How to Prove Statements Obliviously?

Sanjam Garg

UC Berkeley

Aarushi Goel

NTT Research –> Purdue

Aug. 2024 @ CRYPTO <ia.cr/2023/1609>

Mingyuan Wang

UC Berkeley –> NYU Shanghai

Succinct Non-interactive Arguments (SNARG)

Succinct Non-interactive Arguments (SNARG)

 \bullet

- **•** Succinctness: Verification time and proof size $|\pi|$ are $\ll |w|$
- A large body of works [Kil92, Mic94, Gro16, BCG+17, BCG+18, XZZ+19, GWC19, Set20, BCG20, CHM+20, Lee21, KMP20, ZLW+21, BCL22]

How can the prover generate a proof obliviously?

FHE provides no integrity

- FHE provides no integrity
- \bullet Needs to prove the honest performance of FHE.Eval

- FHE provides no integrity
- \bullet Needs to prove the honest performance of FHE.Eval
- **•** Oblivious proving

 $C([x]) = [C(x)]$

- FHE provides no integrity
- \bullet Needs to prove the honest performance of FHE.Eval
- **•** Oblivious proving

 $C([x]) = [C(x)]$

 $\bullet~$ Private verifiability is acceptable

- $\mathsf{pk}_i = g^{\mathsf{sk}_i}$
- \bullet σ succinct commitment of all pk_i

 \bullet σ succinct commitment of all pk_i

• Prove aPK is an aggregation of $\geq T$ keys

- \bullet σ succinct commitment of all pk_i
- **•** Prove aPK is an aggregation of $\geq T$ keys
- Useful in threshold signatures setting [GJMSWZ'24, DCXNBR'23]

- \bullet σ succinct commitment of all pk_i
- **•** Prove aPK is an aggregation of $\geq T$ keys
- Useful in threshold signatures setting [GJMSWZ'24, DCXNBR'23]
- \bullet Oblivious proof in disguise!

$$
\mathsf{pk}_i = \llbracket \mathsf{sk}_i \rrbracket
$$

$$
\textstyle \prod_i \mathsf{pk}_i = \mathsf{aPK} \qquad \Longrightarrow \qquad \sum_i \llbracket \mathsf{sk}_i \rrbracket = \llbracket \mathsf{aSK} \rrbracket
$$

- \bullet σ succinct commitment of all pk_i
- **•** Prove aPK is an aggregation of $\geq T$ keys
- Useful in threshold signatures setting [GJMSWZ'24, DCXNBR'23]
- \bullet Oblivious proof in disguise!

$$
\mathsf{pk}_i = [\![\mathsf{sk}_i]\!]
$$

$$
\prod_i \mathrm{pk}_i = \mathrm{aPK} \qquad \Longrightarrow \qquad \sum_i [\![\mathsf{sk}_i]\!] = [\![\mathsf{aSK}]\!]
$$

• Need Public verifiability

A Trivial Solution

Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs

A Trivial Solution

- Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs
- Non-black-box, highly inefficient

A Trivial Solution

- Translate homomorphic operations (FHE.Eval, group operation) as circuits and generically apply SNARKs
- Non-black-box, highly inefficient

How can the prover generate a proof obliviously with only black-box use of the encapsulation scheme?

A General Technique

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

 \bullet Assuming $\lceil \cdot \rceil$ supports linear homomorphism

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

 \bullet Assuming $\lbrack \cdot \rbrack$ supports linear homomorphism

A General Technique

FRI on hidden values enables an oblivious polynomial commitment scheme:

 \bullet Assuming $\lbrack \cdot \rbrack$ supports linear homomorphism

A General Technique

- \bullet Assuming $\lbrack \cdot \rbrack$ supports linear homomorphism
- Private Verifiable if $\lbrack \cdot \rbrack$ is decryptable (e.g., FHE)

A General Technique

- \bullet Assuming $\llbracket \cdot \rrbracket$ supports linear homomorphism
- Private Verifiable if $\lceil \cdot \rceil$ is decryptable (e.g., FHE)
- Public verifiable if $\llbracket \cdot \rrbracket$ is linear homomorphic in randomness $(\llbracket x; r_1 \rrbracket + \llbracket y; r_2 \rrbracket = \llbracket x + y; r_1 + r_2 \rrbracket)$
	- E.g., group exponentiation, ElGamal, ...

A General Technique

- \bullet Assuming $\lbrack \cdot \rbrack$ supports linear homomorphism
- Private Verifiable if $\lbrack \cdot \rbrack$ is decryptable (e.g., FHE)
- Public verifiable if $\llbracket \cdot \rrbracket$ is linear homomorphic in randomness $(\llbracket x; r_1 \rrbracket + \llbracket y; r_2 \rrbracket = \llbracket x + y; r_1 + r_2 \rrbracket)$
	- E.g., group exponentiation, ElGamal, ...
- An adaptation of the celebrated FRI proof system [Ben-Sasson-Bentov-Horesh-Riabzev'18] Black-box in $\lbrack \cdot \rbrack$ and achieve the same efficiency as FRI

- \bullet Existing techniques: polynomial commitment \Rightarrow SNARKs
- \bullet We show: FRI on hidden values \Rightarrow oblivious (black-box) proof generation

Application: Verifiable Delegation of Computation

 $ct =$ FHE.Enc (x)

$ct =$ FHE.Enc (x)

- **•** Prover Efficiency: $|C| \log |C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$

 $ct =$ FHE.Enc (x)

- **•** Prover Efficiency: $|C| \log |C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$
- Private Verification: $O(\log^2|C|)$ FHE operations

 $ct =$ FHE.Enc (x)

- **•** Prover Efficiency: $|C| \log |C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$
- Private Verification: $O(\log^2|C|)$ FHE operations

Prior Works

 \bullet Require the client to perform $|C|$ FHE operations [Gennaro-Gentry-Parno'10, Applebaum-Ishai-Kushilevitz'10, Chung-Kalai-Vadhan'10, Benabbas-Gennaro-Vahlis'11, ...]

 $ct =$ FHE.Enc (x)

- **•** Prover Efficiency: $|C| \log |C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$
- Private Verification: $O(\log^2|C|)$ FHE operations

Prior Works

- \bullet Require the client to perform $|C|$ FHE operations [Gennaro-Gentry-Parno'10, Applebaum-Ishai-Kushilevitz'10, Chung-Kalai-Vadhan'10, Benabbas-Gennaro-Vahlis'11, ...]
- Makes non-black-box use of FHE [Fiore-Gennaro-Pastr'14, Fiore-Nitulescu-Pointcheval'20, Bois-Cascudo-Fiore-Kim'21, ...]

- \bullet Server Efficiency: $|C| \log |C|$ (black-box) FHE. Eval Operations
- Proof Size: $|\pi| = O(\log^2 |C|)$

Proof Size: $|\pi| = O(\log^2 |C|)$

Public Verifiability

- Client Postprocessing: $O(\log^2 |C|)$
- Application to the delegation of zkSNARKs to untrusted server (see paper!)

· · ·

 pk_n

Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- \bullet π proves aPK is aggregation of $\geq T$ public keys

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- \bullet π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- \bullet π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation
- Can be extended to arbitrary access structure $C: 2^{[n]} \to \{0, 1\}.$

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- \bullet π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation
- Can be extended to arbitrary access structure $C: 2^{[n]} \to \{0, 1\}.$ \bullet
- No distributed key generation (DKG)

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- \bullet π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation
- Can be extended to arbitrary access structure $C: 2^{[n]} \to \{0, 1\}.$ \bullet
- No distributed key generation (DKG)

Prior Works

• Pairing-based SNARKs: $O(n)$ -size SRS, $O(n)$ -size pk_i [Garg-Jain-Mukherjee-Sinha-W-Zhang'24, Das-Camacho-Xiang-Nieto-Bunz-Ren'23]

- Works for signatures with linearly-aggregatable public keys (BLS, Schnorr)
- \bullet π proves aPK is aggregation of $\geq T$ public keys
- Extends to weighted setting without efficiency degradation
- Can be extended to arbitrary access structure $C: 2^{[n]} \to \{0, 1\}.$ \bullet
- No distributed key generation (DKG)

Prior Works

- Pairing-based SNARKs: $O(n)$ -size SRS, $O(n)$ -size pk_i [Garg-Jain-Mukherjee-Sinha-W-Zhang'24, Das-Camacho-Xiang-Nieto-Bunz-Ren'23]
- Require Ramp: [Micali-Reyzin-Vlachos-Wahby-Zeldovich'21]

Technical Highlights

Prover wants to prove $C([x]) = [y]$, where $[\cdot]$ supports some homomorphism.

Prover wants to prove $C([x]) = [y]$, where $\lbrack \cdot \rbrack$ supports some homomorphism.

What kind of operations does a prover need to perform to prove C ?

Feasibility: $\llbracket x \rrbracket$ may only support linear homomorphism: g^x

What kind of operations does a prover need to perform to prove C ?

- Feasibility: $\llbracket x \rrbracket$ may only support linear homomorphism: g^x
- Efficiency: The efficiency of FHE depends on the homomorphism supported.

- Can be compiled into SNARKs using Merkle's commitment and Fiat-Shamir.
	- Proof size grows with $\#$ queries

IOP on Hidden Values

IOP on Hidden Values

Privately verifiable if decryptable

IOP on Hidden Values

- Privately verifiable if decryptable
- $\bullet~$ How to compile IOP to SNARKs?

IOP on Hidden Values

- Privately verifiable if decryptable
- \bullet How to compile IOP to SNARKs?
	- directly apply Merkle's commitment and Fiat-Shamir on $\llbracket x \rrbracket$
	- No need for leveraging homomorphism on random oracle computation

Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$

- Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$
- \bullet Only linear operations (prover & verifier) \Longrightarrow linear homomorphism suffices

- Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$
- \bullet Only linear operations (prover & verifier) \Longrightarrow linear homomorphism suffices
- Public Verifiability?

- Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$
- \bullet Only linear operations (prover & verifier) \Longrightarrow linear homomorphism suffices
- Public Verifiability?
	- Homomorphic in randomness =⇒ Check relation at encapsulation level

 $(g^{a_2})^3 / g^{a_i} \stackrel{?}{=} 1$

- Polynomial Commitment for hidden polynomial. $f(x) := f_0 + f_1 \cdot x + \cdots + f_n \cdot x^n$
- \bullet Only linear operations (prover & verifier) \Longrightarrow linear homomorphism suffices
- Public Verifiability?
	- Homomorphic in randomness ⇒ Check relation at encapsulation level

$$
(g^{a_2})^3 / g^{a_i} \stackrel{?}{=} 1
$$

FRI + Polynomial IOP: $|C| \cdot \log |C|$ operations with multiplication depth depth $(C) + O(1)$

Summary

FRI on hidden values enables oblivious proof generation:

- Verifiable Delegation of Computation
- Delegation of the generation of zkSNARKs to untrusted server
- (Weighted) Threshold Signature without DKG

Future direction: more applications?

Thanks!

Questions?

<ia.cr/2023/1609>