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Problem: In Shamir we have |F| > n
= log(n)-bit shares even for 1-bit secrets!
Q(log(n)) is necessary for threshold secret sharing [CDN15]
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! * Linear and multiplicative .
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* Problem: 1-bit shares require large gap € = 1/3 [BGK20]

* E.g. t-privacy vs. (t + g)-correctness
* Worse in existing constructions
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* Meaningful model for 1-bit shares?

e Shamir-like features?
e Useful for MPC?

* Stochastic Secret Sharing
* Probabilistic corruption

* Static Secret Sharing
* Worst-case corruptions

* Applications to MPC
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* Stochastic corruption model

* Every party is corrupted with probability p ‘ ;?v ' 8 1?) ‘

* Natural in some areas in cryptography
* Leakage resilient circuits in the random probing model
* Combiners

* Except with negligible error probability over the choice of bad parties:
» Correctness: Honest parties canrecovers  (=Authorized set)
* Privacy: Corrupt parties have no info about s (=Unauthorized set)

co>p<1/2
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* Static secret sharing .
* Threshold ¢t ‘ :?y ‘ ‘ 1?, ‘
* Public randomness R 51 S3 Sy S5 Sg
For every t corrupt parties, except with negligible probability over R:
Correctness: Honest parties canrecover s  (=Authorized set)
Privacy: Corrupt parties have no info about s (=Unauthorized set)

Public randomness chosen once and for all
* Can bereused by the dealer and other dealers
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[° n party static SS with 1-bit shares Optimal
1 e Threshold t = 0.499n communication!

! e Error = 2-0(n)
| * Linear and multiplicative
* Based on Reed-Muller code
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