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@ Completeness, Soundness.

@ Succinctness: Verification time and proof size |7| are < |w|

@ A large body of works — [Kil92, Mic94, Grol6, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM 420, Lee21,
KMP20, ZLW+21, BCL22 ...... |
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Q 7 proves that R(st, [w]) = [1] ? q
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st, [w] st

@ What if the prover does not hold w in the clear? Only an encapsulation [w] of w.

o [w]: encryption, commitment, g%, ......

How can the prover generate a proof obliviously?
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Example I: Verifiable Delegation of Computation

2.C FHE.Eval(C, ct)

7?7

FHE provides no integrity

Needs to prove the honest performance of FHE.Eval

Oblivious proving

C([=]) = [C(=)]

@ Private verifiability is acceptable
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Example II: Verifiable Public Keys Aggregation

pky, ..., pk,
pk; = g™
o succinct commitment of all pk;
Prove aPK is an aggregation of > T keys
Useful in threshold signatures setting [GJMSWZ’24, DCXNBR’23]|

Oblivious proof in disguise!

pk; = [sk;]

[Tipki=aPK = 3, [sk] = [aSK]

Need Public verifiability
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ct = FHE.Enc(x) apk
e )
7?7 CU)

pky, ..., Pky

Q /\
FHE.Eval(C, ct)
x, C’\/ @ >, [ski] = [aSK]

w? @ Public verifiability

® C([«]) = [C(=)]

@ Private verifiability

@ Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs
@ Non-black-box, highly inefficient

How can the prover generate a proof obliviously with
only black-box use of the encapsulation scheme?
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Our Results

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

Prover O(nlog®n)
o commits to f(x) q}
Q f@) = fo+ fiz+ - + fna” lo] = O(1)

[fol,---» [[N/ € || = O(log® n)

[f @), =

@ Assuming [-] supports linear homomorphism

@ Private Verifiable if [-] is decryptable (e.g., FHE)

@ Public verifiable if [-] is linear homomorphic in randomness ([z;71] + [y; 2] = [z + y;r1 + 72])
o E.g., group exponentiation, ElGamal, ...

@ An adaptation of the celebrated FRI proof system [Ben-Sasson-Bentov-Horesh-Riabzev'18]
Black-box in [-] and achieve the same efficiency as FRI
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ct = FHE.Enc(z) apk
e 2
77 Co)

pky, ..., Pky,

Q //\
o ¥, [sk] = [a5K]

w? @ Public verifiability

@ C([=]) = [C(=)]

@ Private verifiability

Our Results
@ FExisting techniques: polynomial commitment =—> SNARKSs

@ We show: FRI on hidden values = oblivious (black-box) proof generation
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FHE.Eval(C,ct), =

@ Prover Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)
@ Private Verification: O(log?|C|) FHE operations




ct = FHE.Enc(x)
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@ Prover Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)
@ Private Verification: O(log?|C|) FHE operations

@ Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...|




ct = FHE.Enc(x)

2.C FHE.Eval(C,ct),

@ Prover Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)
@ Private Verification: O(log?|C|) FHE operations

@ Require the client to perform |C| FHE operations [Gennaro-Gentry-Parno’10, Applebaum-Ishai-Kushilevitz’10,
Chung-Kalai-Vadhan’10, Benabbas-Gennaro-Vahlis’11, ...|

@ Makes non-black-box use of FHE [Fiore-Gennaro-Pastr’14, Fiore-Nitulescu-Pointcheval’20,
Bois-Cascudo-Fiore-Kim’21, ...]




Application: Verifiable Delegation of Computation

ct = FHE.Enc(x)

FHE.Eval(C,ct), 7
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@ Server Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)




Application: Verifiable Delegation of Computation

ct = FHE.Enc(x

FHE.Eval(C,ct),

x,lC
7' = Postprocess(r)

@ Server Efficiency: |C|log|C| (black-box) FHE.Eval Operations
@ Proof Size: |7| = O(log? |C|)

Public Verifiability

@ Client Postprocessing: O(log? |C|)
@ Application to the delegation of zkSNARKS to untrusted server (see paper!)




Application: Weighted Threshold Signature without DKG




Application: Weighted Threshold Signature without DKG




Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o, )

@ Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)




Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o, )

@ Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
@ 7 proves aPK is aggregation of > 1" public keys




Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o, )

@ Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
@ 7 proves aPK is aggregation of > 1" public keys
@ Extends to weighted setting without efficiency degradation




Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o, )

@ Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
@ 7 proves aPK is aggregation of > 1" public keys

@ Extends to weighted setting without efficiency degradation

@ Can be extended to arbitrary access structure C : 2] — {0,1}.




Application: Weighted Threshold Signature without DKG

< 4
01 oF) On

(aPK, o, )

Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
7 proves aPK is aggregation of > 7" public keys

Extends to weighted setting without efficiency degradation

Can be extended to arbitrary access structure C : 2] — {0,1}.

No distributed key generation (DKG)




Application: Weighted Threshold Signature without DKG

e 35 - &

pky pky pk;

msg

< s
01 gj On

Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
7 proves aPK is aggregation of > T public keys

Extends to weighted setting without efficiency degradation

Can be extended to arbitrary access structure C : 2" — {0,1}.

No distributed key generation (DKG)

(aPK, o, m)

@ Pairing-based SNARKs: O(n)-size SRS, O(n)-size pk;
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Application: Weighted Threshold Signature without DKG

e 35 - &

pky pky pk;

msg
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01 gj On

Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
7 proves aPK is aggregation of > T public keys

Extends to weighted setting without efficiency degradation

Can be extended to arbitrary access structure C : 2" — {0,1}.

No distributed key generation (DKG)

(aPK, o, m)

@ Pairing-based SNARKs: O(n)-size SRS, O(n)-size pk;
|Garg-Jain-Mukherjee-Sinha-W-Zhang’24, Das-Camacho-Xiang-Nieto-Bunz-Ren’23|

@ Require Ramp: [Micali-Reyzin-Vlachos-Wahby-Zeldovich’21]
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Prover wants to prove C([z]) = [y], where [-] supports some homomorphism.

SNARK on top of Homomorphism Homomorphism on top of SNARK

C([z]) = [y] is a public relation C(z) =y is a private relation. (Even the verifier may
not know this statement)

SNARK on the public relation

C([=]) = vl Homomorphic Evaluation on [z]
to generate the SNARK proof

Homomorphic Evaluation
on [z] to get [y]

SNARK on the private relation
Cl@) =y

@ Non-black-box

@ Black-box

@ Verifiability?

@ What Homomorphism needed beyond C?

What kind of operations does a prover need to perform to prove C'?
@ Feasibility: [z] may only support linear homomorphism: g¢*

@ Efficiency: The efficiency of FHE depends on the homomorphism supported.
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Interactive Oracle Proof (IOP)

3- a2 — a; :) 0
/—> ai | a2 0l0C a; 0l0C Gn
e : 2
P\ v
by |- by |--- bj by,
b? —b; L 1
$

@ Can be compiled into SNARKSs using Merkle’s commitment and Fiat-Shamir.
e Proof size grows with # queries
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o
N

[a1]}laz] [a:] [an]
$

[b:]] - il - 1511 - - - [6n]
$

@ Privately verifiable if decryptable
@ How to compile IOP to SNARKs?

3 [az] — [a:] £ 0

)
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IOP on Hidden Values

fa]

[az]

lai]

[ax]

o
N

[01]

[o:]

[6;]

[n]

@ Privately verifiable if decryptable

@ How to compile IOP to SNARKs?
o directly apply Merkle’s commitment and Fiat-Shamir on [z]

@ No need for leveraging homomorphism on random oracle computation

3 [az] — [a:] £ 0

)

[:] — [b;] = 1




FRI on Hidden Values
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@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -

3 [az] - [ai] =0

-

[b:] — [b;] = 1

n




FRI on Hidden Values

3 [az] - [ai] =0

i . N N O
[fol,- -, y|
. ] ] B

n

@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -

@ Only linear operations (prover & verifier) = linear homomorphism suffices
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@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -
@ Only linear operations (prover & verifier) = linear homomorphism suffices
@ Public Verifiability?

o Homomorphic in randomness = Check relation at encapsulation level
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FRI on Hidden Values
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@ Polynomial Commitment for hidden polynomial. f(z):= fo+ fi-x+ - fn -
@ Only linear operations (prover & verifier) = linear homomorphism suffices
@ Public Verifiability?

o Homomorphic in randomness = Check relation at encapsulation level

(6%)° / g L1

FRI + Polynomial IOP: |C| - log |C| operations with multiplication depth depth(C) 4 O(1)




FRI on hidden values enables oblivious proof generation:
@ Verifiable Delegation of Computation
@ Delegation of the generation of zkSNARKS to untrusted server
@ (Weighted) Threshold Signature without DKG

Future direction: more applications?

Thanks!

Questions?
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