
On round elimination for special-sound

multi-round identification and the generality

of the hypercube for MPCitH

Andreas Hülsing 1,2 David Joseph 2 Christian Majenz 3

Anand Kumar Narayanan 2

1Eindhoven University of Technology, Eindhoven, The Nederlands.

2SandboxAQ, Palo Alto, CA, USA.

3Technical University of Denmark, Copenhagen, Denmark.



Fiat-Shamir in the Quantum-accessible Random Oracle Model (QROM)

A popular recipe for post-quantum signatures is

Fiat-Shamir

( Identification scheme: (pk, sk)← KGen()

Prover Verifier

Message 1

Challenge 1

Message 2

Challenge 2

...

Message ℓ+ 1

)

Fiat-Shamir: Replace each verifier challenge with an independent hash function
evaluated at the messages so far.

Difficult to analyse, instead
ROM: Recast hash functions with query/oracle access to random functions (RO).

QROM (Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, and Zhandry [Asiacrypt10]):

▶ the quantum adversary has quantum query access to the random functions.

eQROM: Adaptive access to an additional extraction interface of the RO.
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Context

▶ Don, Fehr, Majenz, and Schaffner [Crypto22] proved optimal QROM security for
commit-open 3-rounds.

▶ For more rounds (such as 5-round MPCitHs), only loose bounds were known.

▶ Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, and Yue [Asiacrypt23] proved
tight QROM security for SDitH (a 5-round MPCitH scheme) signatures, by
reducing 5-rounds to 3-rounds and invoking DFMS-Crypto22.

Results

▶ We generalise round elimination to 5 (or more) rounds.

▶ Hypercube optimization for most MPCitH based signatures.
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Round elimination: Soundness preservation.

What do we bound?

Π1 : (pk, sk)← KGen()

Prover Verifier

w1,RO(w1),w2

c2

w3

}
S-soundness

We bound a computational version of Don, Fehr, Majenz, and Schaffner
[Eurocrypt22]’s S-soundness, a generalisation of query-bounded special soundness
to arbitrary challenge patterns.



Round elimination: Soundness preservation.

When are the bounds meaningful/tight etc.?

▶ The bounds are tight for most 5-round commit-open schemes, including most
MPCitH based on-ramp NIST signatures.

A sufficient condition: Even if the first message is adversarially chosen and the
first challenge is uniformly sampled afterwards, the remaining protocol has
some form of special soundness with overwhelming probability.

Prover Verifier

Adversary chosen Message 1

Uniformly random challenge 1

Message 2

Challenge 2

Message 3

}
Special Sound

▶ The bounds can be trivial even for some 5-round cases, such as MQ-DSS, when
the soundness does not “factor" through the two verifier challenge rounds.
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Round elimination: Soundness preservation proof sketch for 5-rounds

Π : (pk, sk)← KGen()

Prover Verifier

w1

c1

w2

c2

w3

Eliminating the first−−−−−−−−−−−→
verifier challenge

Π1 : (pk, sk)← KGen()

Prover Verifier

w1,RO(w1),w2

c2

w3

t ← ⟨Adver,Verifier⟩ ←−−−−−−−−−−−−−−−−−−−−−−−→ t′ ← ⟨AdverRO
q ,Verifier⟩

Consider the maximum over the first message of the expectation

µ := max
w1

Ec1

[
Pr
[
cheating Π conditioned on (w1, c1)

]]
and the standard deviation

σ := max
w1

√
Varc1

[
Pr
[
cheating Π conditioned on (w1, c1)

]]
over the first challenge of cheating the remaining protocol Π.
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Round elimination: Soundness preservation proof sketch

Can the adversary AdverRO
q search for a w1 that enables cheating on the remaining

round eliminated protocol Π1 with high probability?

Main Technical Theorem:

E(w1,RO(w1),w2,c2,w3))←AdverRO
q

[
Pr
[
cheating Π1 conditioned on (w1,RO(w1))

]]
≤ µ+ 3

√
304qσ + 608q2σ2µ log

(
1

√
304qσ

)
.

Proof idea: Hardness of optimization/search in the QROM.

▶ The probability of cheating conditioned on w1, is a function of (w1,RO(w1)).
▶ Don, Fehr, Majenz, and Schaffner [Eurocrypt22] and Hövelmanns, Hülsing, and

Majenz [Asiacrypt22] tell us how hard it is to search for an argument w1 that
finds large values of a function of RO(w1).

Corollary: Soundness preservation for 5-round to 3-round
The “additional" advantage of a q-query polynomial time quantum adversary for the
3-round round elimination of a d-special sound 5-round parallel repeated scheme is
at most

3
√

304qσ + 608q2σ2µ log

(
1

√
304qσ

)
.
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Round elimination: Zero-Knowledge Preservation.

We prove that honest-verifier zero-knowledge is preserved by round elimination.

Key tool:
The adaptive reprogramming lemma of Grilo, Hövelmanns, Hülsing, and Majenz
[Asiacrypt21].



MPCitH
▶ MPCitH: Ishai, Kushilevitz, Ostrovsky, and Sahai [STOC07] introduced new

zero-knowledge proofs of NP statements, using Multi-Party Computation.

▶ In our context, a public key pk defines a function fpk to which the Prover claims
knowledge of a (secret key/witness) satisfying assignment x = sk, such that

fpk(x) = 0.

A special sound and HVZK 3-round scheme to verify this claim.
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Hypercube aggregation for MPCitH

▶ The hypercube technique is an optimization introduced by Aguilar-Melchor,
Gama, Howe, Hülsing, Joseph, and Yue [Eurocrypt23] to accelerate the
signature and verification procedure of the SDitH signature scheme.

Picture courtesy of AGHHJY-Eurocrypt23.

▶ The hypercube has since been adopted by several of the MPCitH based NIST
on-ramp signatures, carefully tailoring the optimization to their context.

▶ Hypercube improves the signing/verification times by an order of 4 to 12.



Hypercube aggregation for MPCitH

▶ The hypercube technique is an optimization introduced by Aguilar-Melchor,
Gama, Howe, Hülsing, Joseph, and Yue [Eurocrypt23] to accelerate the
signature and verification procedure of the SDitH signature scheme.

Picture courtesy of AGHHJY-Eurocrypt23.

▶ The hypercube has since been adopted by several of the MPCitH based NIST
on-ramp signatures, carefully tailoring the optimization to their context.

▶ Hypercube improves the signing/verification times by an order of 4 to 12.



Hypercube for most 5-round MPCitH based signatures

We present an abstraction of 3-round MPCitHs with MPCs that are

▶ N-1 private in the semi-honest model,

▶ symmetric in the parties, meaning it looks the same if we permute the parties,

▶ and additive in all the inputs.

We transform any such 3-round MPCitH into one with the Hypercube optimisation
such that soundness and HVZK are preserved.

▶ To achieve N−D soundness error takes ND parties. Using the hypercube
technique, communicating the computation of ND parties suffice.

Efficient 5-round MPCitH (atleast 9/40 of the NIST on-ramp sigs)

▶ Most efficient MPCitH schemes tend to be 5-round, following the motif of
Lindell & Nof [CCS17], and Baum & Nof [PKC20].

▶ Well suited for predicates that are mostly linear, with a non-linearity constraint
for hardness. For example, syndrome decoding, rank-metric decoding, etc..

▶ First message commits to a linear MPC. Second message commits to a
multiplicative MPC.

We first apply our round elimination to convert these 5-round schemes to 3-round
schemes conforming to our abstraction, then apply the hypercube transform.
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