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Iteration structures for block ciphers

Encryption is similar to decryption?
SPN structure, Feistel-like structure.

Feistel-like structure
Feistel structure, Lai-Massey structure, Source-Heavy Generalised
Feistel Structure, Target-Heavy Generalised Feistel Structure.
Source-Heavy Generalised Feistel Structure (SH GFS): SM4 structure.
Target-Heavy Generalised Feistel Structure (TH GFS): Mars structure.
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Figure: The Feistel structure
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Figure: The Lai-Massey structure
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Unified structure
The condition that encryption and decryption are similar:

A0B0 ⊕ A1B1 ⊕ · · · ⊕ Ad−1Bd−1 = 0.

π is a branch permutation.
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Figure: The unified structure
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Numerous Feistel-like structures

The link among different structures
If permutations π are different, some cryptographic properties remain
the same for some Feistel-like structures.
SM4-like and Mars-like structures cover the same number of rounds
for the longest impossible differentials and the longest zero correlation
linear hulls.
The generic results of the meet-in-the-middle attacks against both SH
GFS and TH GFS are the same.

Question 1:
Is there any equivalence for the universal cases between different
structures?

SM4-like and Mars-like structures
SH GFS and TH GFS
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Cryptanalysis of Iterative Structures

Known cryptanalytic vectors.
Provable security.

Links of impossible differentials, zero correlation linear hulls and
integral distinguishers.

The impossible differential of a structure is equivalent to the zero
correlation linear hull of its dual structure.
A zero correlation linear hull always implies the existence of an integral
distinguisher.
The matrix representation and mirror function link these three
distinguishers of Feistel-like structures.

Question 2:
For what kind of structures are the impossible differentials equivalent to the
zero correlation linear hulls?

Bing Sun et al. Feistel-like Structures Revisited 6 / 30



Full-Diffusion Round and the Provable Security

Figure: Insecure structure

There is a probability 1 differential which covers any rounds.

Question 3:
Is it possible to redefine the full-diffusion round such that the provable
security evaluations of the unified structures against impossible differentials
and zero correlation linear cryptanalysis can also be covered?
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A Compact Description for the Unified Structure
Notations

A,B : Fnd
2 7→ Ft

2, f : Ft
2 7→ Ft

2, B(t) : all the mappings over Ft
2, π is a

branch permutation.
A mapping from Fnd

2 to Fnd
2 : FA,B,π(f )(X ) = π

(
X ⊕ BTf (AX )

)
.

The Unified Structure: FA,B,π = {FA,B,π(f )|f ∈ B(t)}.
r -round iteration of FA,B,π:
F (r)
A,B,π = {π−1 ◦ FA,B,π(fr ) ◦ · · · ◦ FA,B,π(f1)|f1, . . . , fr ∈ B(t)}.
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Figure: The Unified Structure FA,B,π and Its Dual Structure F⊥
A,B,π
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Examples: SM4-like Structure and Mars-like Structure
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Figure: The SM4-like structure
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Figure: The Mars-like structure

SM4 structure and Mars structure
SM4 structure: AS = [O, I , I , I ], BS = [I ,O,O,O].
Mars structure: AM = [I ,O,O,O], BM = [O, I , I , I ],

πM = πS =

(
0 1 2 3
3 0 1 2

)
.
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Dual structure

Definition: Dual structure

The dual structure of F (r)
A,B,π is defined as F (r)⊥

A,B,π = F (r)
B,A,π.

Proposition 1
The dual structure of SM4 structure is Mars structure, and vice versa.

Denote:

Ar =


A
Aπ
...

Aπr−1

 , Br =


B
Bπ
...

Bπr−1

 .
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Some conclusions for FA,B,π

Proposition 2
Let FA,B,π be the unified structure with d n-bit branches. The following
conclusions hold.

FA,B,π is invertible if and only if ABT = 0.
There exists an integer r such that

rank (Ar ) = rank (Br ) = nd .

Otherwise, there always exists a differential characteristic with
probability 1 for an arbitrary number of rounds.

α→ β is an r -round impossible differential of F (r)
A,B,π if and only if

α→ β is an r -round zero correlation linear hull of F (r)
B,A,π.
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Research objective

Definition: Regular Unified Structure
A unified structure FA,B,π with d n-bit branches is said to be regular if the
following 5 conditions are satisfied:

ABT = 0;
sizes of the round functions equal the size of the branch;
the round functions are permutations;
the order of π equals the number of branches, i.e., ord(π) = d ;
rank(Ad) = rank(Bd) = nd , i.e., both Ad and Bd are invertible
matrices.
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Affine equivalence between ciphers

Definition: Affine Equivalence between Ciphers
Let E1(·, k) and E2(·, k) be two block ciphers. If there are bijective affine
mappings P and Q, such that for any X and k ,

E2(X , k) = QE1(P(X ), k),

the two ciphers E1(·, k) and E2(·, k) are defined to be affine equivalent.

Remark:
1. If c = E2(m, k), then Q−1(c) = E1(P(m), k).
2. The security of DES is independent of the initial permutation IP.
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Affine equivalence between structures

Definition: Affine Equivalence between Structures
Two unified structures E1 and E2 are said to be affine equivalent if there
exist two affine mappings P and Q that establish a one-to-one
correspondence between sets of all instances of E1 and E2 in the following
manner:

For any instance E1 ∈ E1, the transformation Q ◦ E1 ◦ P results in an
instance within E2.
Conversely, for any instance E2 ∈ E2, the transformation
Q−1 ◦ E2 ◦ P−1 results in an instance within E1.

This relationship is denoted by E1 ∼ E2 and can be expressed as
E2 = Q ◦ E1 ◦ P .

Remark: The affine equivalence between structures forms an equivalent
relation.

Bing Sun et al. Feistel-like Structures Revisited 14 / 30



Normalized form
Lemma 1: X -type normalized form

Let F (r)
A,B,π be an r -round d-branch regular unified structure. Then, F (r)

A,B,π

is affine equivalent to F (r)

Ȧ,Ḃ,π̇
, where


Ȧ = [I ,O,O, · · · ,O],

Ḃ =
[
O,
(
AπBT)T ,

(
Aπ2BT)T , · · · ,

(
Aπd−1BT)T] ,

π̇ =

(
0 1 2 · · · d − 2 d − 1

d − 1 0 1 · · · d − 3 d − 2

)
.

To be specific, for any f1, . . . , fr ∈ B(n), we have

FA,B,π(fr , . . . , f1) =
(
Ad
)−1
◦ FȦ,Ḃ,π̇(fr , . . . , f1) ◦ A

d .

Moreover, F (r)

Ȧ,Ḃ,π̇
is called the X -type normalized form of F (r)

A,B,π.
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Normalized form
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Figure: The X -type Normalized Form of FA,B,π

Corollary 1

Let F (r)
A1,B1,π1

and F (r)
A2,B2,π2

be two r -round d-branch regular unified

structures. Then, F (r)
A1,B1,π1

∼ F (r)
A2,B2,π2

if the following equation holds for
i = 1, 2, . . . , d − 1:

A1π
i
1B

T
1 = A2π

i
2B

T
2 .

Bing Sun et al. Feistel-like Structures Revisited 16 / 30



Example

Example: SM4 structure and Mars structure are equivalent.

ESM4 =


O I I I
I O I I
I I O I
I I I O

 ◦ EMars ◦


O I I I
I O I I
I I O I
I I I O

 .

Remark: SM4 and Mars ciphers are affine equivalent if these two ciphers
use the same round function and round keys.
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Normalized form

Lemma 2: D-type normalized form

Let F (r)
A,B,π be an r -round d-branch regular unified structure. Then, F (r)

A,B,π

is affine equivalent to F (r)

Å,B̊,π̊
, where

Å =
[
O,Aπd−1BT,Aπd−2BT, · · · ,AπBT] ,

B̊ = [I ,O,O, · · · ,O],

π̊ =

(
0 1 2 · · · d − 2 d − 1

d − 1 0 1 · · · d − 3 d − 2

)
.

Moreover, F (r)

Å,B̊,π̊
is called the D-type normalized form of F (r)

A,B,π.
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Normalized form
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Figure: The D-type Normalized Form of FA,B,π

Theorem 1: The equivalence between SH GFS and TH GFS
Every SH GFS corresponds to an affine equivalent TH GFS, and vice versa.
This equivalence establishes that, from a security standpoint, the design of
new ciphers can focus on either structure without losing better possibilities,
as both provide equivalent cryptographic properties.
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Self-equivalent structure
Definition: Self-Equivalent Structure

Let E be a structure and E⊥ be its dual structure. If E ∼ E⊥, E is called a
self-equivalent structure.

Remark: Evaluating the security of E against zero correlation linear
cryptanalysis is equivalent to evaluating the security of E⊥ against
impossible differential cryptanalysis.

Corollary 2

Let F (r)
A,B,π be an r -round d-branch regular unified structure. Then, F (r)

A,B,π

is a self-equivalent structure if the following equation holds for
i = 1, 2, . . . , d − 1:

AπiBT = BπiAT.

Proposition 3
Both ESM4 and EMars are self-equivalent structures.
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Self-equivalent structure

Theorem 2

Let F (r)
A,B,π be an r -round d-branch regular unified structure, and both A

and B are block matrices whose elements are either identity matrix I or
zero matrix O. If A⊕B = [I , I , . . . , I ], F (r)

A,B,π is a self-equivalent structure.

Lemma 3
There is a one-to-one correspondence between the impossible differentials
and zero correlation linear hulls of a self-equivalent structure. Thus, for a
self-equivalent structure, the longest impossible differential covers exactly
the same rounds as the longest zero correlation linear hull.
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Self-equivalent structure

α α α (P−1)Tα
↓ ↓ ↓ P ↓
E ⇔ E⊥ ⇔ E ⇔ E
↓ ↓ ↓ Q ↓
β β β QTβ

(ID) (ZC) (ZC) (ZC)

Theorem 3
Let FA,B,π be a self-equivalent structure, and denote by RI , RID and RZC

the maximal rounds of the integral distinguisher, the impossible differential
and zero correlation linear hull of FA,B,π, respectively. Then we have:

RID = RZC ≤ RI .

Remark: The security of a block cipher against integral attacks covers the
security against impossible differential and zero correlation linear attacks.
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Notations

Three types of differential propagations of the round functions for a regular
unified structure.

0 difference always propagates to 0.
A non-zero difference ϵ ∈ Fn

2/{0} always propagates to Vϵ = Fn
2/{0}.

An undetermined difference δ ∈ Fn
2, which can be either zero or

non-zero, always propagates to Vδ = Fn
2.
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Refined full-diffusion round

Definition: Refined Full-Diffusion Round
Let E (r) be an r -round n-bit iterative block cipher. The maximal integer R
satisfying the following condition is called the refined full-diffusion round of
E : there is an input difference ∆I ̸= 0, two matrices LI and LO ̸= O, such
that for any ∆

(r)
O ∈ {E

(R)(x)⊕ E (R)(x ⊕∆I )|x ∈ Fn
2},

LI∆I ⊕ LO∆
(r)
O = O.

Let E be an n-bit iterative structure. The maximal integer R satisfying the
following condition is called the refined full-diffusion round of E : there is an
input difference ∆I ̸= 0, two matrices LI and LO ̸= O, such that for any
∆

(r)
O ∈ {E

(R)(x)⊕ E (R)(x ⊕∆I )|x ∈ Fn
2,E

(R) ∈ E(R)},

LI∆I ⊕ LO∆
(r)
O = 0.
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Refined full-diffusion round

Proposition 4
The refined full-diffusion round of the structure deduced from AES is 2.

Theorem 4

Let F (r)
A,B,π be an r -round d-branch regular unified structure. Then, the

refined full-diffusion round of FA,B,π is 2d − 2, provided AπiBT’s are
invertible for i = 1, 2, · · · , d − 1.
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Refined full-diffusion round

Algorithm 1 Calculate refined full-diffusion round of FA,B,π

1: procedure RFDR(A,B, π, d) ▷ d is the number of branches
2: matrix Q ← [O,O, · · · ,O]T

3: r ← d − 1
4: while rank(Q) < nd do
5: if r mod d = d − 1 or AQ ̸= O then
6: Q ← [πQ | πBT]
7: else
8: Q ← πQ
9: end if

10: r ← r + 1
11: end while
12: return r − 1
13: end procedure
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Refined full-diffusion round

Proposition 5
The refined full-diffusion rounds of the Feistel, SM4 and Mars structures
are 2, 6 and 6, respectively, if the round functions are permutations.
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The number of rounds for the longest impossible differential

Theorem 6

Let F (r)
A,B,π be an r -round d-branch regular unified structure. Denote by

RFDR the refined full-diffusion round of FA,B,π. Then, the longest
impossible differential of FA,B,π covers exactly

3
2
RFDR + 2 = 3d − 1

rounds, provided AπiBT’s are invertible for i = 1, 2, · · · , d − 1.

Proposition 6
The longest impossible differential in a standard Feistel structure spans
exactly five rounds, and in the SM4 structure, it spans exactly eleven
rounds, assuming that the round functions operate as random
permutations.
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Conclusion

The results could give new guidelines for both the design and cryptanalysis
of Feistel-like ciphers.

A source-heavy generalised Feistel cipher is always affine equivalent to
a target-heavy generalised Feistel cipher with the same round
functions f and same round key k .
For self-equivalent structure, there is a one-to-one correspondence
between the impossible differentials and the zero correlation linear
hulls.
For self-equivalent structure, the longest integral covers at least the
rounds of the longest impossible differentials/zero correlation linear
hulls.
Both the longest impossible differential and zero correlation linear hull
of the d-branch SM4-like structures cover exactly 3d − 1 rounds.
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Thanks For Your Attention!
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