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• 𝑡-privacy
• (𝑡 + 𝜖𝑛)-correctness
• Linear and multiplicative
• Share size = 𝑂 log 1/𝜖  bits!

• Problem: 1-bit shares require large gap 𝜖 ≥ 1/3 [BGK20]
• E.g. 𝑡-privacy vs. 𝑡 +

𝑛

3
-correctness

• Worse in existing constructions

AG codes [CC06]
Random linear codes [CCGHV07]
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1-Bit Shares?

• Meaningful model for 1-bit shares?
• Shamir-like features?
• Useful for MPC?

• Stochastic Secret Sharing
• Probabilistic corruption

• Static Secret Sharing
• Worst-case corruptions

• Applications to MPC

Yes!
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Stochastic Secret Sharing

• Stochastic corruption model
• Every party is corrupted with probability 𝑝
• Natural in some areas in cryptography

• Leakage resilient circuits in the random probing model
• Combiners

• Except with negligible error probability over the choice of bad parties:
• Correctness: Honest parties can recover 𝑠
• Privacy: Corrupt parties have no info about 𝑠

• ⇒ 𝑝 < 1/2

(=Authorized set)
(=Unauthorized set)
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• For every 𝑝 < 1/2

• Error = 2−Ω𝑝 𝑛

• Linear and multiplicative
• Based on Reed-Muller code

Linear code 𝐶 and 𝐶⊥ behave well over 𝐵𝐸𝐶(𝑝)

𝑝-stochastic secret sharing

Reed-Muller achieves 
capacity over 𝐵𝐸𝐶(𝑝)
[KKMPSU17]
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• 𝑛-party SSS with 1-bit shares
• For every 𝑝 < 1/2

• Error = 2−Ω𝑝 𝑛

• Linear and multiplicative
• Based on Reed-Muller code

• Probabilistic construction of 𝑆𝑆𝑆 with1-bit shares
• For every 𝑝 < 1/2

• Error = 2−Ω𝑝 𝑛

• Linear
• Not multiplicative

Linear-size 
circuit!
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• Error = 2−Ω 𝑛

• Linear
• Not multiplicative

Optimal 
communication!

Optimal computation!
Amortized linear-size 
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