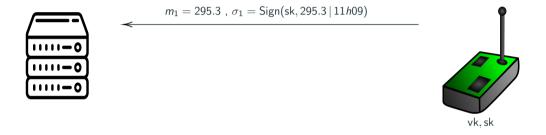
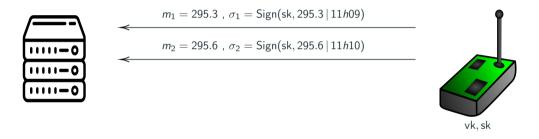
Fully-Succinct Multi-Key Homomorphic Signatures from Standard Assumptions

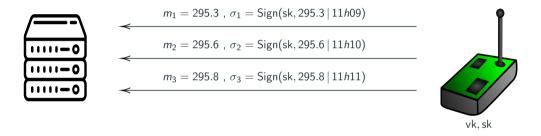
Gaspard Anthoine, **David Balbás**, Dario Fiore IMDEA Software Institute, Madrid, Spain

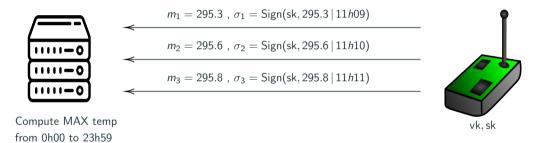
19th August 2024

CRYPTO 2024

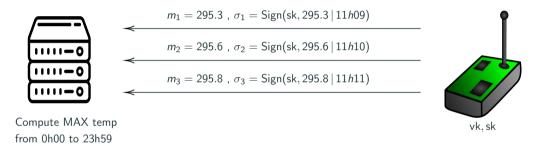




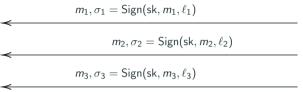


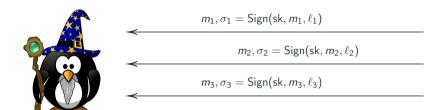


A sensor sends temperature data m_i every minute. m_i and a timestamp ℓ_i are signed.

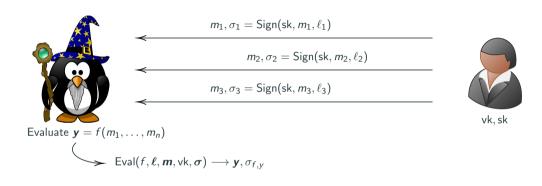


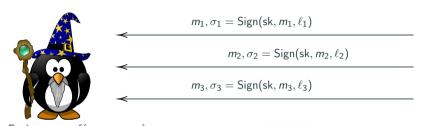
Can we have a short, publicly verifiable proof that the MAX temperature is computed correctly on today's authentic temperatures?

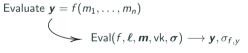


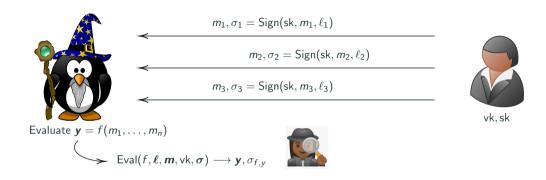


Evaluate ${m y}=f(m_1,\ldots,m_n)$

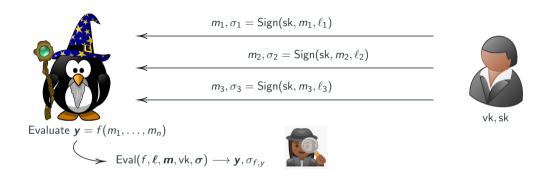








• $\sigma_{f,y}$ is publicly verifiable from f, vk, \mathbf{y} and labels ℓ_i .

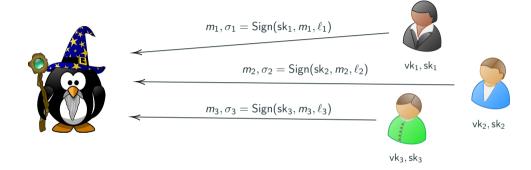


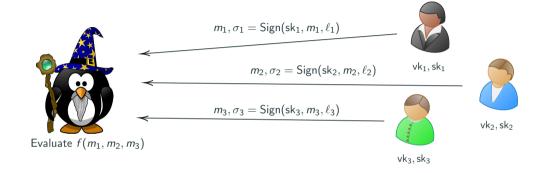
- $\sigma_{f,y}$ is publicly verifiable from f, vk, \mathbf{y} and labels ℓ_i .
- $\sigma_{f,y}$ is *succinct*: does not grow with n or |f|.

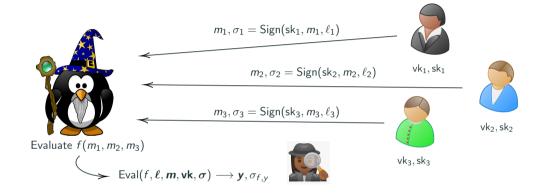
 $\mathsf{vk}_1, \mathsf{sk}_1$

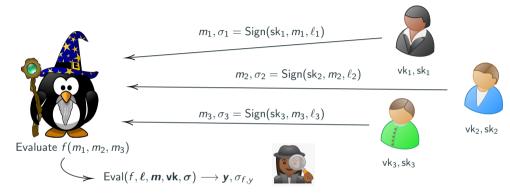
 $\mathsf{vk}_3, \mathsf{sk}_3$

Л

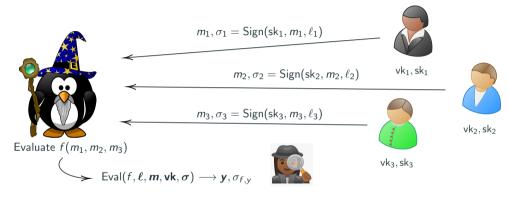








- $\mathsf{Setup}(1^{\lambda}), \mathsf{KeyGen}(\mathsf{pp})$
- Sign(sk, m, ℓ) $\rightarrow \sigma$
- Eval(pp, (f, ℓ) , m, vk, σ) $\rightarrow \sigma_{f,y}$
- Ver(pp, (f, ℓ) , vk, $y, \sigma_{f,y}$) $\rightarrow 0/1$



- Setup (1^{λ}) , KeyGen(pp)
- Sign(sk, m, ℓ) $\rightarrow \sigma$
- Eval(pp, (f, ℓ) , m, vk, σ) $\rightarrow \sigma_{f,y}$
- Ver(pp, (f, ℓ) , vk, $y, \sigma_{f,y}$) $\rightarrow 0/1$

- Succinctness: $|\sigma_{f,y}| \leq p(\lambda)$. Succinct in:
 - n^{Ω} of inputs n,
 - function size | f |,
 - nº of parties t.

• Succinct *single-key HS* from standard assumptions are known [BF11, CFW14, GVW15, CFT22, BCFL23, GU24, Goy24, . . .]

- Succinct single-key HS from standard assumptions are known [BF11, CFW14, GVW15, CFT22, BCFL23, GU24, Goy24, ...]
- However, no MKHS for all functions was *fully-succinct*.
 - [FMNP16] standard model, $|\sigma_{f,y}| = \text{poly}(t, \log n)$
 - [LTWC18] fully succinct, SNARK-based.

- Succinct single-key HS from standard assumptions are known [BF11, CFW14, GVW15, CFT22, BCFL23, GU24, Goy24, ...]
- However, no MKHS for all functions was fully-succinct.
 - [FMNP16] standard model, $|\sigma_{f,y}| = \text{poly}(t, \log n)$
 - [LTWC18] fully succinct, SNARK-based.

Our Result: fully-succinct MKHS from standard and falsifiable assumptions.

- Succinct single-key HS from standard assumptions are known [BF11, CFW14, GVW15, CFT22, BCFL23, GU24, Goy24, ...]
- However, no MKHS for all functions was fully-succinct.
 - [FMNP16] standard model, $|\sigma_{f,y}| = \text{poly}(t, \log n)$
 - [LTWC18] fully succinct, SNARK-based.

Our Result: fully-succinct MKHS from standard and falsifiable assumptions.

- ✓ Adaptive security, (sequential) multi-hop evaluation, pre-processing.
- ✓ Instantiations from e.g. k-Lin or LWE.
- X Non black-box use of cryptographic primitives.

Batch arguments for NP: aggregating signatures

Batch arguments for NP: aggregating signatures

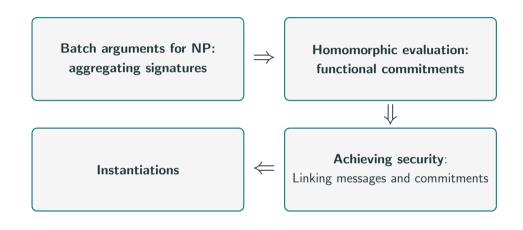
Homomorphic evaluation: functional commitments

Batch arguments for NP: aggregating signatures

Homomorphic evaluation: functional commitments

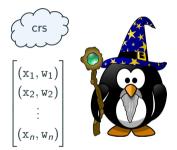
Achieving security:

Linking messages and commitments

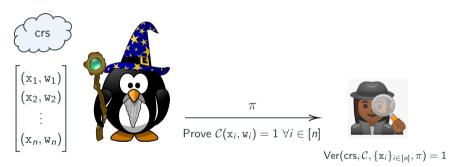


Let $(x_1, w_1), \ldots, (x_n, w_n)$ be statement-witness pairs from an NP relation $C(x_i, w_i) = 1$.

Let $(x_1, w_1), \ldots, (x_n, w_n)$ be statement-witness pairs from an NP relation $C(x_i, w_i) = 1$.

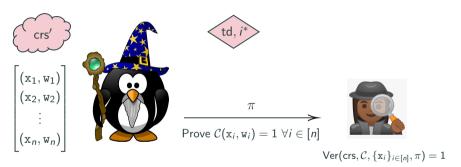


Let $(x_1, w_1), \ldots, (x_n, w_n)$ be statement-witness pairs from an NP relation $C(x_i, w_i) = 1$.



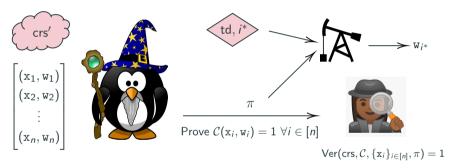
• Succinctness: $|\pi| = \text{poly}(\lambda, |\mathcal{C}|, \log n)$.

Let $(x_1, w_1), \ldots, (x_n, w_n)$ be statement-witness pairs from an NP relation $C(x_i, w_i) = 1$.



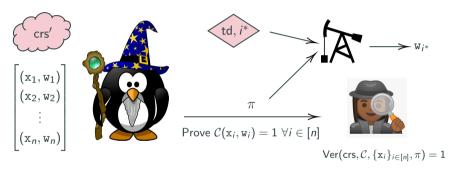
• Succinctness: $|\pi| = \text{poly}(\lambda, |\mathcal{C}|, \log n)$.

Let $(x_1, w_1), \ldots, (x_n, w_n)$ be statement-witness pairs from an NP relation $C(x_i, w_i) = 1$.



- Succinctness: $|\pi| = \text{poly}(\lambda, |\mathcal{C}|, \log n)$.
- Somewhere extractability: td extracts a valid w_{i*} .

Let $(x_1, w_1), \ldots, (x_n, w_n)$ be statement-witness pairs from an NP relation $C(x_i, w_i) = 1$.



Aggregate *n* signatures [WW22, DGKV22]: Let $x_i = (vk_i, m_i)$, $w_i = \sigma_i$. Prove $C(x_i, w_i) : \Sigma.Ver(vk_i, m_i, \sigma_i) = 1$

Homomorphic Evaluation of f

• Naive attempt: Let $x_i = (vk_i, \ell_i)$, $w_i = (m_i, \sigma_i)$ and prove:

$$\underline{\mathcal{C}(\mathbf{x}_i,\mathbf{w}_i):} \; \Sigma.\mathsf{Ver}(\mathsf{vk}_i,m_i|\ell_i,\sigma_i) = 1 \; \wedge \; \boldsymbol{y} = f(m_1,\ldots,m_n).$$

Homomorphic Evaluation of f

• Naive attempt: Let $x_i = (vk_i, \ell_i)$, $w_i = (m_i, \sigma_i)$ and prove:

$$\underline{\mathcal{C}(\mathbf{x}_i,\mathbf{w}_i)} : \Sigma.\mathsf{Ver}(\mathsf{vk}_i,m_i|\ell_i,\sigma_i) = 1 \ \land \ \boldsymbol{y} = f(m_1,\ldots,m_n).$$

Issue: f is not local - can't use a BARG.

• Naive attempt: Let $x_i = (vk_i, \ell_i)$, $w_i = (m_i, \sigma_i)$ and prove:

$$\underline{\mathcal{C}(\mathbf{x}_i,\mathbf{w}_i)} : \Sigma.\mathsf{Ver}(\mathsf{vk}_i,m_i|\ell_i,\sigma_i) = 1 \ \land \ \boldsymbol{y} = f(m_1,\ldots,m_n).$$

Issue: f is not local - can't use a BARG.

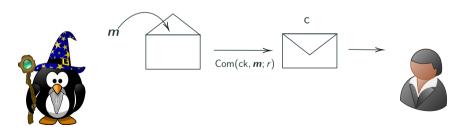
• Better: Commit to (m_1, \ldots, m_n) , use a Functional Commitment for f!

• Naive attempt: Let $x_i = (vk_i, \ell_i)$, $w_i = (m_i, \sigma_i)$ and prove:

$$\underline{\mathcal{C}}(\mathbf{x}_i, \mathbf{w}_i) : \Sigma.\mathsf{Ver}(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \ \land \ \mathbf{y} = f(m_1, \dots, m_n).$$

Issue: f is not local - can't use a BARG.

• Better: Commit to (m_1, \ldots, m_n) , use a Functional Commitment for f! A FC allows one to commit to m and later open the commitment to f(m).

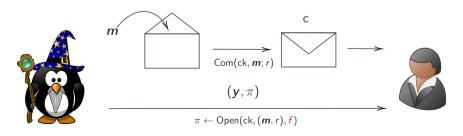


• Naive attempt: Let $x_i = (vk_i, \ell_i)$, $w_i = (m_i, \sigma_i)$ and prove:

$$\underline{\mathcal{C}}(\mathbf{x}_i, \mathbf{w}_i) : \Sigma.\mathsf{Ver}(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \ \land \ \mathbf{y} = f(m_1, \dots, m_n).$$

Issue: f is not local - can't use a BARG.

• Better: Commit to (m_1, \ldots, m_n) , use a Functional Commitment for f! A FC allows one to commit to m and later open the commitment to f(m).

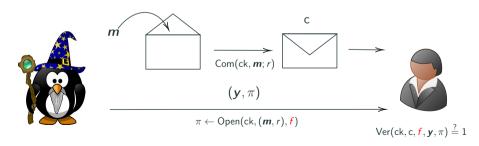


• Naive attempt: Let $x_i = (vk_i, \ell_i)$, $w_i = (m_i, \sigma_i)$ and prove:

$$\underline{\mathcal{C}(\mathtt{x}_i, \mathtt{w}_i)} : \Sigma.\mathsf{Ver}(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \ \land \ \boldsymbol{y} = f(m_1, \dots, m_n).$$

Issue: f is not local - can't use a BARG.

• Better: Commit to (m_1, \ldots, m_n) , use a Functional Commitment for f! A FC allows one to commit to m and later open the commitment to f(m).



Candidate MKHS:

• Let $x_i = (vk_i, \ell_i)$ and $w_i = (m_i, \sigma_i)$.

Candidate MKHS:

- Let $x_i = (vk_i, \ell_i)$ and $w_i = (m_i, \sigma_i)$.
- Do a BARG proof for $\underline{\mathcal{C}(\mathbf{x}_i,\mathbf{w}_i)}$: $\Sigma.\mathrm{Ver}(\mathsf{vk}_i,m_i|\ell_i,\sigma_i)=1$.

Candidate MKHS:

- Let $x_i = (vk_i, \ell_i)$ and $w_i = (m_i, \sigma_i)$.
- Do a *BARG proof* for $C(x_i, w_i)$: Σ .Ver $(vk_i, m_i | \ell_i, \sigma_i) = 1$.
- Obtain c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)) and open c to $f(m_1, \ldots, m_n)$.

Candidate MKHS:

- Let $x_i = (vk_i, \ell_i)$ and $w_i = (m_i, \sigma_i)$.
- Do a *BARG proof* for $C(x_i, w_i)$: Σ .Ver $(vk_i, m_i | \ell_i, \sigma_i) = 1$.
- Obtain c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)) and open c to $f(m_1, \ldots, m_n)$.

Correct, but insecure...

Candidate MKHS:

- Let $x_i = (vk_i, \ell_i)$ and $w_i = (m_i, \sigma_i)$.
- Do a *BARG proof* for $C(x_i, w_i)$: Σ .Ver $(vk_i, m_i | \ell_i, \sigma_i) = 1$.
- Obtain c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)) and open c to $f(m_1, \ldots, m_n)$.

Correct, but insecure... the committed m_i may differ from w_i !

Candidate MKHS:

- Let $x_i = (vk_i, \ell_i)$ and $w_i = (m_i, \sigma_i)$.
- Do a *BARG proof* for $C(x_i, w_i)$: Σ .Ver $(vk_i, m_i | \ell_i, \sigma_i) = 1$.
- Obtain c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)) and open c to $f(m_1, \ldots, m_n)$.

Correct, but insecure... the committed m_i may differ from w_i !

Solution: iteratively compute c inside C.

Candidate MKHS:

- Let $x_i = (vk_i, \ell_i)$ and $w_i = (m_i, \sigma_i)$.
- Do a *BARG proof* for $C(x_i, w_i) : \Sigma.Ver(vk_i, m_i | \ell_i, \sigma_i) = 1$.
- Obtain c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)) and open c to $f(m_1, \ldots, m_n)$.

Correct, but insecure... the committed m_i may differ from w_i !

Solution: iteratively compute c inside C.

• Define partial c_0, \ldots, c_n , where c_i commits to $(m_1, \ldots, m_i, 0, \ldots, 0)$.

Candidate MKHS:

- Let $x_i = (vk_i, \ell_i)$ and $w_i = (m_i, \sigma_i)$.
- Do a *BARG proof* for $C(x_i, w_i) : \Sigma.Ver(vk_i, m_i | \ell_i, \sigma_i) = 1$.
- Obtain c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)) and open c to $f(m_1, \ldots, m_n)$.

Correct, but insecure... the committed m_i may differ from w_i !

Solution: iteratively compute c inside C.

- Define partial c_0, \ldots, c_n , where c_i commits to $(m_1, \ldots, m_i, 0, \ldots, 0)$.
- $C(x_i, w_i)$ checks that c_i and c_{i-1} differ on m_i at position i.

Description of $C(x_i, w_i)$ (simplified):

Statement: $x_i = (vk_i, \ell_i, ck_i, i)$ Witness: $w_i = (m_i, \sigma_i, \pi_i, c_{i-1}, c_i)$

- Check Σ .Ver $(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \land$ FC.VerUpd $(\mathsf{ck}_i, i, \mathsf{c}_{i-1}, 0, \mathsf{c}_i, \underbrace{m_i}_i, \pi_i) = 1$
- If i = 1, check $c_{i-1} = FC.Com(ck, \mathbf{0})$.
- If i = n, check $c_i = c$.

Description of $C(x_i, w_i)$ (simplified):

Statement: $x_i = (vk_i, \ell_i, ck_i, i)$ Witness: $w_i = (m_i, \sigma_i, \pi_i, c_{i-1}, c_i)$

- Check Σ .Ver $(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \land$ FC.VerUpd $(\mathsf{ck}_i, i, \mathbf{c_{i-1}}, 0, \mathbf{c_i}, \mathbf{m_i}, \pi_i) = 1$
- If i = 1, check $c_{i-1} = FC.Com(ck, \mathbf{0})$.
- If i = n, check $c_i = c$.

$\underline{\mathsf{Sign}(\mathsf{sk}_i,m_i,\ell_i)}:$

Output $\sigma_i \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}_i, m_i | \ell_i)$

Description of $C(x_i, w_i)$ (simplified):

Statement: $x_i = (vk_i, \ell_i, ck_i, i)$ Witness: $w_i = (m_i, \sigma_i, \pi_i, c_{i-1}, c_i)$

- Check Σ .Ver $(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \land$ FC.VerUpd $(\mathsf{ck}_i, i, \mathbf{c_{i-1}}, 0, \mathbf{c_i}, \mathbf{m_i}, \pi_i) = 1$
- If i = 1, check $c_{i-1} = FC.Com(ck, \mathbf{0})$.
- If i = n, check $c_i = c$.

$\frac{\operatorname{Sign}(\operatorname{sk}_i, m_i, \ell_i):}{\operatorname{Output} \ \sigma_i \leftarrow \Sigma.\operatorname{Sign}(\operatorname{sk}_i, m_i | \ell_i)}$

Eval(pp,
$$(f, \ell)$$
, m , vk , $\sigma) \to \sigma_{f,y}$:
Compute:

Description of $C(x_i, w_i)$ (simplified):

Statement: $x_i = (vk_i, \ell_i, ck_i, i)$ Witness: $w_i = (m_i, \sigma_i, \pi_i, c_{i-1}, c_i)$

- Check Σ .Ver $(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \land$ FC.VerUpd $(\mathsf{ck}_i, i, \mathsf{c}_{i-1}, 0, \mathsf{c}_i, m_i, \pi_i) = 1$
- If i = 1, check $c_{i-1} = FC.Com(ck, \mathbf{0})$.
- If i = n, check $c_i = c$.

$\frac{\operatorname{Sign}(\mathsf{sk}_i, m_i, \ell_i):}{\operatorname{Output} \ \sigma_i \leftarrow \Sigma.\operatorname{Sign}(\mathsf{sk}_i, m_i | \ell_i)}$ $\operatorname{Eval}(\mathsf{pp}, (f, \ell), \boldsymbol{m}, \mathsf{vk}, \boldsymbol{\sigma}) \rightarrow \sigma_{f, v}:$

Compute:

• c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)).

Description of $C(x_i, w_i)$ (simplified):

Statement: $x_i = (vk_i, \ell_i, ck_i, i)$ Witness: $w_i = (m_i, \sigma_i, \pi_i, c_{i-1}, c_i)$

- Check Σ .Ver $(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \land$ FC.VerUpd $(\mathsf{ck}_i, i, \mathsf{c}_{i-1}, 0, \mathsf{c}_i, m_i, \pi_i) = 1$
- If i = 1, check $c_{i-1} = FC.Com(ck, \mathbf{0})$.
- If i = n, check $c_i = c$.

Sign(sk_i, m_i, ℓ_i):

Output $\sigma_i \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}_i, m_i | \ell_i)$

 $\mathsf{Eval}(\mathsf{pp},(f,\ell),\pmb{m},\mathsf{vk},\pmb{\sigma}) o \sigma_{f,y}$:

Compute:

- $c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)).$
- A BARG proof π_{σ} for $\mathcal{C}(\mathbf{x}_i, \mathbf{w}_i)$.

Description of $C(x_i, w_i)$ (simplified):

Statement: $x_i = (vk_i, \ell_i, ck_i, i)$ Witness: $w_i = (m_i, \sigma_i, \pi_i, c_{i-1}, c_i)$

- Check Σ .Ver $(\mathsf{vk}_i, m_i | \ell_i, \sigma_i) = 1 \land$ FC.VerUpd $(\mathsf{ck}_i, i, \mathsf{c}_{i-1}, 0, \mathsf{c}_i, m_i, \pi_i) = 1$
- If i = 1, check $c_{i-1} = FC.Com(ck, \mathbf{0})$.
- If i = n, check $c_i = c$.

Sign(sk_i, m_i, ℓ_i):

Output $\sigma_i \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}_i, m_i | \ell_i)$

Eval(pp, (f, ℓ) , m, vk, σ) $o \sigma_{f,y}$:

Compute:

- $c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)).$
- A BARG proof π_{σ} for $C(\mathbf{x}_i, \mathbf{w}_i)$.
- A FC opening proof π_f that c opens to $\mathbf{y} = f(m_1, \dots, m_n)$ on f.

Description of $C(x_i, w_i)$ (simplified):

Statement: $x_i = (vk_i, \ell_i, ck_i, i)$ Witness: $w_i = (m_i, \sigma_i, \pi_i, c_{i-1}, c_i)$

- Check Σ .Ver(vk_i, $m_i | \ell_i, \sigma_i$) = 1 \wedge FC.VerUpd(ck_i, i, $\mathbf{c_{i-1}}$, 0, $\mathbf{c_i}$, $\mathbf{m_i}$, π_i) = 1
- If i = 1, check $c_{i-1} = FC.Com(ck, \mathbf{0})$.
- If i = n, check $c_i = c$.

$Sign(sk_i, m_i, \ell_i)$:

Output $\sigma_i \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}_i, m_i | \ell_i)$

$$\mathsf{Eval}(\mathsf{pp},(f,\ell), oldsymbol{m}, \mathsf{vk}, oldsymbol{\sigma}) o \sigma_{f,y}$$
 :

Compute:

- $c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)).$
- A BARG proof π_{σ} for $\mathcal{C}(\mathbf{x}_i, \mathbf{w}_i)$.
- A FC opening proof π_f that c opens to $\mathbf{y} = f(m_1, \dots, m_n)$ on f.

Output
$$\sigma_{f,y} = (c, \pi_{\sigma}, \pi_f)$$
.

Description of $C(x_i, w_i)$ (simplified):

Statement: $x_i = (vk_i, \ell_i, ck_i, i)$ Witness: $w_i = (m_i, \sigma_i, \pi_i, c_{i-1}, c_i)$

- Check Σ .Ver(vk_i, $m_i | \ell_i, \sigma_i$) = 1 \wedge FC.VerUpd(ck_i, i, $\mathbf{c_{i-1}}$, 0, $\mathbf{c_i}$, m_i , π_i) = 1
- If i = 1, check $c_{i-1} = FC.Com(ck, \mathbf{0})$.
- If i = n, check $c_i = c$.

$Sign(sk_i, m_i, \ell_i)$:

Output $\sigma_i \leftarrow \Sigma.\mathsf{Sign}(\mathsf{sk}_i, m_i | \ell_i)$

Eval(pp, (f, ℓ) , m, vk, σ) $o \sigma_{f,y}$:

Compute:

- $c \leftarrow FC.Com(ck, (m_1, \ldots, m_n)).$
- A BARG proof π_{σ} for $\mathcal{C}(\mathbf{x}_i, \mathbf{w}_i)$.
- A FC opening proof π_f that c opens to $\mathbf{y} = f(m_1, \dots, m_n)$ on f.

Output $\sigma_{f,y} = (c, \pi_{\sigma}, \pi_f)$.

For the security proof to work, we also need a somewhere extractable commitment (SEC).

MKHS with optimal succinctness (via KLVW23*)

From subexponential DDH or LWE, there exists a MKHS for boolean circuits where:

•
$$|pp| = |\sigma_{f,y}| = poly(\lambda, \log n)$$

MKHS with optimal succinctness (via KLVW23*)

From subexponential DDH or LWE, there exists a MKHS for boolean circuits where:

•
$$|pp| = |\sigma_{f,y}| = poly(\lambda, \log n)$$

MKHS from algebraic primitives (via WW22, BCFL23)

From HiKer and k-Lin for $k \ge 2$, there exists a MKHS for arithmetic circuits of width w where:

- $|pp| = \mathcal{O}(w^5)$
- $|\sigma_{f,y}| = \mathcal{O}(\lambda \cdot d^2) + \text{poly}(\lambda)$.

MKHS with optimal succinctness (via KLVW23*)

From subexponential DDH or LWE, there exists a MKHS for boolean circuits where:

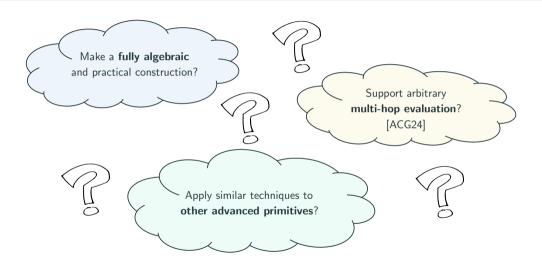
•
$$|pp| = |\sigma_{f,y}| = poly(\lambda, \log n)$$

MKHS from algebraic primitives (via WW22, WW24)

From k-Lin for $k \ge 2$, there exists a MKHS for arithmetic circuits of size s where:

- $|pp| = \mathcal{O}(s^5)$
- $|\sigma_{f,y}| = \text{poly}(\lambda)$.

Open Questions



• Multi-key homomorphic signatures: verifiable computation on signed data.

- Multi-key homomorphic signatures: verifiable computation on signed data.
- We build **fully succinct** MKHS from *standard* assumptions (LWE, *k*-Lin).

- Multi-key homomorphic signatures: verifiable computation on signed data.
- We build fully succinct MKHS from standard assumptions (LWE, k-Lin).
- We combine batch arguments for NP (BARGs) and functional commitments (FCs).

- Multi-key homomorphic signatures: verifiable computation on signed data.
- We build fully succinct MKHS from standard assumptions (LWE, k-Lin).
- We combine batch arguments for NP (BARGs) and functional commitments (FCs).
- Exciting open questions let's chat!

- Multi-key homomorphic signatures: verifiable computation on signed data.
- We build fully succinct MKHS from standard assumptions (LWE, k-Lin).
- We combine batch arguments for NP (BARGs) and functional commitments (FCs).
- Exciting open questions let's chat!

Thank you!

ia.cr/2024/895

david.balbas@imdea.org

Security: Unforgeability

- ullet Security is game-based [FMNP16]. Adversary ${\cal A}$ and challenger interact via oracles:
 - $\bullet \ \, \mathcal{O}^{\mathsf{KeyGen}}(\mathsf{id}) \to \mathsf{pk}_{\mathsf{id}}$
 - $\mathcal{O}^{\mathsf{Sign}}(\mathsf{id}, m, \ell) \to \sigma$. Only one query per label is allowed!
 - $\bullet \ \mathcal{O}^{\mathsf{Corr}}(\mathsf{id}) \to \mathsf{sk}_{\mathsf{id}}$

Security: Unforgeability

- ullet Security is game-based [FMNP16]. Adversary ${\cal A}$ and challenger interact via oracles:
 - $\bullet \ \ \mathcal{O}^{\mathsf{KeyGen}}(\mathsf{id}) \to \mathsf{pk}_\mathsf{id}$
 - $\mathcal{O}^{\mathsf{Sign}}(\mathsf{id}, m, \ell) \to \sigma$. Only one query per label is allowed!
 - $\bullet \ \ \mathcal{O}^{\mathsf{Corr}}(\mathsf{id}) \to \mathsf{sk}_{\mathsf{id}}$
- At the end, \mathcal{A} outputs $\left(f^*, (\ell_1^*, \dots, \ell_n^*), (\mathsf{vk}_1, \dots, \mathsf{vk}_n), \mathbf{y}^*, \sigma_{f,y}^*\right)$ where no vk_i can be corrupted.

Security: Unforgeability

- ullet Security is game-based [FMNP16]. Adversary ${\cal A}$ and challenger interact via oracles:
 - $\bullet \ \ \mathcal{O}^{\mathsf{KeyGen}}(\mathsf{id}) \to \mathsf{pk}_\mathsf{id}$
 - $\mathcal{O}^{\mathsf{Sign}}(\mathsf{id}, m, \ell) \to \sigma$. Only one query per label is allowed!
 - $\bullet \ \ \mathcal{O}^{\mathsf{Corr}}(\mathsf{id}) \to \mathsf{sk}_{\mathsf{id}}$
- At the end, \mathcal{A} outputs $\left(f^*, (\ell_1^*, \dots, \ell_n^*), (\mathsf{vk}_1, \dots, \mathsf{vk}_n), \mathbf{y}^*, \sigma_{f,y}^*\right)$ where no vk_i can be corrupted.
- \mathcal{A} wins if $\sigma_{f,y}^*$ verifies and either:
 - 1. Exists i such that $\mathcal{O}^{\mathsf{Sign}}(\ell_i^*,\cdot)$ was never queried.
 - 2. For all i, (ℓ_i^*, m_i) honest but ${m y}^*
 eq f^*(m_1, \ldots, m_n)$.

Proving Security

- The proof proceeds by partitioning the winning condition in multiple events.
- Interesting event: when $y \neq f(m_1, ..., m_n)$ and the (deterministic) commitment to the messages c^* is dishonest, $c^* \neq FC.Com(ck, (m_1, ..., m_n))$.
- Strategy is to gradually show that each partial c_i must be honest. Multiple hybrids for each $i \in [n]$, where:
 - 1. Program the BARG crs and extract at i,
 - 2. Compare the extracted c_i to the honest one,
 - 3. Extract m_i and σ_i (a potential forgery) and certify the validity of the commitment update from c_{i-1} to c_i .
 - 4. "Reboot" the extraction to step i + 1.
- Add a *somewhere extractable commitment* to follow a sliding window approach.