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Succinct Non-interactive Arguments (SNARG)

st, w st

π proves that R(st, w) = 1

Completeness, Soundness.
Succinctness: Verification time and proof size |π| are ≪ |w|
A large body of works — [Kil92, Mic94, Gro16, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM+20, Lee21,

KMP20, ZLW+21, BCL22 ......]



Succinct Non-interactive Arguments (SNARG)

st, w st

π proves that R(st, w) = 1

Completeness, Soundness.
Succinctness: Verification time and proof size |π| are ≪ |w|
A large body of works — [Kil92, Mic94, Gro16, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM+20, Lee21,

KMP20, ZLW+21, BCL22 ......]



Succinct Non-interactive Arguments (SNARG)

st, w st

π proves that R(st, w) = 1

Completeness, Soundness.

Succinctness: Verification time and proof size |π| are ≪ |w|
A large body of works — [Kil92, Mic94, Gro16, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM+20, Lee21,

KMP20, ZLW+21, BCL22 ......]



Succinct Non-interactive Arguments (SNARG)

st, w st

π proves that R(st, w) = 1

Completeness, Soundness.
Succinctness: Verification time and proof size |π| are ≪ |w|

A large body of works — [Kil92, Mic94, Gro16, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM+20, Lee21,

KMP20, ZLW+21, BCL22 ......]



Succinct Non-interactive Arguments (SNARG)

st, w st

π proves that R(st, w) = 1

Completeness, Soundness.
Succinctness: Verification time and proof size |π| are ≪ |w|
A large body of works — [Kil92, Mic94, Gro16, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM+20, Lee21,

KMP20, ZLW+21, BCL22 ......]



Oblivious Proof Generation

st, JwK st

π proves that R(st, JwK) = J1K ?

What if the prover does not hold w in the clear? Only an encapsulation JwK of w.

JwK: encryption, commitment, gw, ......

How can the prover generate a proof obliviously?
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Example I: Verifiable Delegation of Computation

x,C

ct = FHE.Enc(x)

FHE.Eval(C, ct)

π?

FHE provides no integrity
Needs to prove the honest performance of FHE.Eval
Oblivious proving

C(JxK) = JC(x)K
Private verifiability is acceptable
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Example II: Verifiable Public Keys Aggregation

pk1, . . . , pkn
σ

aPK

π?

pki = gski

σ succinct commitment of all pki

Prove aPK is an aggregation of ⩾ T keys
Useful in threshold signatures setting [GJMSWZ’24, DCXNBR’23]
Oblivious proof in disguise!

pki = JskiK∏
i pki = aPK =⇒

∑
i JskiK = JaSKK

Need Public verifiability
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∑
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A Trivial Solution

Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs
Non-black-box, highly inefficient

How can the prover generate a proof obliviously with
only black-box use of the encapsulation scheme?
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Our Results

A General Technique
FRI on hidden values enables an oblivious polynomial commitment scheme:

Jf0K , . . . , JfnK x∗

σ commits to f(x)
f(x) := f0 + f1x + · · · + fnxn

Jf(x∗)K, π

Prover O(n log2 n)

|σ| = O(1)

|π| = O(log2 n)

Assuming J·K supports linear homomorphism

Private Verifiable if J·K is decryptable (e.g., FHE)

Public verifiable if J·K is linear homomorphic in randomness (Jx; r1K + Jy; r2K = Jx+ y; r1 + r2K)
E.g., group exponentiation, ElGamal, ...

An adaptation of the celebrated FRI proof system [Ben-Sasson-Bentov-Horesh-Riabzev’18]
Black-box in J·K and achieve the same efficiency as FRI
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Application: Verifiable Delegation of Computation

x,C

ct = FHE.Enc(x)

FHE.Eval(C, ct), π

Prover Efficiency: |C| log |C| (black-box) FHE.Eval Operations
Proof Size: |π| = O(log2 |C|)
Private Verification: O(log2 |C|) FHE operations

Prior Works

Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...]
Makes non-black-box use of FHE [Fiore-Gennaro-Pastr’14, Fiore-Nitulescu-Pointcheval’20,
Bois-Cascudo-Fiore-Kim’21, ...]



Application: Verifiable Delegation of Computation

x,C

ct = FHE.Enc(x)

FHE.Eval(C, ct), π

Prover Efficiency: |C| log |C| (black-box) FHE.Eval Operations
Proof Size: |π| = O(log2 |C|)

Private Verification: O(log2 |C|) FHE operations

Prior Works

Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...]
Makes non-black-box use of FHE [Fiore-Gennaro-Pastr’14, Fiore-Nitulescu-Pointcheval’20,
Bois-Cascudo-Fiore-Kim’21, ...]



Application: Verifiable Delegation of Computation

x,C

ct = FHE.Enc(x)

FHE.Eval(C, ct), π

Prover Efficiency: |C| log |C| (black-box) FHE.Eval Operations
Proof Size: |π| = O(log2 |C|)
Private Verification: O(log2 |C|) FHE operations

Prior Works

Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...]
Makes non-black-box use of FHE [Fiore-Gennaro-Pastr’14, Fiore-Nitulescu-Pointcheval’20,
Bois-Cascudo-Fiore-Kim’21, ...]



Application: Verifiable Delegation of Computation

x,C

ct = FHE.Enc(x)

FHE.Eval(C, ct), π

Prover Efficiency: |C| log |C| (black-box) FHE.Eval Operations
Proof Size: |π| = O(log2 |C|)
Private Verification: O(log2 |C|) FHE operations

Prior Works
Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...]

Makes non-black-box use of FHE [Fiore-Gennaro-Pastr’14, Fiore-Nitulescu-Pointcheval’20,
Bois-Cascudo-Fiore-Kim’21, ...]



Application: Verifiable Delegation of Computation

x,C

ct = FHE.Enc(x)

FHE.Eval(C, ct), π

Prover Efficiency: |C| log |C| (black-box) FHE.Eval Operations
Proof Size: |π| = O(log2 |C|)
Private Verification: O(log2 |C|) FHE operations

Prior Works
Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...]
Makes non-black-box use of FHE [Fiore-Gennaro-Pastr’14, Fiore-Nitulescu-Pointcheval’20,
Bois-Cascudo-Fiore-Kim’21, ...]



Application: Verifiable Delegation of Computation

x,C

ct = FHE.Enc(x)
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π′ = Postprocess(π)

Server Efficiency: |C| log |C| (black-box) FHE.Eval Operations
Proof Size: |π| = O(log2 |C|)

Public Verifiability
Client Postprocessing: O(log2 |C|)
Application to the delegation of zkSNARKs to untrusted server (see paper!)
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Application: Weighted Threshold Signature without DKG

pk1 pk2

· · ·

pki

· · ·

pkn

msg

σ1 σi σn (aPK, σ, π)

Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
π proves aPK is aggregation of ⩾ T public keys
Extends to weighted setting without efficiency degradation

Can be extended to arbitrary access structure C : 2[n] → {0, 1}.
No distributed key generation (DKG)

Prior Works

Pairing-based SNARKs: O(n)-size SRS, O(n)-size pki
[Garg-Jain-Mukherjee-Sinha-W-Zhang’24, Das-Camacho-Xiang-Nieto-Bunz-Ren’23]
Require Ramp: [Micali-Reyzin-Vlachos-Wahby-Zeldovich’21]
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Prover wants to prove C(JxK) = JyK, where J·K supports some homomorphism.

SNARK on top of Homomorphism

C(JxK) = JyK is a public relation

Homomorphic Evaluation
on JxK to get JyK

SNARK on the public relation
C(JxK) = JyK

Non-black-box

Homomorphism on top of SNARK

C(x) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the private relation
C(x) = y

Homomorphic Evaluation on JxK
to generate the SNARK proof

Black-box

Verifiability?

What Homomorphism needed beyond C?

What kind of operations does a prover need to perform to prove C?

Feasibility: JxK may only support linear homomorphism: gx

Efficiency: The efficiency of FHE depends on the homomorphism supported.
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Interactive Oracle Proof (IOP) [Ben-Sasson-Chiesa-Spooner’16]

P V
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b1 bnbi bj· · · · · · · · ·

$

3 · a2 − ai
?
= 0

b2i − bj
?
= 1

Can be compiled into SNARKs using Merkle’s commitment and Fiat-Shamir.
Proof size grows with # queries
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IOP on Hidden Values

Ja1K Ja2K JaiK JanK· · · · · ·

Jb1K JbnKJbiK JbjK· · · · · · · · ·

$

$

3 · Ja2K − JaiK
?
= 0

JbiK2 − JbjK
?
= 1

Privately verifiable if decryptable

How to compile IOP to SNARKs?

directly apply Merkle’s commitment and Fiat-Shamir on JxK
No need for leveraging homomorphism on random oracle computation
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FRI on Hidden Values
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= 0
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?
= 1JbiK2 − JbjK
?
= 1

Polynomial Commitment for hidden polynomial. f(x) := f0 + f1 · x+ · · · fn · xn

Only linear operations (prover & verifier) =⇒ linear homomorphism suffices

Public Verifiability?

Homomorphic in randomness =⇒ Check relation at encapsulation level

(ga2)3 / gai
?
= 1

FRI + Polynomial IOP: |C| · log |C| operations with multiplication depth depth(C) +O(1)
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Summary
FRI on hidden values enables oblivious proof generation:

Verifiable Delegation of Computation

Delegation of the generation of zkSNARKs to untrusted server

(Weighted) Threshold Signature without DKG

Future direction: more applications?

Thanks!

Questions?

ia.cr/2023/1609

ia.cr/2023/1609

