How to Prove Statements Obliviously?

Sanjam Garg

UC Berkeley

Aarushi Goel

NTT Research -> Purdue

Mingyuan Wang

UC Berkeley->NYU Shanghai

Aug. 2024 @ CRYPTO ia.cr/2023/1609

Succinct Non-interactive Arguments (SNARG)

Succinct Non-interactive Arguments (SNARG)

۲

۲

• A large body of works — [Kil92, Mic94, Gro16, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM+20, Lee21, KMP20, ZLW+21, BCL22]

• What if the prover does not hold w in the clear? Only an encapsulation $\llbracket w \rrbracket$ of w.

• $\llbracket w \rrbracket$: encryption, commitment, g^w ,

How can the prover generate a proof obliviously?

• FHE provides no integrity

- FHE provides no integrity
- Needs to prove the honest performance of FHE.Eval

- FHE provides no integrity
- Needs to prove the honest performance of FHE.Eval
- Oblivious proving

 $C([\![x]\!])=[\![C(x)]\!]$

- FHE provides no integrity
- Needs to prove the honest performance of FHE.Eval
- Oblivious proving

 $C([\![x]\!])=[\![C(x)]\!]$

• **Private** verifiability is acceptable

- $\bullet \ \mathbf{pk}_i = g^{\mathbf{sk}_i}$
- σ succinct commitment of all pk_i

• σ succinct commitment of all pk_i

• Prove a PK is an aggregation of $\geq T$ keys

- $\bullet \ {\rm pk}_i = g^{{\rm sk}_i}$
- σ succinct commitment of all pk_i
- Prove **aPK** is an aggregation of $\geq T$ keys
- Useful in threshold signatures setting [GJMSWZ'24, DCXNBR'23]

- $\bullet \ {\rm pk}_i = g^{{\rm sk}_i}$
- σ succinct commitment of all pk_i
- Prove **aPK** is an aggregation of $\geq T$ keys
- Useful in threshold signatures setting [GJMSWZ'24, DCXNBR'23]
- Oblivious proof in disguise!

$$\mathsf{pk}_i = \llbracket \mathsf{sk}_i \rrbracket$$
$$\prod_i \mathsf{pk}_i = \mathsf{aPK} \implies \sum_i \llbracket \mathsf{sk}_i \rrbracket = \llbracket \mathsf{aSK} \rrbracket$$

- $\bullet \ {\rm pk}_i = g^{{\rm sk}_i}$
- σ succinct commitment of all pk_i
- Prove aPK is an aggregation of $\geq T$ keys
- Useful in threshold signatures setting [GJMSWZ'24, DCXNBR'23]
- Oblivious proof in disguise!

$$\mathsf{pk}_i = \llbracket \mathsf{sk}_i \rrbracket$$

$$\prod_{i} \mathsf{pk}_{i} = \mathsf{aPK} \implies \sum_{i} \llbracket \mathsf{sk}_{i} \rrbracket = \llbracket \mathsf{aSK} \rrbracket$$

• Need Public verifiability

A Trivial Solution

• Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs

A Trivial Solution

- Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs
- Non-black-box, highly inefficient

A Trivial Solution

- Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs
- Non-black-box, highly inefficient

How can the prover generate a proof obliviously with only black-box use of the encapsulation scheme?

A General Technique

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

• Assuming [·] supports linear homomorphism

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

• Assuming $\llbracket \cdot \rrbracket$ supports linear homomorphism

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

• Assuming $\llbracket \cdot \rrbracket$ supports linear homomorphism

A General Technique

- Assuming $\left[\cdot \right]$ supports linear homomorphism
- Private Verifiable if [[·]] is decryptable (e.g., FHE)

A General Technique

- Assuming [[·]] supports linear homomorphism
- Private Verifiable if [[·]] is decryptable (e.g., FHE)
- <u>Public verifiable</u> if $\llbracket \cdot \rrbracket$ is linear homomorphic in randomness $(\llbracket x; r_1 \rrbracket + \llbracket y; r_2 \rrbracket = \llbracket x + y; r_1 + r_2 \rrbracket)$
 - E.g., group exponentiation, ElGamal, ...

A General Technique

- Assuming [[·]] supports linear homomorphism
- Private Verifiable if [[·]] is decryptable (e.g., FHE)
- <u>Public verifiable</u> if $\llbracket \cdot \rrbracket$ is linear homomorphic in randomness $(\llbracket x; r_1 \rrbracket + \llbracket y; r_2 \rrbracket = \llbracket x + y; r_1 + r_2 \rrbracket)$
 - E.g., group exponentiation, ElGamal, ...
- An adaptation of the celebrated FRI proof system [Ben-Sasson-Bentov-Horesh-Riabzev'18] Black-box in [].] and achieve the same efficiency as FRI

- Existing techniques: polynomial commitment \implies SNARKs
- We show: FRI on hidden values \implies oblivious (black-box) proof generation

Application: Verifiable Delegation of Computation

ct = FHE.Enc(x)

ct = FHE.Enc(x)

- $\bullet\,$ Prover Efficiency: $|C|\log|C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$

ct = FHE.Enc(x)

- $\bullet\,$ Prover Efficiency: $|C|\log|C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$
- Private Verification: $O(\log^2 |C|)$ FHE operations

ct = FHE.Enc(x)

- Prover Efficiency: $|C| \log |C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$
- Private Verification: $O(\log^2 |C|)$ FHE operations

Prior Works

• Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno'10, Applebaum-Ishai-Kushilevitz'10, Chung-Kalai-Vadhan'10, Benabbas-Gennaro-Vahlis'11, ...]

ct = FHE.Enc(x)

- Prover Efficiency: $|C| \log |C|$ (black-box) FHE.Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$
- Private Verification: $O(\log^2 |C|)$ FHE operations

Prior Works

- Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno'10, Applebaum-Ishai-Kushilevitz'10, Chung-Kalai-Vadhan'10, Benabbas-Gennaro-Vahlis'11, ...]
- Makes non-black-box use of FHE [Fiore-Gennaro-Pastr'14, Fiore-Nitulescu-Pointcheval'20, Bois-Cascudo-Fiore-Kim'21, ...]

- Server Efficiency: $|C| \log |C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$

• Proof Size: $|\pi| = O(\log^2 |C|)$

Public Verifiability

- Client Postprocessing: $O(\log^2 |C|)$
- Application to the delegation of zkSNARKs to untrusted server (see paper!)

• Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- π proves **aPK** is aggregation of $\geq T$ public keys

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation
- Can be extended to arbitrary access structure $C: 2^{[n]} \to \{0, 1\}$.

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- π proves **aPK** is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation
- Can be extended to arbitrary access structure $C: 2^{[n]} \to \{0, 1\}$.
- No distributed key generation (DKG)

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation
- Can be extended to arbitrary access structure $C: 2^{[n]} \to \{0, 1\}$.
- No distributed key generation (DKG)

Prior Works

Pairing-based SNARKs: O(n)-size SRS, O(n)-size pk_i
 [Garg-Jain-Mukherjee-Sinha-W-Zhang'24, Das-Camacho-Xiang-Nieto-Bunz-Ren'23]

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation
- Can be extended to arbitrary access structure $C: 2^{[n]} \to \{0, 1\}$.
- No distributed key generation (DKG)

Prior Works

- Pairing-based SNARKs: O(n)-size SRS, O(n)-size pk_i
 [Garg-Jain-Mukherjee-Sinha-W-Zhang'24, Das-Camacho-Xiang-Nieto-Bunz-Ren'23]
- Require Ramp: [Micali-Reyzin-Vlachos-Wahby-Zeldovich'21]

Technical Highlights

SNARK on top of Homomorphism	Homomorphism on top of SNARK

SNARK on top of Homomorphism	Homomorphism on top of SNARK
$C(\llbracket x \rrbracket) = \llbracket y \rrbracket$ is a public relation	C(x) = y is a private relation. (Even the verifier may not know this statement)

What kind of operations does a prover need to perform to prove C?

• Feasibility: [x] may only support linear homomorphism: g^x

What kind of operations does a prover need to perform to prove C?

- Feasibility: [x] may only support linear homomorphism: g^x
- Efficiency: The efficiency of FHE depends on the homomorphism supported.

Ρ

\$

- Can be compiled into SNARKs using Merkle's commitment and Fiat-Shamir.
 - $\bullet~$ Proof size grows with $\#~ {\rm queries}$

• Privately verifiable if decryptable

- Privately verifiable if decryptable
- How to compile IOP to SNARKs?

- Privately verifiable if decryptable
- How to compile IOP to SNARKs?
 - directly apply Merkle's commitment and Fiat-Shamir on $[\![x]\!]$
 - No need for leveraging homomorphism on random oracle computation

• Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$

- Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$
- Only <u>linear</u> operations (prover & verifier) \implies <u>linear</u> homomorphism suffices

- Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$
- Only linear operations (prover & verifier) \implies linear homomorphism suffices
- Public Verifiability?

- Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$
- Only linear operations (prover & verifier) \implies linear homomorphism suffices
- Public Verifiability?
 - Homomorphic in randomness \implies Check relation at encapsulation level

$$(g^{a_2})^3 / g^{a_i} \stackrel{?}{=} 1$$

- Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$
- Only <u>linear</u> operations (prover & verifier) \implies <u>linear</u> homomorphism suffices
- Public Verifiability?
 - Homomorphic in randomness \implies Check relation at encapsulation level

$$(g^{a_2})^3 / g^{a_i} \stackrel{?}{=} 1$$

FRI + Polynomial IOP: $|C| \cdot \log |C|$ operations with multiplication depth depth(C) + O(1)

Summary

FRI on hidden values enables oblivious proof generation:

- Verifiable Delegation of Computation
- Delegation of the generation of zkSNARKs to untrusted server
- (Weighted) Threshold Signature without DKG

Future direction: more applications?

ia.cr/2023/1609