How to Prove Statements Obliviously?

Sanjam Garg

UC Berkeley

Aarushi Goel

Mingyuan Wang

UC Berkeley —> NYU Shanghai

NTT Research —> Purdue

Aug. 2024 @ CRYPTO
ia.cr/2023/1609

ia.cr/2023/1609

Succinct Non-interactive Arguments (SNARG)

Succinct Non-interactive Arguments (SNARG)

Q 7 proves that R(st,w) = 1 Q;)

st, w st

Succinct Non-interactive Arguments (SNARG)

Q 7 proves that R(st,w) = 1 Q;)
- 49
\ Q@

st, w st

@ Completeness, Soundness.

Succinct Non-interactive Arguments (SNARG)

Q 7 proves that R(st,w) = 1 ﬂ

| »
st, w st

@ Completeness, Soundness.

@ Succinctness: Verification time and proof size |7| are < |w|

Succinct Non-interactive Arguments (SNARG)

7 proves that R(st,w) =1 %

\ |
st, w st
@ Completeness, Soundness.

@ Succinctness: Verification time and proof size |7| are < |w|

@ A large body of works — [Kil92, Mic94, Grol6, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM 420, Lee21,
KMP20, ZLW+21, BCL22 |

Oblivious Proof Generation

Q 7 proves that R(st, [w]) = [1] ? q

\ |

st, [w] st

@ What if the prover does not hold w in the clear? Only an encapsulation [w] of w.

Oblivious Proof Generation

Q 7 proves that R(st, [w]) = [1] ? q

\ |

st, [w] st

@ What if the prover does not hold w in the clear? Only an encapsulation [w] of w.

o [w]: encryption, commitment, g%,

Oblivious Proof Generation

Q 7 proves that R(st, [w]) = [1] ? q

\ |

st, [w] st

@ What if the prover does not hold w in the clear? Only an encapsulation [w] of w.

o [w]: encryption, commitment, g%,

How can the prover generate a proof obliviously?

Example I: Verifiable Delegation of Computation

xz,C

Example I: Verifiable Delegation of Computation

Example I: Verifiable Delegation of Computation

2.C FHE.Eval(C, ct)

Example I: Verifiable Delegation of Computation

2.C FHE.Eval(C, ct)

@ FHE provides no integrity

Example I: Verifiable Delegation of Computation

2.C FHE.Eval(C, ct)

7?7

@ FHE provides no integrity
@ Needs to prove the honest performance of FHE.Eval

Example I: Verifiable Delegation of Computation

2.C FHE.Eval(C, ct)

7?7

@ FHE provides no integrity
@ Needs to prove the honest performance of FHE.Eval
@ Oblivious proving

C([=]) = [C(=)]

Example I: Verifiable Delegation of Computation

2.C FHE.Eval(C, ct)

7?7

FHE provides no integrity

Needs to prove the honest performance of FHE.Eval

Oblivious proving

C([=]) = [C(=)]

@ Private verifiability is acceptable

Example II: Verifiable Public Keys Aggregation

@ pk; =g

@ 0 succinct commitment of all pk;

Example II: Verifiable Public Keys Aggregation

@ pk; =g

@ 0 succinct commitment of all pk;

Example II: Verifiable Public Keys Aggregation

@ pk; =g
@ 0 succinct commitment of all pk;

@ Prove aPK is an aggregation of > T keys

Example II: Verifiable Public Keys Aggregation

pky, ..., pk,
pk; = g™
o succinct commitment of all pk;
Prove aPK is an aggregation of > T keys
Useful in threshold signatures setting [GJMSWZ’24, DCXNBR’23]|

Example II: Verifiable Public Keys Aggregation

pky, ..., pk,
pk; = g™
o succinct commitment of all pk;
Prove aPK is an aggregation of > T keys
Useful in threshold signatures setting [GJMSWZ’24, DCXNBR’23]|

Oblivious proof in disguise!

pk; = [sk;]

[Tipki=aPK = 3, [sk] = [aSK]

Example II: Verifiable Public Keys Aggregation

pky, ..., pk,
pk; = g™
o succinct commitment of all pk;
Prove aPK is an aggregation of > T keys
Useful in threshold signatures setting [GJMSWZ’24, DCXNBR’23]|

Oblivious proof in disguise!

pk; = [sk;]

[Tipki=aPK = 3, [sk] = [aSK]

Need Public verifiability

Example I: Verifiable Delegation of Computation

FHE.Eval(C, c

w7

® O([=]) = [C(=)]

@ Private verifiability

Example II: Verifiable Public Keys Aggregation

® X, [sk;] = [5K]

@ Public verifiability

Example I: Verifiable Delegation of Computation Example II: Verifiable Public Keys Aggregation

ct = FHE.Enc(x) apk
e)
7?7 CU)

pky, ..., Pky

Q /\
FHE.Eval(C, ct)
x, C’\/ @ >, [ski] = [aSK]

w? @ Public verifiability

® C([«]) = [C(=)]

@ Private verifiability

@ Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs

Example I: Verifiable Delegation of Computation Example II: Verifiable Public Keys Aggregation

ct = FHE.Enc(x) apk
e)
7?7 CU)

pky, ..., Pky

Q /\
FHE.Eval(C, ct)
x, C’\/ @ >, [ski] = [aSK]

w? @ Public verifiability

® C([«]) = [C(=)]

@ Private verifiability

@ Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs
@ Non-black-box, highly inefficient

Example I: Verifiable Delegation of Computation Example II: Verifiable Public Keys Aggregation

ct = FHE.Enc(x) apk
e)
7?7 CU)

pky, ..., Pky

Q /\
FHE.Eval(C, ct)
x, C’\/ @ >, [ski] = [aSK]

w? @ Public verifiability

® C([«]) = [C(=)]

@ Private verifiability

@ Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs
@ Non-black-box, highly inefficient

How can the prover generate a proof obliviously with
only black-box use of the encapsulation scheme?

Our Results

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

Our Results

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

° 3

[fol .-, [fn]

@ Assuming [-] supports linear homomorphism

Our Results

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

f(z) == fo+ fiz+ - + fnz™

[fol .-, [fn]

@ Assuming [-] supports linear homomorphism

Our Results

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

f(z) == fo+ fiz+ - + fnz™

\ /‘
H fo]] """" HN/’ x *

[f @), =

@ Assuming [-] supports linear homomorphism

Our Results

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

f(z) == fo+ fiz+ - + fnz™

\ /‘
H fo]] """" HN/’ x *

[f @), =

@ Assuming [-] supports linear homomorphism
@ Private Verifiable if [-] is decryptable (e.g., FHE)

Our Results

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

o commits to f(x) q}
Q F@) = fo+ fiw+ -+ fra” .
Y /‘"
[fol -, [£n] ar”

[f @), =

@ Assuming [-] supports linear homomorphism

@ Private Verifiable if [-] is decryptable (e.g., FHE)

@ Public verifiable if [-] is linear homomorphic in randomness ([z;71] + [y; 2] = [z + y;r1 + 72])
o E.g., group exponentiation, ElGamal, ...

Our Results

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

Prover O(nlog®n)
o commits to f(x) q}
Q f@) = fo+ fiz+ - + fna” lo] = O(1)

[fol,---» [[N/ € || = O(log® n)

[f @), =

@ Assuming [-] supports linear homomorphism

@ Private Verifiable if [-] is decryptable (e.g., FHE)

@ Public verifiable if [-] is linear homomorphic in randomness ([z;71] + [y; 2] = [z + y;r1 + 72])
o E.g., group exponentiation, ElGamal, ...

@ An adaptation of the celebrated FRI proof system [Ben-Sasson-Bentov-Horesh-Riabzev'18]
Black-box in [-] and achieve the same efficiency as FRI

Example I: Verifiable Delegation of Computation Example II: Verifiable Public Keys Aggregation

ct = FHE.Enc(z) apk
Q)
7 L

Q /—\
FHE.Eval(C, ct)
3, C_/ @ >, [sk;] = [aSK]

w? @ Public verifiability

@ C([=]) = [C(=)]

@ Private verifiability

Example I: Verifiable Delegation of Computation Example II: Verifiable Public Keys Aggregation

ct = FHE.Enc(z) apk
e 2
77 Co)

pky, ..., Pky,

Q //\
o ¥, [sk] = [a5K]

w? @ Public verifiability

@ C([=]) = [C(=)]

@ Private verifiability

Our Results
@ FExisting techniques: polynomial commitment =—> SNARKSs

@ We show: FRI on hidden values = oblivious (black-box) proof generation

Application: Verifiable Delegation of Computation

ct = FHE.Enc(x)

e FHE.Eval(C,ct), =

Application: Verifiable Delegation of Computation

ct = FHE.Enc(x)

\
e FHE.Eval(C,ct), =

@ Prover Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: || = O(log? |C|)

Application: Verifiable Delegation of Computation

ct = FHE.Enc(x)

\
xz,C

FHE.Eval(C,ct), =

@ Prover Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)
@ Private Verification: O(log?|C|) FHE operations

ct = FHE.Enc(x)

2.C FHE.Eval(C,ct),

@ Prover Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)
@ Private Verification: O(log?|C|) FHE operations

@ Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...|

ct = FHE.Enc(x)

2.C FHE.Eval(C,ct),

@ Prover Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)
@ Private Verification: O(log?|C|) FHE operations

@ Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...|

@ Makes non-black-box use of FHE [Fiore-Gennaro-Pastr’14, Fiore-Nitulescu-Pointcheval’20,
Bois-Cascudo-Fiore-Kim’21, ...]

Application: Verifiable Delegation of Computation

ct = FHE.Enc(x)

FHE.Eval(C,ct), 7

xz,C

@ Server Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)

Application: Verifiable Delegation of Computation

ct = FHE.Enc(x

FHE.Eval(C,ct),

x,lC
7' = Postprocess(r)

@ Server Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)

Public Verifiability

@ Client Postprocessing: O(log? |C|)
@ Application to the delegation of zkSNARKS to untrusted server (see paper!)

Application: Weighted Threshold Signature without DKG

Application: Weighted Threshold Signature without DKG

Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o,)

@ Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)

Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o,)

@ Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
@ 7 proves aPK is aggregation of > 1" public keys

Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o,)

@ Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
@ 7 proves aPK is aggregation of > 1" public keys
@ Extends to weighted setting without efficiency degradation

Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o,)

@ Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
@ 7 proves aPK is aggregation of > 1" public keys

@ Extends to weighted setting without efficiency degradation

@ Can be extended to arbitrary access structure C : 2] — {0,1}.

Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o,)

Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
7 proves aPK is aggregation of > 7" public keys

Extends to weighted setting without efficiency degradation

Can be extended to arbitrary access structure C : 2] — {0,1}.

No distributed key generation (DKG)

Application: Weighted Threshold Signature without DKG

e 35 - &

pky pky pk;

msg

< s
01 gj On

Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
7 proves aPK is aggregation of > T public keys

Extends to weighted setting without efficiency degradation

Can be extended to arbitrary access structure C : 2" — {0,1}.

No distributed key generation (DKG)

(aPK, o, m)

@ Pairing-based SNARKs: O(n)-size SRS, O(n)-size pk;
|Garg-Jain-Mukherjee-Sinha-W-Zhang’24, Das-Camacho-Xiang-Nieto-Bunz-Ren’23|

Application: Weighted Threshold Signature without DKG

e 35 - &

pky pky pk;

msg

< s
01 gj On

Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
7 proves aPK is aggregation of > T public keys

Extends to weighted setting without efficiency degradation

Can be extended to arbitrary access structure C : 2" — {0,1}.

No distributed key generation (DKG)

(aPK, o, m)

@ Pairing-based SNARKs: O(n)-size SRS, O(n)-size pk;
|Garg-Jain-Mukherjee-Sinha-W-Zhang’24, Das-Camacho-Xiang-Nieto-Bunz-Ren’23|

@ Require Ramp: [Micali-Reyzin-Vlachos-Wahby-Zeldovich’21]

Technical Highlights

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

Homomorphic Evaluation
on [z] to get [y]

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation
C(l=]) = [¥

Homomorphic Evaluation
on [z] to get [y]

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation
C(l=]) = [¥

Homomorphic Evaluation
on [z] to get [y]

@ Non-black-box

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation
C(l=]) = [¥

Homomorphic Evaluation
on [z] to get [y]

SNARK on the private relation
Cl@) =y

@ Non-black-box

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation

C([=]) = vl Homomorphic Evaluation on [z]
to generate the SNARK proof

Homomorphic Evaluation
on [z] to get [y]

SNARK on the private relation
Cl@) =y

@ Non-black-box

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation

C([=]) = vl Homomorphic Evaluation on [z]
to generate the SNARK proof

Homomorphic Evaluation
on [z] to get [y]

SNARK on the private relation
Cl@) =y

@ Non-black-box

@ Black-box

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation

C([=]) = vl Homomorphic Evaluation on [z]
to generate the SNARK proof

Homomorphic Evaluation
on [z] to get [y]

SNARK on the private relation
Cl@) =y

@ Non-black-box

@ Black-box

@ Verifiability?

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation

C([=]) = vl Homomorphic Evaluation on [z]
to generate the SNARK proof

Homomorphic Evaluation
on [z] to get [y]

SNARK on the private relation
Cl@) =y

@ Non-black-box

@ Black-box

@ Verifiability?

@ What Homomorphism needed beyond C?

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [v] is a public relation C(z) = y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation

C([=]) = vl Homomorphic Evaluation on [z]
to generate the SNARK proof

Homomorphic Evaluation
on [z] to get [y]

SNARK on the private relation
Cl@) =y

@ Non-black-box

@ Black-box

@ Verifiability?

@ What Homomorphism needed beyond C?

What kind of operations does a prover need to perform to prove C'?

@ Feasibility: [z] may only support linear homomorphism: g¢*

Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [y] is a public relation C(z) =y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation

C([=]) = vl Homomorphic Evaluation on [z]
to generate the SNARK proof

Homomorphic Evaluation
on [z] to get [y]

SNARK on the private relation
Cl@) =y

@ Non-black-box

@ Black-box

@ Verifiability?

@ What Homomorphism needed beyond C?

What kind of operations does a prover need to perform to prove C'?
@ Feasibility: [z] may only support linear homomorphism: g¢*

@ Efficiency: The efficiency of FHE depends on the homomorphism supported.

Interactive Oracle Proof (IOP)

¥~

Interactive Oracle Proof (IOP)

Interactive Oracle Proof (IOP)

Interactive Oracle Proof (IOP)

Interactive Oracle Proof (IOP)

a

a

a2

b1

3'(12—(1,,';0

<g"‘

Interactive Oracle Proof (IOP)

a

a

a2

b1

3'(12—(1,,';0

<g"‘

b7 —b; L1

Interactive Oracle Proof (IOP)

3- a2 — a; :) 0
/—> ai | a2 0l0C a; 0l0C Gn
e : 2
P\ v
by |- by |--- bj by,
b? —b; L 1
$

@ Can be compiled into SNARKSs using Merkle’s commitment and Fiat-Shamir.
e Proof size grows with # queries

IOP on Hidden Values

/"’ [[a,l]] [[a2]] 00¢ [[al]] - [[an]] 3 Jaz] — [a:] =0
e $ -

[b:? — [b;] = 1

IOP on Hidden Values

3 [az] — [a:] £ 0

/’ [a1]|[az] S [a:] S [an]
e : 2
\ @
[b:* - [bi] =1
$

@ Privately verifiable if decryptable

IOP on Hidden Values

o
N

[a1]}laz] [a:] [an]
$

[b:]] - il - 1511 - - - [6n]
$

@ Privately verifiable if decryptable
@ How to compile IOP to SNARKs?

3 [az] — [a:] £ 0

)

[:] — [b;] = 1

IOP on Hidden Values

fa]

[az]

lai]

[ax]

o
N

[01]

[o:]

[6;]

[n]

@ Privately verifiable if decryptable

@ How to compile IOP to SNARKs?
o directly apply Merkle’s commitment and Fiat-Shamir on [z]

@ No need for leveraging homomorphism on random oracle computation

3 [az] — [a:] £ 0

)

[:] — [b;] = 1

FRI on Hidden Values

fad]

laz2]

lai]

[ax]

[[bl]]

] -

DI

[6x]

3 [az] - [ai] =0

-

[b:] — [b;] = 1

FRI on Hidden Values

/—’ [a1]

[az] [a:] [ar]
$

[b:]] - [o]] - [bx]
$

@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -

3 [az] - [ai] =0

-

[b:] — [b;] = 1

n

FRI on Hidden Values

3 [az] - [ai] =0

i . N N O
[fol,- -, y|
.]] B

n

@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -

@ Only linear operations (prover & verifier) = linear homomorphism suffices

FRI on Hidden Values

3 [az] - [ai] =0

o el [T [l [Jel
[fol,- -, !
NS o e) B BB

n

@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -
@ Only linear operations (prover & verifier) = linear homomorphism suffices
@ Public Verifiability?

FRI on Hidden Values

3 [az] - [ai] =0

o

\

[fol, .-, Nl

la1]|[az] 00 la:] 00 [ax]
e :
W

[b:]| -] - I6;1] - - [bn])

n

@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -
@ Only linear operations (prover & verifier) = linear homomorphism suffices
@ Public Verifiability?

o Homomorphic in randomness = Check relation at encapsulation level

()" /g £ 1

FRI on Hidden Values

3 [az] - [ai] =0

o

\

[fol .- Ml

la1]|[az] 00 la:] 00 [ax]
e :
W

[b:]| -] - I6;1] - - [bn])

n

@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -
@ Only linear operations (prover & verifier) = linear homomorphism suffices
@ Public Verifiability?

o Homomorphic in randomness = Check relation at encapsulation level

(6%)° / g L1

FRI + Polynomial IOP: |C| - log |C| operations with multiplication depth depth(C) 4 O(1)

FRI on hidden values enables oblivious proof generation:
@ Verifiable Delegation of Computation
@ Delegation of the generation of zkSNARKS to untrusted server
@ (Weighted) Threshold Signature without DKG

Future direction: more applications?

Thanks!

Questions?

ia.cr/2023/1609

ia.cr/2023/1609

