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Lattice-based FSwA Signatures: Haetae and Dilithium

Signature size ✔ ✔

Verification key ✔

Sampler ✘
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Verification key ✔

Sampler ✔✔

Is there a shape embracing the best of both?
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Fiat-Shamir (with Aborts) on Lattice Assumptions.

Notation: Vx the support of the distribution from which x is taken.

Signer Verifier
sk = s, µ vk = As

y← C
w = Ay

c = H(w, µ)

z = y + Sc

if z ∈ Vz
c , z c == H(Az− vk · c)

Goal: obtaining the shape of Vz.
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Rejection Sampling: Motivation

1D Example:
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Vz, Vy and VSc are all public.

z = y + Sc

z should reveal no information on y and Sc.

How should Vz be?
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From Vz to . . .

VSc

Vy

Vy

Sc1

Sc2

Possible z are in the green area.

z avoids information leakage if and only if:

Vz ⊆
⋂

c∈VSc

(Vy + c).

The bigger Vz is, the lower the signature size becomes (at equal rejection rate):

Vz =
⋂

c∈VSc

(Vy + c).
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Polytope intersection: a useful tool

Theorem (P-ception: Intersection of polytopes)

Let P be a symmetric inscriptible and circumscriptible polytope. Let r ,R ∈ R>0 such
that R > r and Pr := r · P . Then:⋂

c∈Pr

PR + c = PR−r .
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P-ception case 1: Restriction to integral points

Same result using only the vertices of VSc.

Yes and?

Wait, is it not better to work directly on integers?

Theorem (P-ception: Generalization 1)

If Pr is an integral polytope, then:⋂
c∈Pr∩Zn

PR ∩ Zn + c = PR−r ∩ Zn.
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P-ception case 2: Different shape for VSc

Same result using only one point on each facet of
VSc.

Again, yes and?

In practice VSc is not a square but a sphere...

Theorem (P-ception: Generalization 2)

If S is the inscribed sphere of Pr , then:⋂
c ∈ S

PR + c = PR−r .
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Polytope Choice: Cutting a Rare Gem

What we want for P:
. Verifies simple assumptions

. Integral vertices

. Efficiently samplable

. Small ratio

Definition (Ratio ρ)

Given the circumradius R of P and its in radius r :

ρ :=
R

r
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Where Should It Be?

Signature Verification
Key

Sampling
Method

Bimodal Ratio

✔✔ ✔ ✘✘ ✔ 1

✘✘ ✔ ✔✔ ✘
√
n
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Interlude: High-dimensional Balls

The Hypercube:

B∞(R) = {x ∈ Rn : ∀i , |xi | ≤ R}.

Volume: (2R)n.

Radius ratio:
√
n.

Mass concentrates: at the corners.
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Interlude: High-dimensional Balls

The Cross-polytope1:

B1(R
√
n) = {x ∈ Rn :

∑
|xi | ≤ R

√
n}.

Volume: (2
√
nR)n

n! .

Radius ratio:
√
n.

Mass concentrates: at the center.

1also called Hyperoctahedron, Orthoplex, or Cocube.
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The Polytope H

Hn
r = Bn∞(r)∩Bn1(r

√
n)
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Recap Table

Signature Verification
Key

Sampling
Method

Bimodal Ratio

✔✔ ✔ ✘✘ ✔ 1

✔ ✘ 4
√
n

✘✘ ✔ ✔✔ ✘
√
n
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Reject More for Better Performances

Cnθ,r = Hn
r ∩ B2(θ · r) with θ ≈ 1.5

Low rejection rate.

Ratio: from n1/4 to θ.

θ decreases as (n, r) grows.

Warning: not a polytope anymore.
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A new Fiat-Shamir with Aborts Signature Scheme: PATRONUS

- Signature sizes: (in bytes)

Security target (bits) 120 180 260

HAETAE 1,463 2,337 2,908
PATRONUS (this work) 2,070 2,575 3,721
DILITHIUM 2,420 3,293 4,595

- Verification key sizes: (in bytes)

HAETAE 992 1,472 2,080
PATRONUS (this work) 832 1,152 1,632
DILITHIUM 1,312 1,952 2,592

- Rejection rate:

HAETAE 6 5 6
PATRONUS (this work) 3 4.250 3
DILITHIUM 4.250 5.1 3.850
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Recap Table

Signature
Verification

Key
Sampling
Method

Bimodal Ratio

✔✔ ✔ ✘✘ ✔ 1

✔ ✔✔ ✔ ✘ 4
√
n→ 1.5

✘✘ ✔ ✔✔ ✘
√
n
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Takeaway

What you should remember:

- We propose a new framework for rejection sampling in polytopes.

- This allows for rigorous analysis of perfect rejection in Fiat-Shamir.

- Our polytope H uses L1 and L∞ balls to approach an optimal L2 ball.

- It is easy to sample from HZ.

- This leads to the signature scheme PATRONUS , an interesting tradeoff
between DILITHIUM and HAETAE.
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Roadmap

I. Intro: Fiat-Shamir and Rejection Sampling

II. The Polytope-based Framework

III. Choosing a Polytope H

IV. In Application

V. Bonus: Open Questions and Perspectives
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The End: Questions?

Thank you for listening!

Article: eprint.iacr.org/2024/411
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A useful projection

The following sets are isomorphic via a
simple projection:

Sn+1
1,Z+(r

√
n) = {y ∈ Zn+1

≥0 : ∥y∥1 = r
√
n},

Bn1,Z+(r
√
n) = {y ∈ Zn

≥0 : ∥y∥1 ≤ r
√
n}.

Bonus trick: project away from the
largest coordinate to lower E(∥y∥∞).
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Making the Sampler Uniform and Isochronous

Mind the sides!

Flip n coins for signs.

Restart for each 0 coordinate,
with probability 1/2.

. Uniform: ✓

. IsoSignachronous: ✓

. Expected restarts: small if
n≪ r .
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Can we get a Better Polytope?

Theorem (From [Kas77])

There exists a constant 1 < c < 32 such that for each n, there exists an orthogonal
U ∈ On(R) such that

Bn2(1) ⊆ Bn1(
√
n) ∩ UBn1(

√
n) ⊆ Bn2(c).

⋂
=
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The Bimodal Situation

Objective: Use the trick by [DDLL13] for
better sizes.

- We need to study

I =
⋂

sc∈B2(r)

(PR,sc ∪ PR,−sc)

- No improvement in the Hypercube case.

- For H, no obvious improvement after dim 4 as
the largest H in I is HR−r .

- For C, less unlikely.
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