),1}\right)$:
		- \bullet Return *i* as leakage
	- Return $2^{\ell}-1$ as leakage
- Simulator returns z_i , the *i*th sample of z (according to random tape R)

Rejection sampling simulator

- For $i := 0$ to $2^{\ell} 1$:
	- Sample $z \leftarrow Q$ (according to random tape R)
	- With probability min $\left(2^{-t} \cdot \frac{P_{XZ}(x,z)}{P_x(x) \cdot Q(z),1}\right)$:
		- \bullet Return *i* as leakage
	- Return $2^{\ell}-1$ as leakage

$$
\begin{array}{c}\n\text{Simulation error } \delta + \alpha, \\
\text{for } \ell = t + \log(\ln(1/\alpha))\n\end{array}
$$

Composition

- Typical leakage occurs multiple times (e.g., once for each round)
- Let Z_1 and Z_2 be conditionally independent $(t_1, \delta_1)/(t_2, \delta_2)$ -GSD-noisy leakages from X
	- \implies (Z_1, Z_2) is a $(t_1+t_2, \delta_1+\delta_2)$ -GSD-noisy leakage.
	- Adapted from differential privacy s basic composition ' theorem (Dwork and Lei 2009)
- Does advanced composition of m leakages work?
	- Yes, but only for small t (e.g. $t < 1/\sqrt{m}$) and a more limited class of leakages.

Parameter computation

- $SD_t(P; Q) = sup [P(S) 2^t Q(S)]$
- Worst case:

$$
- S = \{(x, z) | P(x, z) > 2^t Q(x, z)\}
$$

- Evaluate
$$
P(S) - 2^t Q(S)
$$

- For (t, δ) -SD-Noisy Leakage, $\delta = SD_t(P_{XZ}, P_X \otimes P_Z)$
- For (t, δ) -GSD-Noisy Leakage, $\delta = SD_t(P_{XZ}, P_X \otimes Q)$
	- Future research: how to choose Q optimally?

Evaluation model

Evaluation: SD

Implementation-level countermeasures

Random probing

- Duc et al. 2014
	- p-random probing leakage:
		- Leak $Z = X$ with probability p
		- Else, leak $Z = \perp$
	- Relationship with statistical distance
		- If X is uniform in $\mathcal X$ then
		- Note p 's dependence on $|\mathcal{X}|$.

Reverse SD Leakage

• $Z = f(X)$ has (t, δ) -RevSDnoisy leakage when

 $\delta \geq SD_t(P_X \otimes P_Z, P_{XZ})$

- Note swap of product and joint distributions
- Has similar generalization to (t, δ) -RevGSD-Noisy leakage

Simulation via Random Probing

- Let X be uniform on $\mathcal X$ Let $Z = f(X)$ be a (t,δ) -RevSD-noisy leakage.
- \implies Z can be simulated from p-random probing, where $p = (1 - 2^{-t}) + 2^{-t}\delta \cdot |\mathcal{X}|$

$$
\frac{\frac{\frac{1}{1} \cdot 2^{-t} \cdot P_{Z}(Z)}{P_{Z|X=0}(Z)}}{\frac{P_{Z|X=1}(X,Z)}{P_{Z|X=1}(X,Z)}}
$$

Evaluation: RevSD

The $\delta \cdot |\mathcal{X}|$ term is hidden by rapidly decreasing δ

Evaluation: RevSD

• Comparison with Average Relative Error (ARE) (Prest et al. 2019)

Conclusion

- SD-noisy and RevSD-noisy leakage models
- Reduction to bounded leakage (resp. random probing).
	- This is tight for SD-noisy leakage
	- Provides a bridge between theory and practice
- Composition of SD-noisy leakages
- Evaluation on Hamming weight model
	- Non-trivial concrete bounds