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X ← {0,1}λ

Z 

Side-channel leakage

What does Z leak about X?
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Primitive-level countermeasures

● Leakage resilient cryptography

● Typical simplified model: bounded leakage
– Realistic?

Pietrzak 2009
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Implementation-level countermeasures

● Masking / secret sharing

● Typical simplified model: random probing
– Realistic?
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Primitive-level countermeasures
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ℓ-Bounded leakage model

● Secret X ← X is sampled.

● Adversary chooses leakage function f: X → {0,1}ℓ.

● Z = f(X) is leaked to Adversary
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Mother of all leakages
(Brian et al. 2021)

● Real world
– Secret X ← X is sampled.

– Z = f(X) is leaked to 
Adversary.

● Simulation
– Secret X ← X is sampled.

– Simulator chooses bounded 

leakage function g: X → {0,1}ℓ.

– U = g(X) is leaked to 
Simulator

– Simulator chooses Z.

– Z is leaked to adversary.

Noisy leakage: randomized function f: X → Z.

ϵ = simulation error = distinguishing advantage



  
8

Limitations of statistical distance and 
mutual information

● Some common leakage measures:

– Statistical distance: 

– Mutual information: 

● Decrease slowly with noise

● No graceful security degradation

– Example: leak all of X with probability δ, else leak nothing

–                                , so simulation from no leakage for ϵ ≥ δ.

– No security at all with probability δ. Even with n−1 bits of 
bounded leakage we have ϵ ≥ δ/2.
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Mother of all leakages
(Brian et al. 2021)

● Dense leakages
– Simulation from 

bounded leakage

– Relations with several 
other leakage models 

● In comparison, we get:
– Tighter simulator 

analysis

– Composition Theorem
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Hockey-stick divergence
●

● Equivalent to statistical 
distance when t = 0

● Asymmetrical in P vs Q 
when t > 0

● Used in Differential Privacy
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(t, δ)-SD-noisy leakage
● Z = f(X) has (t, δ)-SD-noisy 

leakage when

● Generalization:

– (t, δ)-GSD-Noisy leakage:

for some distribution Q 

– Q  simulates  leakage Z “ ”
without knowing X
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Simulation via bounded leakage

● (t,δ) -GSD-noisy leakage can be simulated from ℓ 
bits of bounded leakage with simulation error ϵ

– ℓ = t + log(ln(1/α))

– ϵ =  δ + α

– Holds for any α > 0
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Rejection sampling simulator

● For i := 0 to 2ℓ − 1:

– Sample z ← Q (according to random tape R)

– With probability                           :
● Return i as leakage 

– Return 2ℓ − 1 as leakage

● Simulator returns zi , the ith sample of z
(according to random tape R)
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Rejection sampling simulator

● For i := 0 to 2ℓ − 1:

– Sample z ← Q (according to random tape R)

– With probability                           :
● Return i as leakage 

– Return 2ℓ − 1 as leakage

● Simulator returns zi , the ith sample of z
(according to random tape R)

Simulation error δ + α,
for ℓ = t + log(ln(1/α))
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Composition
● Typical leakage occurs multiple times

(e.g., once for each round)

● Let Z1 and Z2 be conditionally independent
(t1, δ1)/(t2, δ2)-GSD-noisy leakages from X

⟹  (Z1, Z2) is a (t1+t2, δ1+δ2)-GSD-noisy leakage.

– Adapted from differential privacy s basic composition ’
theorem (Dwork and Lei 2009)

● Does advanced composition of m leakages work?
– Yes, but only for small t (e.g.                ) and a more 

limited class of leakages.
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Parameter computation

●

● Worst case:
–

– Evaluate

● For (t, δ)-SD-Noisy Leakage,

● For (t, δ)-GSD-Noisy Leakage,
– Future research: how to choose Q optimally?
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Evaluation model

Gaussian noise  + Linear function of 
secret in {0,1}n.

Example 
leakages:

Hamming weight 
of n-bit secret
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Evaluation: SD
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Implementation-level countermeasures
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Random probing

● Duc et al. 2014

– p-random probing leakage:
● Leak Z = X with probability p 
● Else, leak Z = ⊥

– Relationship with statistical distance
● If X is uniform in X then  
● Note p's dependence on |X|.
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Reverse SD Leakage
● Z = f(X) has (t, δ)-RevSD-

noisy leakage when

● Note swap of product and 
joint distributions

● Has similar generalization to 
(t, δ)-RevGSD-Noisy leakage
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Simulation via Random Probing

● Let X be uniform on X 

Let Z = f(X) be a (t,δ)-
RevSD-noisy leakage.

⟹ Z can be simulated  
from p-random 
probing, where
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Evaluation: RevSD

The δ ⋅ |X| term is hidden by rapidly decreasing δ 
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Evaluation: RevSD

● Comparison with Average Relative Error (ARE) 
(Prest et al. 2019)
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Conclusion

● SD-noisy and RevSD-noisy leakage models

● Reduction to bounded leakage (resp. random 
probing).
– This is tight for SD-noisy leakage

– Provides a bridge between theory and practice

● Composition of SD-noisy leakages

● Evaluation on Hamming weight model
– Non-trivial concrete bounds
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