Universal Composable Transaction Serialization with Order Fairness Michele Ciampi The University of Edinburgh Aggelos Kiayias University of Edinburgh and IOG Yu Shen University of Edinburgh Liveness Liveness Liveness Liveness - Maximal Extractable Value (MEV) - Critical issue in DeFi Dream property - Maximal Extractable Value (MEV) - Critical issue in DeFi - How do we formalize this property in UC? - Can we live the dream? - What can we realistically achieve? $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}^{\scriptscriptstyle{\mathsf{-}}}}$ The adversary can always delay honest parties messages The adversary can deliver his own messages without delay Even if Alice and a corrupt party send a transaction at the same time, Alice's transaction will be received with a K-round delay Real Ideal Ideal t₁ 4 tx t₁ (B) **t**₅ Median $\{t_1,t_1,t_2,t_2,t_3,t_4\}=t_2$ Median $\{t_1,t_1,t_2,t_2,t_3,t_4\}=t_2$ Median $\{t_1,t_1,t_2,t_2,t_3,t_4\}=t_2$ $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}^{-}}$ 2-for-1 PoW [GKL15] w<-H(h',h,nounce) If w<T then standard block If [w]R<T then profile block Median $\{t_1,t_1,t_2,t_2,t_3,t_4\}=t_2$ #### Can we do something for transactions submitted not much apart? #### Can we do something for transactions submitted not much apart? #### Can we do something for transactions submitted not much apart? [RB94] Michael K. Reiter and Kenneth P. Birman. How to securely replicate services. ACM Trans. Program. Lang. Syst. 1994 [CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous broadcast protocols. Crypto 2001 $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}_{ ext{-}}}$ $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}_{ ext{-}}}$ PK $\mathcal{F}_{\text{Diffuse}}^{\text{K-}}$ PK $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}}$ $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}}$ $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}^{-}}$ $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}}$ PK $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}^{-}}$ $\mathcal{F}_{\mathsf{Diffuse}}^{\mathsf{K}}$ UC formalization of ledgers with a fair order - UC formalization of ledgers with a fair order - Construction based on global setups (global trusted execution enclaves) - UC formalization of ledgers with a fair order - Construction based on global setups (global trusted execution enclaves) - Impossibility for sender order fairness - UC formalization of ledgers with a fair order - Construction based on global setups (global trusted execution enclaves) - Impossibility for sender order fairness - Extention to proof of stake blockchains - UC formalization of ledgers with a fair order - Construction based on global setups (global trusted execution enclaves) - Impossibility for sender order fairness - Extention to proof of stake blockchains - Remove TEE while minimizing the communication complexity - UC formalization of ledgers with a fair order - Construction based on global setups (global trusted execution enclaves) - Impossibility for sender order fairness - Extention to proof of stake blockchains - Remove TEE while minimizing the communication complexity - Consider a different network functionality TAQALS