Attribute-Based Encryption for Turing Machines from Lattices

Shweta AgrawalSimran KumariShota Yamada(IIT Madras)(IIT Madras)(AIST Tokyo)

Travel Funded by Google India Travel Grant

Fine grained version of a PKE Scheme

Enables access control on encrypted data

ct linked with "policy"—tells us who can decrypt!

keys linked with "attributes"

No collusion of unauthorized parties can break the security - Collusion Resistance

Ciphertext-Policy ABE (CP-ABE)

Policy associated with ciphertext

Policy associated with keys

Uniform Model of Computation

Construction	Model	Assumptions
[Wat12]	DFA	Q-type assumptions on bilinear maps
[GWW19], [AMY19b]	DFA	static assumptions on bilinear maps
[LL20]	NL	pairings

Uniform Model of Computation

Construction	Model	Assumptions
[Wat12]	DFA	Q-type assumptions on bilinear maps
[GWW19], [AMY19b]	DFA	static assumptions on bilinear maps
[LL20]	NL	pairings
[GKP+13]	TM	Extractable WE, SNARKs
[AS17]	TM	iO
[AM18], [KNTY18]	TM	compact FE

Uniform Model of Computation (Conjectured Post-Quantum regime)

Construction	Model	Assumptions
[AS17]	DFA (bounded-collision)	LWE
[AMY19a]	NFA (Secret-key)	LWE
[HLL24b]	DFA, L	LWE, Evasive LWE

Uniform Model of Computation (Conjectured Post-Quantum regime)

Construction	Model	Assumptions
[AS17]	DFA (bounded-collision)	LWE
[AMY19a]	NFA (Secret-key)	LWE
[HLL24b]	DFA, L	LWE, Evasive LWE
This Work	NL	LWE, Evasive LWE, Tensor LWE

Uniform Model of Computation (Conjectured Post-Quantum regime)

Construction	Model	Assumptions
[AS17]	DFA (bounded-collision)	LWE
[AMY19a]	NFA (Secret-key)	LWE
[HLL24b]	DFA, L	LWE, Evasive LWE
This Work	NL	LWE, Evasive LWE, Tensor LWE
This Work	ТМ	LWE, Evasive LWE, Circular Tensor LWE

CP-ABE Landscape

CP-ABE Landscape

ABE for Turing Machines : Pathway

ABE for Turing Machines : Pathway

Unbounded CP-ABE [AKY24] : Outline

starting point of our scheme

To understand: the reason for *bounded* depth

Our Goal $A' - f(x)G \otimes r + e_{large}$ randomised homomorphic S encoding with *large* error $A' - f(x)G \otimes r + e_{small}$ randomised homomorphic S encoding with *small* error

Our Goal

HLL Unbounded Algorithms [HLL24]

HLL Unbounded Algorithms [HLL24]

HLL Unbounded Algorithms [HLL24]

Our Goal

$$s_{r} \qquad A' - f(x)G \qquad + \qquad e_{large}$$

$$Take the HLL path?$$

$$1. Noise Removal$$

$$2. Structure Restoration$$

$$s_{r} \qquad A' - f(x)G \qquad + \qquad e_{small}$$

$$s_{r} \land -f(x)G + e_{large} \rightarrow HLL \\ \text{Noise Removal} \rightarrow func(s_{r}) - s_{r} \land f(x)G \\ \text{Noiseless encoding} \\ \text{Noiseless encoding}$$

encoding with *large* error

circular ct

 $\underline{s}_r(A - \underline{S}_r \otimes G) + e$

ct randomness

HLL Structure Restoration

s : encryption randomness *r* : keygen randomness

S: encryption randomness r: keygen randomness $s_r(A-S_r \otimes G) + e$ Our Approach $S_r = hct(s_r)$ HLL Structure Restoration

Can't give $S_r = hct_{s_r}(s_r)$ from encryption

S: encryption randomness r: keygen randomness $s_r(A-S_r \otimes G) + e$

Compute $S_r = hct_{s_r}(s_r)$ from $hct_s(s)$?

S: encryption randomness r: keygen randomness $s_r(A-S_r \otimes G) + e$

Compute $S_r = hct_{s_r}(s_r)$ from $hct_s(s)$?

Can randomise the underlying message via homo. evaluation. Randomising secret key is infeasible !!

s : encryption randomness *r* : keygen randomness

Compute $S_r = hct_{s_r}(s_r)$ from $hct_s(s)$?

Randomising secret key is infeasible !!

Key Shrinking [BV11, BGV14] Key Expansion [CM15,MW16]

s : encryption randomness *r* : keygen randomness

Additional hurdles in computing encoding of S_r

s : encryption randomness *r* : keygen randomness

Additional hurdles in computing encoding of S_r

Can't apply tensors/evasive to randomise the enc randomness

s : encryption randomness *r* : keygen randomness

s : encryption randomness *r* : keygen randomness

Obvious Fact:

FHE ciphertexts are good for computing on the *underlying messages*, not on the underlying keys

Homomorphic Eval on attribute encoding

Want: To hide x .

Want: To hide \boldsymbol{x} . –Use the GSW13 FHE scheme

Want: To hide x and compute f on x !

Want: To hide x and compute f on x ! $H_{f,x}$ only gives f(hct(x))

Want: To hide x and compute f on x !

Computed
$$f$$
 on $hct(x)$

s : encryption randomness *r* : keygen randomness

$$T = hct(s) \xrightarrow{t}$$
Homom. Evaluation
+ Automatic Dec

$$T = hct(s) \xrightarrow{t} \\ \longrightarrow \\ Homom. Evaluation \\ + Automatic Dec$$

$$T = hct(s) \xrightarrow{t}$$
Homom. Evaluation
$$+ Automatic Dec$$

$$f[r] \xrightarrow{r}$$
By keygen

Summary

• We construct the first CP-ABE scheme supporting unbounded depth circuits from lattices. Security proof requires a new assumption 'circular tensor LWE' along with LWE and Evasive LWE.

Summary

- We construct the first CP-ABE scheme supporting unbounded depth circuits from lattices. Security proof requires a new assumption 'circular tensor LWE' along with LWE and Evasive LWE.
- We construct the first ABE scheme for NL and all Turing Machines from lattices.

