Improved Reductions from Noisy to Bounded and Probing Leakages via Hockey-Stick Divergences

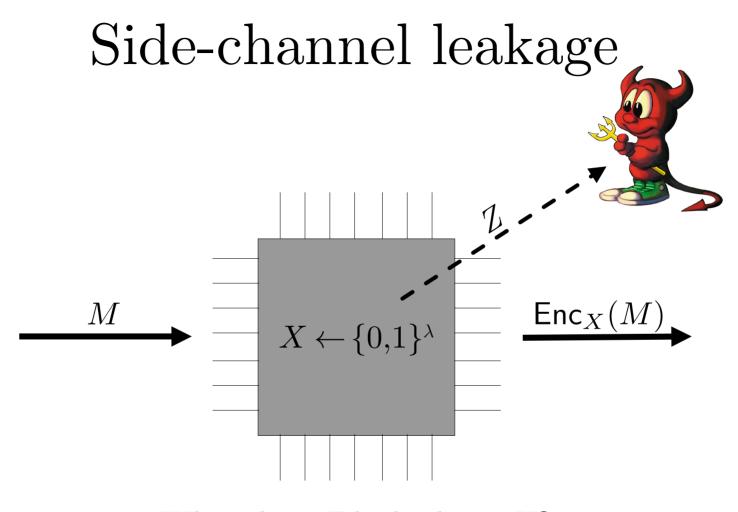
Maciej Obremski National University of Singapore

João Ribeiro Univ
 Nova Lisboa \longrightarrow Técnico Lisboa

Lawrence Roy Aarhus University

François-Xavier Standaert Catholic University of Louvain

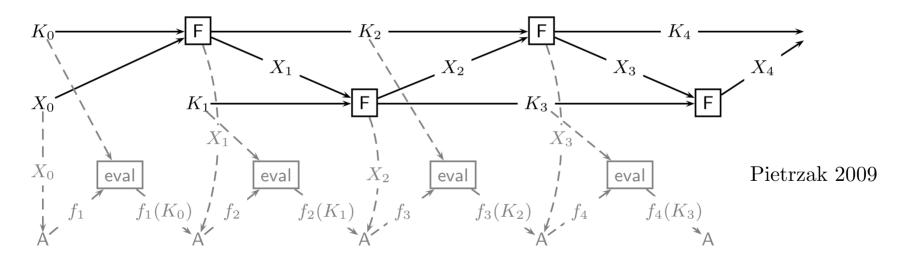
Daniele Venturi Sapienza University of Rome



What does Z leak about X?

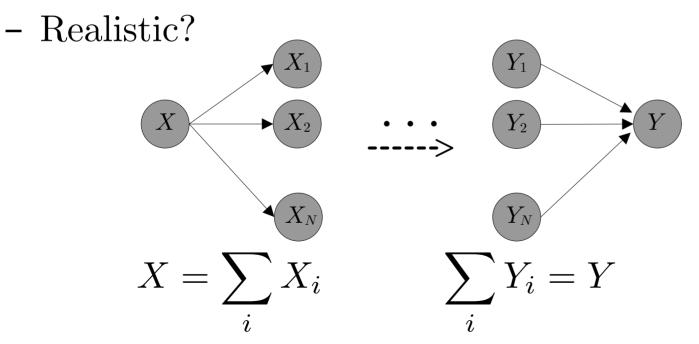
Primitive-level countermeasures

- Leakage resilient cryptography
- Typical simplified model: bounded leakage
 - Realistic?



Implementation-level countermeasures

- Masking / secret sharing
- Typical simplified model: random probing



Primitive-level countermeasures

$\ell\text{-}Bounded$ leakage model

- Secret $X \leftarrow \mathcal{X}$ is sampled.
- Adversary chooses leakage function $f: \mathcal{X} \to \{0,1\}^{\ell}$.
- Z = f(X) is leaked to Adversary

Mother of all leakages (Brian et al. 2021)

Noisy leakage: randomized function $f: \mathcal{X} \to \mathcal{Z}$.

- Real world
 - Secret $X \leftarrow \mathcal{X}$ is sampled.

- Z = f(X) is leaked to Adversary.

- Simulation
 - Secret $X \leftarrow \mathcal{X}$ is sampled.
 - Simulator chooses bounded leakage function $g: \mathcal{X} \to \{0,1\}^{\ell}$.
 - U = g(X) is leaked to Simulator
 - Simulator chooses Z.
 - Z is leaked to adversary.

 $\epsilon = \text{simulation error} = \text{distinguishing advantage}$

Limitations of statistical distance and mutual information

- Some common leakage measures:
 - Statistical distance: $SD(P_{XZ}, P_X \otimes P_Z)$
 - Mutual information: I(X; Z)
- Decrease slowly with noise
- No graceful security degradation
 - Example: leak all of X with probability δ , else leak nothing
 - $\mathsf{SD}(P_{XZ}, P_X \otimes P_Z) \approx \delta$, so simulation from no leakage for $\epsilon \geq \delta$.
 - No security at all with probability δ . Even with n-1 bits of bounded leakage we have $\epsilon \geq \delta/2$.

Mother of all leakages (Brian et al. 2021)

- Dense leakages
 - Simulation from bounded leakage
 - Relations with several other leakage models

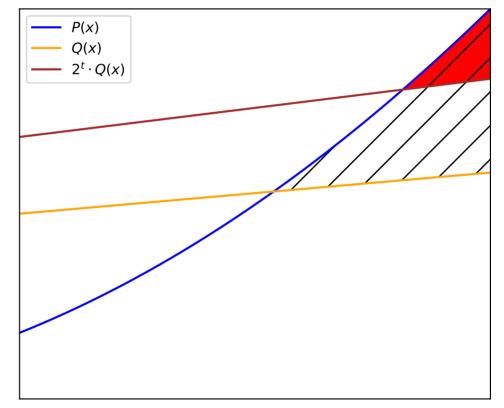
- In comparison, we get:
 - Tighter simulator analysis
 - Composition Theorem

Hockey-stick divergence

•
$$\mathsf{SD}_t(P;Q) = \sup_{\mathcal{S}} \left[P(\mathcal{S}) - 2^t Q(\mathcal{S}) \right]$$

= $\sum_x \max(0, P(x) - 2^t Q(x))$

- Equivalent to statistical distance when t=0
- Asymmetrical in P vs Qwhen t > 0
- Used in Differential Privacy

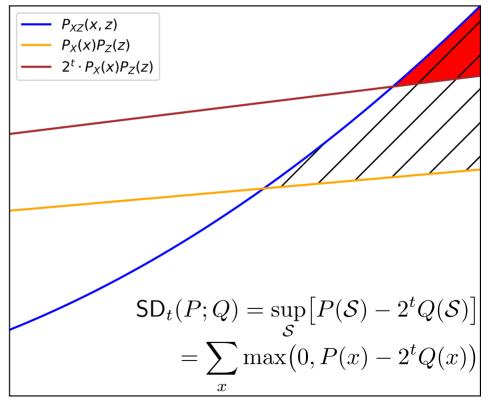


 (t, δ) -SD-noisy leakage

• Z = f(X) has (t, δ) -SD-noisy leakage when

 $\delta \geq \mathsf{SD}_t(P_{XZ}, P_X \otimes P_Z)$

- Generalization:
 - (t, δ) -GSD-Noisy leakage: $\delta \ge \mathsf{SD}_t(P_{XZ}, P_X \otimes Q)$ for some distribution Q
 - Q "simulates" leakage Z without knowing X



Simulation via bounded leakage

- (t,δ) -GSD-noisy leakage can be simulated from ℓ bits of bounded leakage with simulation error ϵ
 - $-\ell = t + \log(\ln(1/\alpha))$
 - $-\epsilon = \delta + \alpha$
 - Holds for any $\alpha\!>\!0$

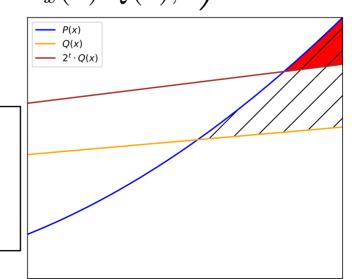
Rejection sampling simulator

- For i := 0 to $2^{\ell} 1$:
 - Sample $z \leftarrow Q$ (according to random tape R)
 - With probability min $\left(2^{-t} \cdot \frac{P_{XZ}(x,z)}{P_x(x) \cdot Q(z),1}\right)$:
 - Return *i* as leakage
 - Return $2^\ell 1$ as leakage
- Simulator returns z_i , the *i*th sample of z (according to random tape R)

Rejection sampling simulator

- For i := 0 to $2^{\ell} 1$:
 - Sample $z \leftarrow Q$ (according to random tape R)
 - With probability min $\left(2^{-t} \cdot \frac{P_{XZ}(x,z)}{P_x(x) \cdot Q(z),1}\right)$:
 - Return *i* as leakage
 - Return $2^\ell 1$ as leakage

Simulation error
$$\delta + \alpha$$
,
for $\ell = t + \log(\ln(1/\alpha))$



Composition

- Typical leakage occurs multiple times (e.g., once for each round)
- Let Z_1 and Z_2 be conditionally independent $(t_1, \delta_1)/(t_2, \delta_2)$ -GSD-noisy leakages from X
 - \implies (Z_1, Z_2) is a $(t_1+t_2, \delta_1+\delta_2)$ -GSD-noisy leakage.
 - Adapted from differential privacy's basic composition theorem (Dwork and Lei 2009)
- Does advanced composition of m leakages work?
 - Yes, but only for small t (e.g. $t < 1/\sqrt{m})$ and a more limited class of leakages.

Parameter computation

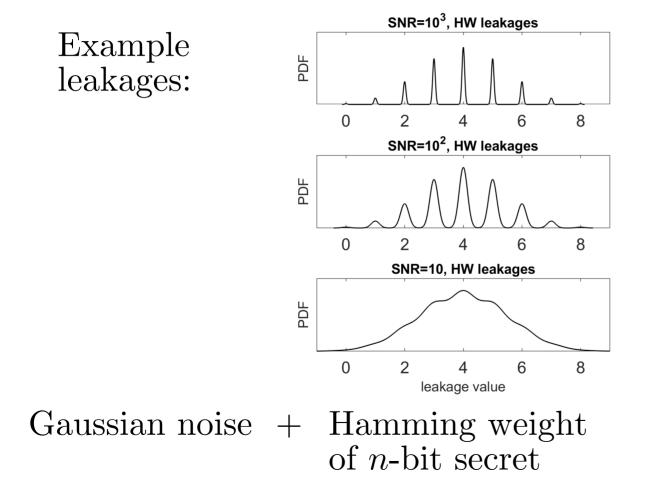
- $\operatorname{SD}_t(P;Q) = \sup_{\mathcal{S}} \left[P(\mathcal{S}) 2^t Q(\mathcal{S}) \right]$
- Worst case:

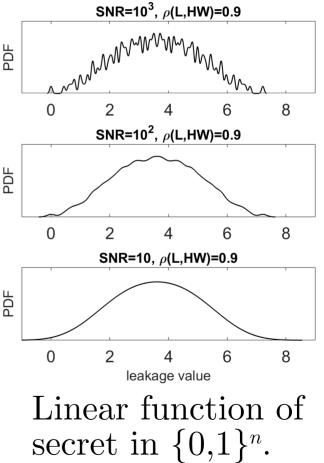
$$- S = \{(x, z) \mid P(x, z) > 2^t Q(x, z)\}$$

- Evaluate
$$P(\mathcal{S}) - 2^t Q(\mathcal{S})$$

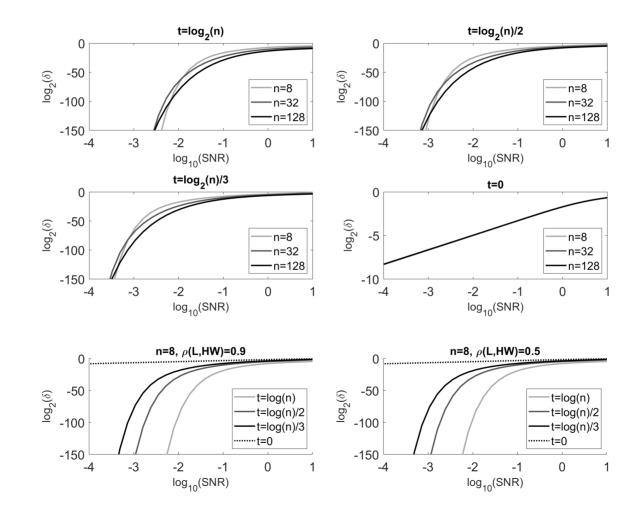
- For (t, δ) -SD-Noisy Leakage, $\delta = SD_t(P_{XZ}, P_X \otimes P_Z)$
- For (t, δ) -GSD-Noisy Leakage, $\delta = \mathsf{SD}_t(P_{XZ}, P_X \otimes Q)$
 - Future research: how to choose Q optimally?

Evaluation model





Evaluation: SD



Implementation-level countermeasures

Random probing

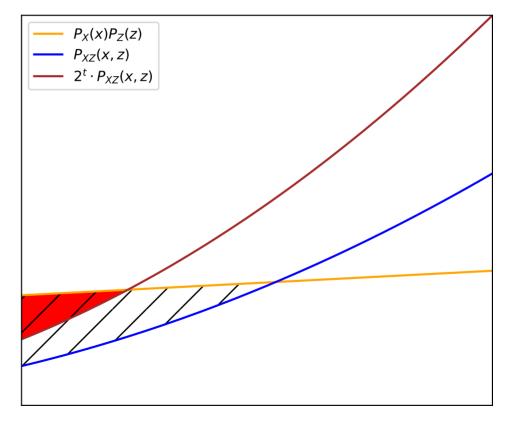
- Duc et al. 2014
 - p-random probing leakage:
 - Leak Z = X with probability p
 - Else, leak $Z\!=\!\perp$
 - Relationship with statistical distance
 - If X is uniform in \mathcal{X} then $p \leq |\mathcal{X}| \cdot \mathsf{SD}_0(P_X \otimes P_Z, P_{XZ})$
 - Note p's dependence on $|\mathcal{X}|$.

Reverse SD Leakage

• Z = f(X) has (t, δ) -RevSDnoisy leakage when

 $\delta \geq \mathsf{SD}_t(P_X \otimes P_Z, P_{XZ})$

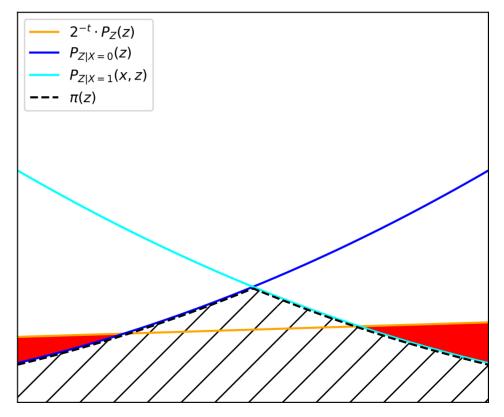
- Note swap of product and joint distributions
- Has similar generalization to (t, δ) -RevGSD-Noisy leakage



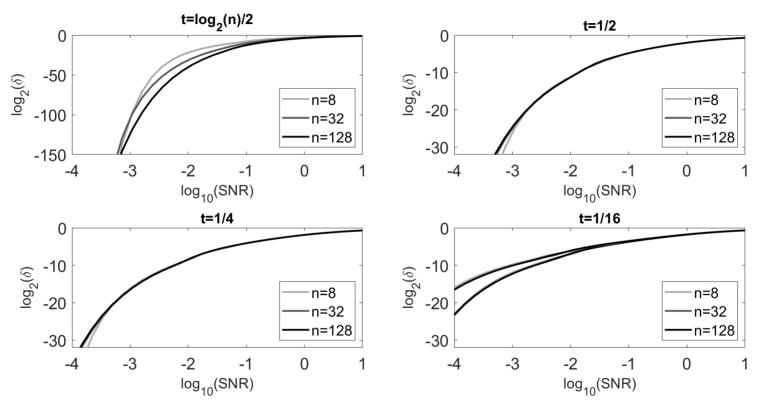
Simulation via Random Probing

- Let X be uniform on \mathcal{X}
 - Let Z = f(X) be a (t,δ) -RevSD-noisy leakage.
- $\implies Z \text{ can be simulated} \\ \text{from } p\text{-random} \\ \text{probing, where} \end{cases}$

$$p = (1 - 2^{-t}) + 2^{-t}\delta \cdot |\mathcal{X}|$$



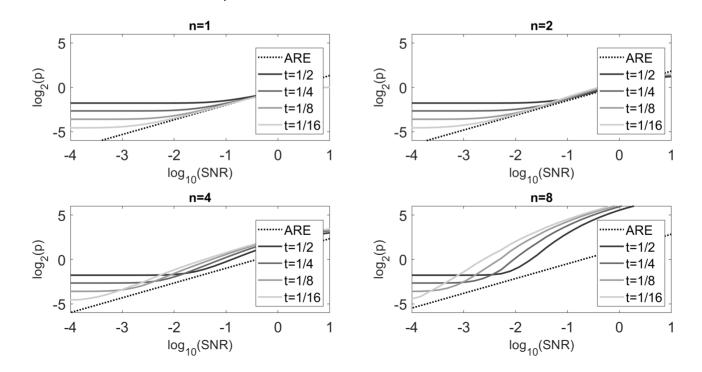
Evaluation: RevSD



The $\delta \cdot |\mathcal{X}|$ term is hidden by rapidly decreasing δ

Evaluation: RevSD

• Comparison with Average Relative Error (ARE) (Prest et al. 2019)



Conclusion

- SD-noisy and RevSD-noisy leakage models
- Reduction to bounded leakage (resp. random probing).
 - This is tight for SD-noisy leakage
 - Provides a bridge between theory and practice
- Composition of SD-noisy leakages
- Evaluation on Hamming weight model
 - Non-trivial concrete bounds