Fully-Succinct Multi-Key Homomorphic Signatures
from Standard Assumptions

Gaspard Anthoine, David Balbas, Dario Fiore
IMDEA Software Institute, Madrid, Spain

19th August 2024 i d e a
CRYPTO 2024 i

Computing on Authenticated Data

A sensor sends temperature data m; every minute. m; and a timestamp /; are signed.

i

in=0

Hin=0

1in=0

vk, sk

Computing on Authenticated Data

A sensor sends temperature data m; every minute. m; and a timestamp /; are signed.

i

in=0

my = 2953 , o1 = Sign(sk, 295.3 | 11h09)

Hin=0

1in=0

vk, sk

Computing on Authenticated Data

A sensor sends temperature data m; every minute. m; and a timestamp /; are signed.

i

=0 my = 295.6 , 02 = Sign(sk, 295.6 | 11h10)

my = 2953 , o1 = Sign(sk, 295.3 | 11h09)

Hin=0

1in=0

vk, sk

Computing on Authenticated Data

A sensor sends temperature data m; every minute. m; and a timestamp /; are signed.

i

my = 2953 , o1 = Sign(sk, 295.3 | 11h09)

— my = 295.6 , o5 = Sign(sk, 295.6 | 11410)
=9 m3 = 295.8 , o3 = Sign(sk, 295.8 | 11h11)
1in=90

vk, sk

Computing on Authenticated Data

A sensor sends temperature data m; every minute. m; and a timestamp /; are signed.

i

my = 2953 , o1 = Sign(sk, 295.3 | 11h09)

TTIN=0 my = 295.6 , o5 = Sign(sk, 295.6 | 11h10)
=0 ms = 295.8 , 03 = Sign(sk, 205.8 | 11h11)
1HI=0
Compute MAX temp vk, sk

from 0h0O to 23h59

Computing on Authenticated Data

A sensor sends temperature data m; every minute. m; and a timestamp /; are signed.

i

my = 2953 , o1 = Sign(sk, 295.3 | 11h09)

TTIN=0 my = 295.6 , o5 = Sign(sk, 295.6 | 11h10)
=0 ms = 295.8 , 03 = Sign(sk, 205.8 | 11h11)
1HI=0
Compute MAX temp vk, sk

from 0h0O to 23h59

Can we have a short, publicly verifiable proof that the MAX temperature
is computed correctly on today’s authentic temperatures?

Homomorphic Signatures [JMSW02]

vk, sk

Homomorphic Signatures [JMSW02]

my, 01 = Sign(sk, my, ¢1)

mp, 02 = Sign(5k7 m27£2)

ms, 03 = Sign(sk, ms, (3)

vk, sk

Homomorphic Signatures [JMSW02]

my, 01 = Sign(sk, my, ¢1)

mp, 02 = Sign(5k7 m27£2)

ms, 03 = Sign(sk, ms, (3)

vk, sk

Evaluate y = f(mq,..., mp)

Homomorphic Signatures [JMSW02]

my, 01 = Sign(sk, my, ¢1)

mp, 02 = Sign(5k7 m27£2)

ms, 03 = Sign(sk, ms, (3)

vk, sk

Evaluate y = f(mq,..., mp)

&) Eval(f.¢,m,vk,0) — y,0r,

Homomorphic Signatures [JMSW02]

my, 01 = Sign(sk, my, ¢1)

mp, 02 = Sign(5k7 m27£2)

ms, 03 = Sign(sk, ms, (3)

Evaluate y = f(mq,..., mp)
&) Eval(f.¢,m,vk,0) — y,0r, E

vk, sk

Homomorphic Signatures [JMSW02]

my, 01 = Sign(sk, my, ¢1)

mp, 02 = Sign(5k7 m27£2)

ms, 03 = Sign(sk, ms, (3)

Evaluate y = f(mq,..., mp)
&) Eval(f.¢,m,vk,0) — y,0r, E

e o0¢, is publicly verifiable from f, vk, y and labels /;.

vk, sk

Homomorphic Signatures [JMSW02]

my, 01 = Sign(sk, my, ¢1)

mp, 02 = Sign(5k7 m27£2)

m3, 03 = Sign(sk, m3, (3)

Evaluate y = f(mq,..., mp)
&) Eval(f.¢,m,vk,0) — y,0r, E

e o0¢, is publicly verifiable from f, vk, y and labels /;.

vk, sk

e o0¢, is succinct: does not grow with n or|f].

Multi-Key Homomorphic Signatures [FMNP16]

Multi-Key Homomorphic Signatures [FMNP16]

my, o1 = Sign(sky, m1, 1)

-

Vkl7 Sk1

my, 03 = Sign(ska, ma, £2)

PN d‘
C{«) vka, ska

Vk37 Sk3

ms, o3 = Sign(sks, ms3, £3)

Multi-Key Homomorphic Signatures [FMNP16]

my, o1 = Sign(sky, m1, 1)

-

Vkl7 Sk1

my, 03 = Sign(ska, ma, £2)

ms, o3 = Sign(sks, m3, (3))
i { I vka, sko
Evaluate f(my, mp, m3)

Vk37 Sk3

Multi-Key Homomorphic Signatures [FMNP16]

my, o1 = Sign(sky, m1, 1)

-

Vkl7 Sk1

my, oo = Sign(ska, ma, {2)

i { I vka, sko
Evaluate f(my, ma, m3)
g Vk3,Sk3
Eval(f,€,m,vk,0) — y, o7,

ms, o3 = Sign(sks, ms3, £3)

Multi-Key Homomorphic Signatures [FMNP16]

m1, o1 = Sign(sk1, m1, (1)

myp, 02 = Sign(skg,mz,fz) Vkl’skl

ms3,03 = Sign(sk3,m3,€3) .

i { I vka, sko
Evaluate f(my, mp, m3)
g Vk3,Sk3
Eval(f,£, m,vk,o0) — y, o7,

Setup(1*), KeyGen(pp)
Sign(sk,m, ¢) — o

Eval(pp, (f,£), m,vk,o) — o¢
Ver(pp, (f,£),vk,y,07,) = 0/1

Multi-Key Homomorphic Signatures [FMNP16]

m1, o1 = Sign(sk1, m1, (1)

-

myp, 02 = Sign(skg,mz,fz) Vkl’skl

GA

ms, o3 = Sign(sks, ms3, £3)

Evaluate f(my, ma, m3)

&) Eval(f, £, m,vk, o)

Setup(1*), KeyGen(pp)

Sign(sk, m, () — o

Eval(pp, (f,£), m,vk,o) — o¢
Ver(pp, (f,€),vk,y,or,) — 0/1

i{ i vka, sko
ﬁ o
—Y,0fy

e Succinctness: |of | < p()). Succinct in:

e n2 of inputs n,
e function size |f],
e 2 of parties t.

Our Contribution

e Succinct single-key HS from standard assumptions are known
[BF11, CFW14, GVW15, CFT22, BCFL23, GU24, Goy24, ...]

Our Contribution

e Succinct single-key HS from standard assumptions are known
[BF11, CFW14, GVW15, CFT22, BCFL23, GU24, Goy24, ...]
e However, no MKHS for all functions was fully-succinct.

e [FMNP16] standard model, |o¢ | = poly(t,log n)
e [LTWC18] fully succinct, SNARK-based.

Our Contribution

e Succinct single-key HS from standard assumptions are known
[BF11, CFW14, GVW15, CFT22, BCFL23, GU24, Goy24, ...]
e However, no MKHS for all functions was fully-succinct.

e [FMNP16] standard model, |o¢ | = poly(t,log n)
e [LTWC18] fully succinct, SNARK-based.

Our Result: fully-succinct MKHS from standard and falsifiable assumptions.

Our Contribution

e Succinct single-key HS from standard assumptions are known
[BF11, CFW14, GVW15, CFT22, BCFL23, GU24, Goy24, ...]
e However, no MKHS for all functions was fully-succinct.

e [FMNP16] standard model, |o¢ | = poly(t,log n)
e [LTWC18] fully succinct, SNARK-based.

Our Result: fully-succinct MKHS from standard and falsifiable assumptions.

v Adaptive security, (sequential) multi-hop evaluation, pre-processing.
v/ Instantiations from e.g. k-Lin or LWE.

X Non black-box use of cryptographic primitives.

Batch arguments for NP:

aggregating signatures

Batch arguments for NP: — Homomorphic evaluation:
aggregating signatures functional commitments

Batch arguments for NP: Homomorphic evaluation:
aggregating signatures functional commitments
| J
4 lJ/ N\

Achieving security:

Linking messages and commitments

Batch arguments for NP:
aggregating signatures

Homomorphic evaluation:
functional commitments

Instantiations

4

Achieving security:

Linking messages and commitments

Batch Arguments for NP [KPY19, CJJ21]

Let (x1,w1),...,(xn,w,) be statement-witness pairs from an NP relation C(x;,w;) = 1.

Batch Arguments for NP [KPY19, CJJ21]

Let (x1,w1),...,(xn,w,) be statement-witness pairs from an NP relation C(x;,w;) = 1.

Batch Arguments for NP [KPY19, CJJ21]

Let (x1,w1),...,(xn,w,) be statement-witness pairs from an NP relation C(x;,w;) = 1.

Prove C(x;,w;) = 1 Vi € [n]

Ver(crs, C, {xi}ign), m) = 1

e Succinctness: |7| = poly(], [C|, log n).

Batch Arguments for NP [KPY19, CJJ21]

Let (x1,w1),...,(xn,w,) be statement-witness pairs from an NP relation C(x;,w;) = 1.

Prove C(x;,w;) = 1 Vi € [n]

Ver(crs, C, {xi}ign), m) = 1

e Succinctness: |7| = poly(], [C|, log n).

Batch Arguments for NP [KPY19, CJJ21]

Let (x1,w1),...,(xn,w,) be statement-witness pairs from an NP relation C(x;,w;) = 1.

Prove C(x;,w;) = 1 Vi € [n]

Ver(crs, C, {xi}ign), m) = 1

e Succinctness: |7| = poly(], [C|, log n).
e Somewhere extractability: td extracts a valid w;».

Batch Arguments for NP [KPY19, CJJ21]

Let (x1,w1),...,(%xn,wn) be statement-witness pairs from an NP relation C(x;,w;) = 1.

Prove C(x;,w;) = 1 Vi € [n]

Ver(crs, C, {xi}ign), m) = 1

Aggregate n signatures [WW22, DGKV22]: Let x; = (vkj, m;), w; = ;. Prove
C(xj,w;) : Z.Ver(vk;, mj,0;) =1

Homomorphic Evaluation of f

e Naive attempt: Let x; = (vk;, ¢;), w; = (mj, 0;) and prove:

C(xj,w;) : Z.Ver(vk;, mj|lj;o;) =1 Ay ="f(my,...,mp).

Homomorphic Evaluation of f

e Naive attempt: Let x; = (vk;, ¢;), w; = (mj, 0;) and prove:
C(xj,w;) : Z.Ver(vk;, mj|lj;o;) =1 Ay ="f(my,...,mp).

Issue: f is not local - can't use a BARG.

Homomorphic Evaluation of f

e Naive attempt: Let x; = (vk;, ¢;), w; = (mj, 0;) and prove:
C(xj,w;) : Z.Ver(vk;, mj|lj;o;) =1 Ay ="f(my,...,mp).

Issue: f is not local - can’t use a BARG.
e Better: Commit to (my,..., m,), use a Functional Commitment for f!

Homomorphic Evaluation of f

e Naive attempt: Let x; = (vk;, ¢;), w; = (mj, 0;) and prove:
C(xj,w;) : Z.Ver(vk;, mj|lj;o;) =1 Ay ="f(my,...,mp).
Issue: f is not local - can’t use a BARG.

e Better: Commit to (my,..., m,), use a Functional Commitment for f!
A FC allows one to commit to m and later open the commitment to f(m).

—_ E——
Com(ck, m; r)

Homomorphic Evaluation of f

e Naive attempt: Let x; = (vk;, ¢;), w; = (mj, 0;) and prove:
C(xj,w;) : Z.Ver(vk;, mj|lj;o;) =1 Ay ="f(my,...,mp).
Issue: f is not local - can’t use a BARG.

e Better: Commit to (my,..., m,), use a Functional Commitment for f!
A FC allows one to commit to m and later open the commitment to f(m).

—_ E——
Com(ck, m; r)

(y,m)

7 + Open(ck, (m,r), f)

Homomorphic Evaluation of f

e Naive attempt: Let x; = (vk;, ¢;), w; = (mj, 0;) and prove:
C(xj,w;) : Z.Ver(vk;, mj|lj;o;) =1 Ay ="f(my,...,mp).
Issue: f is not local - can’t use a BARG.

e Better: Commit to (my,..., m,), use a Functional Commitment for f!
A FC allows one to commit to m and later open the commitment to f(m).

—_ E——
Com(ck, m; r)

(y,m)

7 + Open(ck, (m,r), f))
Ver(ck,c,f,y,m) =1

Putting Everything Together

Candidate MKHS:

o Let x; = (Vk,‘,f,’) and w; = (m,-,a,-).

Putting Everything Together

Candidate MKHS:

o Let x; = (Vk,‘,f,’) and w; = (m,-,a,-).
e Do a BARG proof for C(xj,w;) : X.Ver(vk;, m;|¢;,0;) = 1.

Putting Everything Together

Candidate MKHS:

o Let x; = (Vk,‘,f,’) and w; = (m,-,a,-).
e Do a BARG proof for C(xj,w;) : X.Ver(vk;, m;|¢;,0;) = 1.

e Obtain ¢ - FC.Com(ck, (my,...,m,)) and open c to f(myq,...,m,).

Putting Everything Together

Candidate MKHS:

o Let x; = (Vk,‘,f,’) and w; = (m,-,a,-).
e Do a BARG proof for C(xj,w;) : X.Ver(vk;, m;|¢;,0;) = 1.

e Obtain ¢ - FC.Com(ck, (my,...,m,)) and open c to f(myq,...,m,).

Correct, but insecure...

Putting Everything Together

Candidate MKHS:

o Let x; = (Vk,‘,f,’) and w; = (m,-,a,-).
e Do a BARG proof for C(xj,w;) : X.Ver(vk;, m;|¢;,0;) = 1.

e Obtain ¢ - FC.Com(ck, (my,...,m,)) and open c to f(myq,...,m,).

Correct, but insecure... the committed m; may differ from w;!

Putting Everything Together

Candidate MKHS:

o Let x; = (Vk,‘,f,’) and w; = (m,-,a,-).

e Do a BARG proof for C(xj,w;) : X.Ver(vk;, m;|¢;,0;) = 1.

e Obtain ¢ - FC.Com(ck, (my,...,m,)) and open c to f(myq,...,m,).
Correct, but insecure... the committed m; may differ from w;!

Solution: iteratively compute c inside C.

Putting Everything Together

Candidate MKHS:

o Let x; = (Vk,‘,f,’) and w; = (m,-,a,-).
e Do a BARG proof for C(xj,w;) : X.Ver(vk;, m;|¢;,0;) = 1.

e Obtain ¢ - FC.Com(ck, (my,...,m,)) and open c to f(myq,...,m,).

Correct, but insecure... the committed m; may differ from w;!

Solution: iteratively compute c inside C.

e Define partial co, ..., cn, where ¢; commits to (my,...,m;,0,...,0).

Putting Everything Together

Candidate MKHS:

o Let x; = (Vk,‘,f,’) and w; = (m,-,a,-).

e Do a BARG proof for C(xj,w;) : X.Ver(vk;, m;|¢;,0;) = 1.

e Obtain ¢ - FC.Com(ck, (my,...,m,)) and open c to f(myq,...,m,).
Correct, but insecure... the committed m; may differ from w;!
Solution: iteratively compute c inside C.

e Define partial co, ..., cn, where ¢; commits to (my,...,m;,0,...,0).

e C(xj,w;) checks that ¢; and c;_1 differ on m; at position i.

Our MKHS Construction

Description of C(x;,w;) (simplified):
Statement: x; = (vk;, ¢;, ck;, i)
Witness: w; = (m;, 0}, 7, Ci—1,C;)

e Check X.Ver(vk;, mj|¢;,0;) =1 A
FC.VerUpd(ck;, i, ci—1,0,c;,mj,m) =1

e If i =1, check cj—1 = FC.Com(ck, 0).

e If i = n, check ¢; = c.

10

Our MKHS Construction

Sign(sk;, mj, ¢;):
Output o; < X.Sign(sk;, m;|¢;)

Description of C(x;,w;) (simplified):
Statement: x; = (vk;, ¢;, ck;, i)
Witness: w; = (m;, 0}, 7, Ci—1,C;)

e Check X.Ver(vk;, mj|¢;,0;) =1 A
FC.VerUpd(ck;, i, ci—1,0,c;,mj,m) =1

e If i =1, check cj—1 = FC.Com(ck, 0).

e If i = n, check ¢; = c.

10

Our MKHS Construction

Description of C(x;,w;) (simplified):
Statement: x; = (vk;, ¢;, ck;, i)
Witness: w; = (m;, 0}, 7, Ci—1,C;)

e Check X.Ver(vk;, mj|¢;,0;) =1 A
FC.VerUpd(ck;, i, ci—1,0,c;,mj,m) =1

e If i =1, check cj—1 = FC.Com(ck, 0).

e If i = n, check ¢; = c.

Sign(sk;, mj, ¢;):

Output o; < X.Sign(sk;, m;|¢;)
Eval(pp, (f,£), m,vk,o) — o, :

Compute:

10

Our MKHS Construction

Description of C(x;,w;) (simplified):
Statement: x; = (vk;, ¢;, ck;, i)
Witness: w; = (m;, 0}, 7, Ci—1,C;)

e Check X.Ver(vk;, mj|¢;,0;) =1 A
FC.VerUpd(ck;, i, ci—1,0,c;,mj,m) =1

e If i =1, check cj—1 = FC.Com(ck, 0).

e If i = n, check ¢; = c.

Sign(sk;, mj, ¢;):

Output o; < X.Sign(sk;, m;|¢;)
Eval(pp, (f,£), m,vk,o) — o, :

Compute:

e c <+ FC.Com(ck,(mq,...,mp)).

10

Our MKHS Construction

Description of C(x;,w;) (simplified):
Statement: x; = (vk;, ¢;, ck;, i)
Witness: w; = (m;, 0}, 7, Ci—1,C;)

e Check X.Ver(vk;, mj|¢;,0;) =1 A
FC.VerUpd(ck;, i, ci—1,0,c;,mj,m) =1

e If i =1, check cj—1 = FC.Com(ck, 0).

e If i = n, check ¢; = c.

Sign(sk;, mj, ¢;):

Output o; < X.Sign(sk;, m;|¢;)
Eval(pp, (f,£), m,vk,o) — o, :

Compute:

e c <+ FC.Com(ck,(mq,...,mp)).
e A BARG proof 7, for C(x;j,w;).

10

Our MKHS Construction

Sign(sk;, mj, ¢;):

Description of C(x;,w;) (simplified): Output o; + X.Sign(sk;, m;|¢;)
Statement: x; = (vk,-,é,-,ck;, I')
Witness: W, = (m,-,a,-, i, Ci—1, C,') Eva|(pp, (f7e)7 m, Vk) O') — Uf,y :
o Check T.Ver(vk;, m|t;, 1) = 1 A Compute:
FC.VerUpd(ck;, I',C,'_l7 O,C,'7 m;j, 7T,') =1 ® C< FC'Com(Ck) (m17 IR mn))
e A BARG proof 7, for C(x;j,w;).
e If i =1, check ¢i1 = FC.Com(ck, 0). e A FC opening proof 7f that ¢
e Ifi=n, check ¢; =c. opens to y = f(my,...,mp) on f.

10

Our MKHS Construction

Sign(sk;, mj, ¢;):

Description of C(x;,w;) (simplified): Output o; + X.Sign(sk;, m;|¢;)
Statement: x; = (vk,-,é,-,ck;, I')
Witness: W, = (m,-,a,-, i, Ci—1, C,') Eva|(pp, (f7e)7 m, Vk) O') — Uf,y :
o Check T.Ver(vk;, m|t;, 1) = 1 A Compute:
FC.VerUpd(ck;, I',C,'_l7 O,C,'7 m;j, 7T,') =1 ® C< FC'Com(Ck) (m17 IR mn))
e A BARG proof 7, for C(x;j,w;).
e If i =1, check ¢i1 = FC.Com(ck, 0). e A FC opening proof 7f that ¢
e Ifi=n, check ¢; =c. opens to y = f(my,...,mp) on f.

Output o7, = (¢, 7, 7f).

10

Our MKHS Construction

Sign(sk;, mj, ¢;):

Description of C(x;,w;) (simplified): Output o; + X.Sign(sk;, m;|¢;)
Statement: x; = (vk,-,é,-,ck;, I')
Witness: W, = (m,-,a,-, i, Ci—1, C,') Eva|(pp, (f7e)7 m, Vka O') — Uf,y :
o Check T.Ver(vk;, m|t;, 1) = 1 A Compute:
FC.VerUpd(ck;, I'7C,'_17 O,C,'7 m;j, 7T,') =1 ® C< FC'Com(Ck) (m17 IR mn))
e A BARG proof 7, for C(x;j,w;).
e If i =1, check ¢i1 = FC.Com(ck, 0). e A FC opening proof 7f that ¢
e Ifi=n, check ¢; =c. opens to y = f(my,...,mp) on f.

Output o7, = (¢, 7, 7f).

For the security proof to work, we also need a somewhere extractable commitment (SEC).

10

Instantiations

11

Instantiations

MKHS with optimal succinctness (via KLVW23%*)

From subexponential DDH or LWE, there exists a MKHS for boolean circuits where:

o |pp‘ :‘Uf,y‘ = pO|y()\, log n)

Instantiations

MKHS with optimal succinctness (via KLVW23%*)

From subexponential DDH or LWE, there exists a MKHS for boolean circuits where:

o |pp‘ = ‘O-ﬂy‘ = P0|Y()\> log n)

MKHS from algebraic primitives (via WW22, BCFL23)

From HiKer and k-Lin for k > 2, there exists a MKHS for arithmetic circuits of width w
where:

* |pp| = O(w?)
o |ofy| = O(X-d?) + poly(N).

Instantiations

MKHS with optimal succinctness (via KLVW23%*)

From subexponential DDH or LWE, there exists a MKHS for boolean circuits where:

o [pp| =|or,,| = poly(, log n)

MKHS from algebraic primitives (via WW22, WW24)

From k-Lin for k > 2, there exists a MKHS for arithmetic circuits of size s where:
e |pp| = O(s°)
o ‘O’ﬂy‘ = poly(A).

Open Questions

Make a fully algebraic
and practical construction?

Support arbitrary
multi-hop evaluation?
[ACG24]

Apply similar techniques to
O other advanced primitives? oo

12

e Multi-key homomorphic signatures:
verifiable computation on signed data.

13

ia.cr/2024/895
david.balbas@imdea.org

e Multi-key homomorphic signatures:
verifiable computation on signed data.

e We build fully succinct MKHS from standard
assumptions (LWE, k-Lin).

13

ia.cr/2024/895
david.balbas@imdea.org

e Multi-key homomorphic signatures:
verifiable computation on signed data.

e We build fully succinct MKHS from standard
assumptions (LWE, k-Lin).

e We combine batch arguments for NP
(BARGS) and functional commitments (FCs).

13

ia.cr/2024/895
david.balbas@imdea.org

e Multi-key homomorphic signatures:
verifiable computation on signed data.

e We build fully succinct MKHS from standard
assumptions (LWE, k-Lin).

e We combine batch arguments for NP
(BARGS) and functional commitments (FCs).

e Exciting open questions - let's chat!

13

ia.cr/2024/895
david.balbas@imdea.org

e Multi-key homomorphic signatures: Th
ank you!

verifiable computation on signed data.

e We build fully succinct MKHS from standard
assumptions (LWE, k-Lin). ia.cr/2024/895

e We combine batch arguments for NP
(BARGsS) and functional commitments (FCs). david.balbas@indea.org

e Exciting open questions - let's chat!

13

ia.cr/2024/895
david.balbas@imdea.org

Security: Unforgeability

e Security is game-based [FMNP16]. Adversary A and challenger interact via oracles:
o OXeYGen(id) —; pk,
e O5&"(id, m,) — o. Only one query per label is allowed!
° OCorr(id) — Skid

14

Security: Unforgeability

e Security is game-based [FMNP16]. Adversary A and challenger interact via oracles:
o OKeCen(id) — pk,y
e O5&"(id, m,) — o. Only one query per label is allowed!
° OCorr(id) — Skid
e At the end, A outputs (f*,(T 0r), (vk, ... ,vkn),y*,0;7y> where no vk; can
be corrupted.

14

Security: Unforgeability

e Security is game-based [FMNP16]. Adversary A and challenger interact via oracles:
o OXeYGen(id) —; pk,
e O5&"(id, m,) — o. Only one query per label is allowed!
o O%(id) — skig
e At the end, A outputs (f*,(T 0r), (vk, ... ,vkn),y*,0;7y> where no vk; can
be corrupted.
o A wins if a?,y verifies and either:

1. Exists i such that OS®"(¢¥,.) was never queried.
2. For all i, (¢r, m;) honest but y* # f*(mq,..., m,).

14

Proving Security

The proof proceeds by partitioning the winning condition in multiple events.

Interesting event: when y # f(my,..., m,) and the (deterministic) commitment
to the messages c* is dishonest, ¢* # FC.Com(ck, (my,...,mp)).

Strategy is to gradually show that each partial c; must be honest. Multiple hybrids
for each i € [n], where:
1. Program the BARG crs and extract at /,
2. Compare the extracted c; to the honest one,
3. Extract m; and o; (a potential forgery) and certify the validity of the commitment
update from c¢;_; to ¢;.
4. "Reboot” the extraction to step 7 + 1.

e Add a somewhere extractable commitment to follow a sliding window approach.

15

