Crypto 2024 August 21, 2024 — Santa Barbara, United States

FuLeakage: Breaking FuLeeca by Learning Attacks

Felicitas Hörmann^{1,2} – felicitas.hoermann@dlr.de joint work with Wessel van Woerden³

¹Institute of Communications and Navigation – German Aerospace Center (DLR), Germany ²School of Computer Science – University of St. Gallen, Switzerland ³Institut de Mathématiques de Bordeaux – University of Bordeaux, France

Motivation and Overview

FuLeeca

- is a code-based signature scheme,
- uses quasi-cyclic codes in the Lee metric, and

FuLeeca ia.cr/2023/377

• was presented at CBCrypto 2023 and submitted to NIST's additional call for signatures [Ritterhoff et al., 2023].

Motivation and Overview

FuLeeca

- is a code-based signature scheme,
- uses quasi-cyclic codes in the Lee metric, and

FuLeeca ia.cr/2023/377

• was presented at CBCrypto 2023 and submitted to NIST's additional call for signatures [Ritterhoff et al., 2023].

FuLeakage ia.cr/2024/353		few signatures $(\ll 100)$	many signatures $(\leq 175,000)$
	classical attack	leaked-sublattice attack (reduced security)	learning attack (full break)
	quantum attack	ideal-structure attack (full break)	\leftarrow see this attack

Motivation and Overview

FuLeeca

- is a code-based signature scheme,
- uses quasi-cyclic codes in the Lee metric, and

FuLeeca ia.cr/2023/377

• was presented at CBCrypto 2023 and submitted to NIST's additional call for signatures [Ritterhoff et al., 2023].

FuLeakage ia.cr/2024/353		few signatures $(\ll 100)$	many signatures $(\leq 175,000)$
	classical attack	leaked-sublattice attack (reduced security)	learning attack (full break)
	quantum attack	ideal-structure attack (full break)	\leftarrow see this attack

1. FuLeeca, Codes, and Lattices

2. Leaked-Sublattice Attack

3. Learning Attack

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

We use the representation
$$\mathbb{F}_p = \left\{-\frac{p-1}{2}, \dots, \frac{p-1}{2}\right\}.$$

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

We use the representation
$$\mathbb{F}_p = \left\{-\frac{p-1}{2}, \dots, \frac{p-1}{2}\right\}$$
.

Lee-metric codes

Euclidean lattices

Linear code $C = \mathbb{F}_p^k \cdot \boldsymbol{G}$ for a full-rank generator matrix $\boldsymbol{G} \in \mathbb{F}_p^{k \times n}$. Lattice $\mathcal{L} = \mathbb{Z}^k \cdot \boldsymbol{B}$ for a full-rank basis $\boldsymbol{B} \in \mathbb{R}^{k \times n}$.

We use the representation
$$\mathbb{F}_p = \left\{-\frac{p-1}{2}, \dots, \frac{p-1}{2}\right\}.$$

Lee-metric codes	Euclidean lattices
Linear code $C = \mathbb{F}_p^k \cdot \boldsymbol{G}$ for a full-rank generator matrix $\boldsymbol{G} \in \mathbb{F}_p^{k \times n}$.	Lattice $\mathcal{L} = \mathbb{Z}^k \cdot \boldsymbol{B}$ for a full-rank basis $\boldsymbol{B} \in \mathbb{R}^{k \times n}$.
$oldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{F}_p^n$ has Lee weight $\operatorname{wt}_L(oldsymbol{x}) = \sum_i x_i .$	$oldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ has Euclidean norm $\ oldsymbol{x}\ _2 = \sqrt{\sum_i x_i^2}.$

We use the representation
$$\mathbb{F}_p = \left\{-\frac{p-1}{2}, \dots, \frac{p-1}{2}\right\}$$
.

A hash-and-sign scheme based on a code C signs a message m as follows:

A hash-and-sign scheme based on a code C signs a message m as follows:

1. Hash the message **m** to a target **t**.

A hash-and-sign scheme based on a code C signs a message m as follows:

- 1. Hash the message *m* to a target *t*.
- 2. The signature s is
 - a codeword
 - close to the target t.

A hash-and-sign scheme based on a code C signs a message m as follows:

- 1. Hash the message *m* to a target *t*.
- 2. The signature *s* is
 - a codeword \rightarrow check if $\boldsymbol{s} \in \mathcal{C}$
 - close to the target t. \rightarrow check wt_L $(s - t) \leq r$

. . • • • . . SO • . •

A hash-and-sign scheme based on a code C signs a message m as follows:

- 1. Hash the message **m** to a target **t**.
- 2. The signature *s* is
 - a codeword
 - ightarrow check if ${m s} \in {\mathcal C}$
 - close to the target *t*.
 → check wt_L(*s* − *t*) ≤ *r*

The signer needs a good description of the code but any description works for the verifier.

Generate a secret vector $\boldsymbol{g} = (\boldsymbol{a} \mid \boldsymbol{b}) \in \mathbb{F}_p^n$ with n = 2kby drawing \boldsymbol{a} and \boldsymbol{b} uniformly at random from $\{\boldsymbol{x} \in \mathbb{F}_p^k : \operatorname{wt}_L(\boldsymbol{x}) = w_{\operatorname{key}}\}$.

Generate a secret vector $\boldsymbol{g} = (\boldsymbol{a} \mid \boldsymbol{b}) \in \mathbb{F}_p^n$ with n = 2kby drawing \boldsymbol{a} and \boldsymbol{b} uniformly at random from $\{\boldsymbol{x} \in \mathbb{F}_p^k : \operatorname{wt}_L(\boldsymbol{x}) = w_{\operatorname{key}}\}.$

Secret key:

$$\boldsymbol{G}_{\text{sec}} = (\boldsymbol{A} \mid \boldsymbol{B}) = \begin{pmatrix} a_1 & a_2 & \dots & a_k \\ a_k & a_1 & \dots & a_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \dots & a_1 \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \dots & b_k \\ b_k & b_1 & \dots & b_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ b_2 & b_3 & \dots & b_1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{g}_1 \\ \boldsymbol{g}_2 \\ \vdots \\ \boldsymbol{g}_k \end{pmatrix}$$

Generate a secret vector $\boldsymbol{g} = (\boldsymbol{a} \mid \boldsymbol{b}) \in \mathbb{F}_p^n$ with n = 2kby drawing \boldsymbol{a} and \boldsymbol{b} uniformly at random from $\{\boldsymbol{x} \in \mathbb{F}_p^k : \operatorname{wt}_L(\boldsymbol{x}) = w_{\operatorname{key}}\}.$

Secret key:

$$\boldsymbol{G}_{\text{sec}} = (\boldsymbol{A} \mid \boldsymbol{B}) = \begin{pmatrix} a_1 & a_2 & \dots & a_k \\ a_k & a_1 & \dots & a_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \dots & a_1 \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \dots & b_k \\ b_k & b_1 & \dots & b_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ b_2 & b_3 & \dots & b_1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{g}_1 \\ \boldsymbol{g}_2 \\ \vdots \\ \boldsymbol{g}_k \end{pmatrix}$$

Public key:

$$oldsymbol{G}_{\mathsf{pub}} = ig(oldsymbol{I}_k \mid oldsymbol{A}^{-1}oldsymbol{B}ig)$$

Generate a secret vector $\boldsymbol{g} = (\boldsymbol{a} \mid \boldsymbol{b}) \in \mathbb{F}_p^n$ with n = 2kby drawing \boldsymbol{a} and \boldsymbol{b} uniformly at random from $\{\boldsymbol{x} \in \mathbb{F}_p^k : \operatorname{wt}_L(\boldsymbol{x}) = w_{\operatorname{key}}\}$.

Secret key:

$$\boldsymbol{G}_{\text{sec}} = (\boldsymbol{A} \mid \boldsymbol{B}) = \begin{pmatrix} a_1 & a_2 & \dots & a_k \\ a_k & a_1 & \dots & a_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \dots & a_1 \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \dots & b_k \\ b_k & b_1 & \dots & b_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ b_2 & b_3 & \dots & b_1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{g}_1 \\ \boldsymbol{g}_2 \\ \vdots \\ \boldsymbol{g}_k \end{pmatrix}$$

Public key:

$$oldsymbol{G}_{\mathsf{pub}} = ig(oldsymbol{I}_k \mid oldsymbol{A}^{-1}oldsymbol{B}ig)$$

Goal: Recover the secret vector \boldsymbol{g} (or any of its quasi-circular shifts $\boldsymbol{g}_1, \ldots, \boldsymbol{g}_k$).

Felicitas Hörmann - German Aerospace Center (DLR) & University of St. Gallen - August 21, 2024

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

5

$$\mathcal{L}_{\mathsf{A}}(\mathcal{C}) := \{ \mathbf{v} \in \mathbb{Z}^n : \mathbf{v} \pmod{p} \in \mathcal{C} \}$$

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

$$\mathcal{L}_{\mathsf{A}}(\mathcal{C}) = \mathcal{C} + \mathbf{p}\mathbb{Z}^n$$

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

$$\mathcal{L}_{\mathsf{A}}(\mathcal{C}) = \mathcal{C} + \mathbf{p}\mathbb{Z}^{n}$$

 $\mathcal{L}_{\mathsf{A}}(\mathcal{C}) \text{ is a rank-} n \text{ lattice with basis}$ $\boldsymbol{B}_{\mathsf{pub}} = \begin{pmatrix} \mathbf{I}_k & \boldsymbol{A}^{-1}\boldsymbol{B} \\ \mathbf{0} & \boldsymbol{\rho} \, \mathbf{I}_{n-k} \end{pmatrix}.$

$$\mathcal{L}_{\mathsf{A}}(\mathcal{C}) = \mathcal{C} + \mathbf{p}\mathbb{Z}^{n}$$

 $\mathcal{L}_{\mathsf{A}}(\mathcal{C}) \text{ is a rank-} n \text{ lattice with basis}$ $\boldsymbol{B}_{\mathsf{pub}} = \begin{pmatrix} \mathbf{I}_k & \boldsymbol{A}^{-1}\boldsymbol{B} \\ \mathbf{0} & \boldsymbol{\rho} \, \mathbf{I}_{n-k} \end{pmatrix}.$

Lattice techniques allow to recover a short vector in $O(2^{0.292n})$

Felicitas Hörmann - German Aerospace Center (DLR) & University of St. Gallen - August 21, 2024

$$\mathcal{L}_{\mathsf{A}}(\mathcal{C}) = \mathcal{C} + \mathbf{p}\mathbb{Z}^{n}$$

 $\mathcal{L}_{\mathsf{A}}(\mathcal{C}) \text{ is a rank-} n \text{ lattice with basis}$ $\boldsymbol{B}_{\mathsf{pub}} = \begin{pmatrix} \mathbf{I}_k & \boldsymbol{A}^{-1}\boldsymbol{B} \\ \mathbf{0} & \boldsymbol{\rho} \, \mathbf{I}_{n-k} \end{pmatrix}.$

Lattice techniques allow to recover a short vector in $O(2^{0.292n})$ but ISD attacks are more efficient.

Felicitas Hörmann - German Aerospace Center (DLR) & University of St. Gallen - August 21, 2024

$$\mathcal{L}_{\mathsf{A}}(\mathcal{C}) = \mathcal{C} + \mathbf{p}\mathbb{Z}^{n}$$

 $\mathcal{L}_{\mathsf{A}}(\mathcal{C}) \text{ is a rank-} n \text{ lattice with basis}$ $\boldsymbol{B}_{\mathsf{pub}} = \begin{pmatrix} \mathbf{I}_k & \boldsymbol{A}^{-1}\boldsymbol{B} \\ \mathbf{0} & \boldsymbol{\rho} \, \mathbf{I}_{n-k} \end{pmatrix}.$

Lattice techniques allow to recover a short vector in $O(2^{0.292n})$ but ISD attacks are more efficient.

Observe: In the central square, the Lee metric corresponds to the ℓ_1 -norm.

1. FuLeeca, Codes, and Lattices

2. Leaked-Sublattice Attack

3. Learning Attack

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

6

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

1. $v = \text{simpleSign}(c, G_{\text{sec}})$

2.
$$v = \text{concentrate}(c, v, G_{\text{sec}})$$

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

1. $v = simpleSign(c, G_{sec})$ Choose v as a codeword close to c.

2. $v = \text{concentrate}(c, v, G_{\text{sec}})$

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

1. $v = \text{simpleSign}(c, G_{\text{sec}})$ Choose v as a codeword close to c.

Set $\mathbf{v} = \mathbf{x}\mathbf{G}_{sec} \mod p$ with $x_i = trunc\left(\frac{s}{2} \cdot \langle \mathbf{c}, sgn(g_i) \rangle\right)$ for $i = 1, \ldots, k$.

2. $v = \text{concentrate}(c, v, G_{\text{sec}})$

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

1. $v = simpleSign(c, G_{sec})$ Choose v as a codeword close to c.

Set $\mathbf{v} = \mathbf{x}\mathbf{G}_{sec} \mod p$ with $x_i = trunc\left(\frac{s}{2} \cdot \langle \mathbf{c}, sgn(g_i) \rangle\right)$ for $i = 1, \ldots, k$.

2. $v = \text{concentrate}(c, v, G_{sec})$

Adapt v to get its Lee weight and the sign matches with c to prescribed intervals.

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

1. $\mathbf{v} = \text{simpleSign}(\mathbf{c}, \mathbf{G}_{\text{sec}})$ Choose \mathbf{v} as a codeword close to \mathbf{c} .

Set $\mathbf{v} = \mathbf{x}\mathbf{G}_{sec} \mod p$ with $x_i = trunc\left(\frac{s}{2} \cdot \langle \mathbf{c}, sgn(g_i) \rangle\right)$ for $i = 1, \ldots, k$.

2. $v = \text{concentrate}(c, v, G_{sec})$

Adapt \mathbf{v} to get its Lee weight and the sign matches with \mathbf{c} to prescribed intervals. Iteratively improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for $i = 1, \dots, k$.

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

1. $\mathbf{v} = \text{simpleSign}(\mathbf{c}, \mathbf{G}_{\text{sec}})$ Choose \mathbf{v} as a codeword close to \mathbf{c} .

Set $\mathbf{v} = \mathbf{x}\mathbf{G}_{sec} \mod p$ with $x_i = trunc\left(\frac{s}{2} \cdot \langle \mathbf{c}, sgn(g_i) \rangle\right)$ for $i = 1, \dots, k$.

2. $v = \text{concentrate}(c, v, G_{\text{sec}})$

Adapt \mathbf{v} to get its Lee weight and the sign matches with \mathbf{c} to prescribed intervals. Iteratively improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for $i = 1, \dots, k$.

Note: The entries of x and G_{sec} are small but p = 65,565 is large!

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

1. $\mathbf{v} = \text{simpleSign}(\mathbf{c}, \mathbf{G}_{\text{sec}})$ Choose \mathbf{v} as a codeword close to \mathbf{c} .

Set $\mathbf{v} = \mathbf{x}\mathbf{G}_{sec} \mod p$ with $x_i = trunc\left(\frac{s}{2} \cdot \langle \mathbf{c}, sgn(g_i) \rangle\right)$ for $i = 1, \dots, k$.

2. $v = \text{concentrate}(c, v, G_{\text{sec}})$

Adapt \mathbf{v} to get its Lee weight and the sign matches with \mathbf{c} to prescribed intervals. Iteratively improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for $i = 1, \dots, k$.

Note: The entries of x and G_{sec} are small but p = 65,565 is large!

 \implies No wrapping modulo *p* takes place, i.e., all computations are in fact over \mathbb{Z} ,

The signature $\mathbf{v} \in \mathbb{F}_p^n$ for a message hash $\mathbf{c} \in \{\pm 1\}^n$ is computed as follows:

1. $v = \text{simpleSign}(c, G_{\text{sec}})$ Choose v as a codeword close to c.

Set $\mathbf{v} = \mathbf{x}\mathbf{G}_{sec} \mod p$ with $x_i = trunc\left(\frac{s}{2} \cdot \langle \mathbf{c}, sgn(g_i) \rangle\right)$ for $i = 1, \ldots, k$.

2. $v = \text{concentrate}(c, v, G_{\text{sec}})$

Adapt \mathbf{v} to get its Lee weight and the sign matches with \mathbf{c} to prescribed intervals. Iteratively improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for $i = 1, \dots, k$.

Note: The entries of x and G_{sec} are small but p = 65,565 is large!

 \implies No wrapping modulo p takes place, i.e., all computations are in fact over \mathbb{Z} , and all signatures lie in the central square of \mathcal{L}_A .

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024
$$\mathcal{L}_{\mathsf{A}} = \mathbb{Z}^n \cdot \begin{pmatrix} \mathsf{I}_k & \mathsf{A}^{-1} \boldsymbol{B} \\ \mathbf{0} & \rho \, \mathsf{I}_{n-k} \end{pmatrix} \subset \mathbb{R}^n$$

$$\mathcal{L}_{\mathsf{A}} = \mathbb{Z}^n \cdot \begin{pmatrix} \mathsf{A} & \mathsf{B} \\ \mathsf{0} & \rho \, \mathsf{I}_{n-k} \end{pmatrix} \subset \mathbb{R}^n$$

7

$$\mathcal{L}_{\mathsf{sub}} := \mathbb{Z}^k \cdot \underbrace{(A \ B)}_{=G_{\mathsf{sec}}} \subset \mathbb{R}^n$$

$$\mathcal{L}_{\mathsf{sub}} := \mathbb{Z}^k \cdot \underbrace{(A \quad B)}_{= G_{\mathsf{rec}}} \subset \mathbb{R}^n$$

 \mathcal{L}_{sub} has rank k = n/2 and lattice techniques can recover short vectors with complexity $O\left(2^{\frac{0.292n}{2}}\right)$.

$$\mathcal{L}_{\mathsf{sub}} := \mathbb{Z}^k \cdot \underbrace{(A \ B)}_{=G_{\mathsf{rec}}} \subset \mathbb{R}^n$$

 \mathcal{L}_{sub} has rank k = n/2 and lattice techniques can recover short vectors with complexity $O\left(2^{\frac{0.292n}{2}}\right)$.

In fact, g_1, \ldots, g_k are unusually short in \mathcal{L}_{sub} which reduces the complexity to $O\left(2^{\frac{0.292n}{4}}\right)!$

$$\mathcal{L}_{\mathsf{sub}} := \mathbb{Z}^k \cdot \underbrace{(A \ B)}_{=G_{\mathsf{rec}}} \subset \mathbb{R}^n$$

 \mathcal{L}_{sub} has rank k = n/2 and lattice techniques can recover short vectors with complexity $O\left(2^{\frac{0.292n}{2}}\right)$.

In fact, g_1, \ldots, g_k are unusually short in \mathcal{L}_{sub} which reduces the complexity to $O\left(2^{\frac{0.292n}{4}}\right)!$

Remark: The quasicyclic structure of \mathcal{L}_{sub} enables a polynomial-time quantum attack.

But G_{sec} is secret and we need a basis of \mathcal{L}_{sub} to apply lattice techniques !

But G_{sec} is secret and we need a basis of \mathcal{L}_{sub} to apply lattice techniques!

 $\implies \mbox{Get a set of generating vectors from} \\ \mbox{signatures and extract a basis.}$

But G_{sec} is secret and we need a basis of \mathcal{L}_{sub} to apply lattice techniques !

⇒ Get a set of generating vectors from signatures and extract a basis.

Probability to generate \mathcal{L}_{sub} .

But G_{sec} is secret and we need a basis of \mathcal{L}_{sub} to apply lattice techniques!

⇒ Get a set of generating vectors from signatures and extract a basis.

Our leaked-sublattice attack reduces FuLeeca's security levels as follows:

Probability to generate \mathcal{L}_{sub} .

Parameter Set	Security L Claimed	evel (in bits) Updated
FuLeeca-I	160	111
FuLeeca-III	224	155
FuLeeca-V	288	199

But G_{sec} is secret and we need a basis of \mathcal{L}_{sub} to apply lattice techniques!

⇒ Get a set of generating vectors from signatures and extract a basis.

Our leaked-sublattice attack reduces FuLeeca's security levels as follows:

Probability to generate \mathcal{L}_{sub} .

Parameter Set	Security I Claimed	Level (in bits) Updated
FuLeeca-I	160	111
FuLeeca-III	224	155
FuLeeca-V	288	199

 \implies The NIST standards are not met. X

Felicitas Hörmann - German Aerospace Center (DLR) & University of St. Gallen - August 21, 2024

1. FuLeeca, Codes, and Lattices

2. Leaked-Sublattice Attack

3. Learning Attack

Observed Bias in FuLeeca

q

Recall: The method $\mathbf{v} = \text{concentrate}(\mathbf{c}, \mathbf{v}, \mathbf{G}_{sec})$ in the signature generation tries to improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for $i = 1, \dots, k$.

Recall: The method $\mathbf{v} = \text{concentrate}(\mathbf{c}, \mathbf{v}, \mathbf{G}_{sec})$ in the signature generation tries to improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for $i = 1, \dots, k$.

This process is not properly randomized and the order is always $\pm g_1, \pm g_2, \ldots, \pm g_k$.

Observed Bias in FuLeeca

Recall: The method $\mathbf{v} = \text{concentrate}(\mathbf{c}, \mathbf{v}, \mathbf{G}_{sec})$ in the signature generation tries to improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for $i = 1, \dots, k$.

This process is not properly randomized and the order is always $\pm g_1, \pm g_2, \ldots, \pm g_k$.

Observed bias for signatures.

q

Recall: The method $\mathbf{v} = \text{concentrate}(\mathbf{c}, \mathbf{v}, \mathbf{G}_{sec})$ in the signature generation tries to improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for $i = 1, \dots, k$.

This process is **not** properly randomized and the order is always $\pm g_1, \pm g_2, \ldots, \pm g_k$.

Observed bias for signatures.

q

Observed Bias in FuLeeca

Recall: The method $\mathbf{v} = \text{concentrate}(\mathbf{c}, \mathbf{v}, \mathbf{G}_{sec})$ in the signature generation tries to improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for i = 1, ..., k.

This process is **not** properly randomized and the order is always $\pm g_1, \pm g_2, \ldots, \pm g_k$.

Felicitas Hörmann - German Aerospace Center (DLR) & University of St. Gallen - August 21, 2024

Observed Bias in FuLeeca

Recall: The method $\mathbf{v} = \text{concentrate}(\mathbf{c}, \mathbf{v}, \mathbf{G}_{sec})$ in the signature generation tries to improve \mathbf{v} by successively adding $\pm \mathbf{g}_i$ for i = 1, ..., k.

This process is **not** properly randomized and the order is always $\pm g_1, \pm g_2, \ldots, \pm g_k$.

Felicitas Hörmann - German Aerospace Center (DLR) & University of St. Gallen - August 21, 2024

Collect FuLeeca signatures v_1, \ldots, v_N with $v_i = x_i G_{sec} = (\underbrace{x_i A}_{i \in I} | x_i B)$ for $i = 1, \ldots, N$.

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

Collect FuLeeca signatures v_1, \ldots, v_N with $v_i = x_i G_{sec} = (\underbrace{x_i A}_{i \in W_i} | x_i B)$ for $i = 1, \ldots, N$.

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}
ight] := rac{1}{N}\sum_{i=1}^{N}\boldsymbol{w}_{i}^{\top}\boldsymbol{w}_{i}$$

Collect FuLeeca signatures v_1, \ldots, v_N with $v_i = x_i G_{sec} = (\underbrace{x_i A}_{=:w_i} | x_i B)$ for $i = 1, \ldots, N$.

$$\mathsf{Avg}\Big[\boldsymbol{w}^{\top}\boldsymbol{w}\Big] := \frac{1}{N}\sum_{i=1}^{N}\boldsymbol{w}_{i}^{\top}\boldsymbol{w}_{i} \quad \approx \quad \mathbb{E}\Big[\boldsymbol{w}^{\top}\boldsymbol{w}\Big]$$

Collect FuLeeca signatures $\mathbf{v}_1, \ldots, \mathbf{v}_N$ with $\mathbf{v}_i = \mathbf{x}_i \mathbf{G}_{sec} = (\underbrace{\mathbf{x}_i \mathbf{A}}_{=:\mathbf{w}_i} | \mathbf{x}_i \mathbf{B})$ for $i = 1, \ldots, N$.

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] := \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{w}_{i}^{\top}\boldsymbol{w}_{i} \approx \mathbb{E}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] = \boldsymbol{A}^{\top} \cdot \underbrace{\mathbb{E}\left[\boldsymbol{x}^{\top}\boldsymbol{x}\right]}_{=\boldsymbol{D}+\boldsymbol{R}} \cdot \boldsymbol{A}$$
with $\boldsymbol{D} = \operatorname{diag}\left(\mathbb{E}[\boldsymbol{x}_{i}^{2}]\right)_{i=1}^{k}$

Collect FuLeeca signatures $\mathbf{v}_1, \ldots, \mathbf{v}_N$ with $\mathbf{v}_i = \mathbf{x}_i \mathbf{G}_{sec} = (\underbrace{\mathbf{x}_i \mathbf{A}}_{=:\mathbf{w}_i} | \mathbf{x}_i \mathbf{B})$ for $i = 1, \ldots, N$.

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] := \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{w}_{i}^{\top}\boldsymbol{w}_{i} \approx \mathbb{E}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] = \boldsymbol{A}^{\top} \cdot \underbrace{\mathbb{E}\left[\boldsymbol{x}^{\top}\boldsymbol{x}\right]}_{=\boldsymbol{D}+\boldsymbol{R}} \cdot \boldsymbol{A}$$

$$\downarrow$$

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] = \boldsymbol{A}^{\top}\boldsymbol{D}\boldsymbol{A} + \boldsymbol{E}$$

Collect FuLeeca signatures $\mathbf{v}_1, \ldots, \mathbf{v}_N$ with $\mathbf{v}_i = \mathbf{x}_i \mathbf{G}_{sec} = (\underbrace{\mathbf{x}_i \mathbf{A}}_{=:\mathbf{w}_i} | \mathbf{x}_i \mathbf{B})$ for $i = 1, \ldots, N$.

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] := \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{w}_{i}^{\top}\boldsymbol{w}_{i} \approx \mathbb{E}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] = \boldsymbol{A}^{\top} \cdot \mathbb{E}\left[\boldsymbol{x}^{\top}\boldsymbol{x}\right] \cdot \boldsymbol{A}$$

$$\downarrow$$

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] = \boldsymbol{A}^{\top}\boldsymbol{D}\boldsymbol{A} + \boldsymbol{E}^{\top}$$
with $\boldsymbol{D} = \operatorname{diag}\left(\mathbb{E}[x_{i}^{2}]\right)_{i=1}^{k}$

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] = \boldsymbol{A}^{\top}\boldsymbol{D}\boldsymbol{A} + \boldsymbol{E}$$

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] = \boldsymbol{A}^{\top}\boldsymbol{D}\boldsymbol{A} + \boldsymbol{E}$$

$$\operatorname{Avg}\left[\boldsymbol{w}^{\top}\boldsymbol{w}\right] = \boldsymbol{A}^{\top}\boldsymbol{D}\boldsymbol{A} + \boldsymbol{E}$$

$oldsymbol{E}=oldsymbol{0}$	$oldsymbol{E} eq oldsymbol{0}$
-----------------------------	--------------------------------

We can provably recover *a* since

- **A** = Shift(**a**) is circulant and
- **D** has an increasing diagonal.

${m {\it E}}={m 0}$	$oldsymbol{E} eq oldsymbol{0}$
---------------------	---------------------------------

We can provably recover a since

- **A** = Shift(**a**) is circulant and
- **D** has an increasing diagonal.

We recover \boldsymbol{a} with high probability:

- 1. Get an approximation of **a**.
- 2. Turn the guess into an exact solution iteratively.

Success of the Learning Attack

From approximation to exact solution.

Success of the Learning Attack

From approximation to exact solution.

Success rate of the learning attack. Averaged over 50 keys for each parameter set.

Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

Success of the Learning Attack

From approximation to exact solution.

Success rate of the learning attack. Averaged over 50 keys for each parameter set.

FuLeeca:

FuLeeca: is broken.

FuLeeca: is broken.

	few signatures $(\ll 100)$	$\begin{array}{l} \text{many signatures} \\ (\leq 175,000) \end{array}$
classical attack	leaked-sublattice attack (reduced security)	learning attack (full break)
quantum attack	ideal-structure attack (full break)	\leftarrow see this attack

FuLeeca: is broken.

- A too large *p* prevents wrapping modulo *p* and thus leaks a lower-rank sublattice.
- Signatures leak information about **G**_{sec}.

	few signatures $(\ll 100)$	$\begin{array}{l} \text{many signatures} \\ (\leq 175,000) \end{array}$
classical attac	k leaked-sublattice attack (reduced security)	learning attack (full break)
quantum attac	k ideal-structure attack (full break)	\leftarrow see this attack

FuLeeca: is broken.

- A too large *p* prevents wrapping modulo *p* and thus leaks a lower-rank sublattice.
- Signatures leak information about G_{sec} .

The bigger picture:

- Codes and lattices might be closer than you think, especially for the Lee metric.
 Take this into account for the design of new schemes.
- How can non-leakage be provably achieved for the Lee metric?

	few signatures $(\ll 100)$	$\begin{array}{l} \text{many signatures} \\ (\leq 175,000) \end{array}$
classical attack	leaked-sublattice attack (reduced security)	learning attack (full break)
quantum attack	ideal-structure attack (full break)	\leftarrow see this attack
Felicitas Hörmann – German Aerospace Center (DLR) & University of St. Gallen – August 21, 2024

Summary

FuLeeca: is broken.

- A too large *p* prevents wrapping modulo *p* and thus leaks a lower-rank sublattice.
- Signatures leak information about **G**_{sec}.

The bigger picture:

- Codes and lattices might be closer than you think, especially for the Lee metric.
 Take this into account for the design of new schemes.
- How can non-leakage be provably achieved for the Lee metric?

Find FuLeakage here:

- 🖾 ia.cr/2024/353
- </> artifacts.iacr.org/crypto/2024/a12

		few signatures $(\ll 100)$	many signatures $(\leq 175,000)$
	classical attack	leaked-sublattice attack (reduced security)	learning attack (full break)
	quantum attack	ideal-structure attack (full break)	\leftarrow see this attack

References

[Ritterhoff et al., 2023] Ritterhoff, S., Maringer, G., Bitzer, S., Weger, V., Karl, P., Schamberger, T., Schupp, J., and Wachter-Zeh, A. (2023).

FuLeeca: A Lee-based signature scheme.

In Code-Based Cryptography - 11th International Workshop, CBCrypto 2023, volume 14311 of Lecture Notes in Computer Science, pages 56–83. Springer.

See https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/ FuLeeca-spec-web.pdf for the submission to NIST's call for additional digital signature schemes.