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NIST PQC standards, selected in 2022,
strike a balance between several criteria.
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Side-channel attacks in cryptography

Power consumption [KJJ99]

Timing measurement [Koc96]
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Formalizing SCA

How can we resiy[Countermeasure]
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on algorithm Y in model Z?
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Formalizing SCA

How can we resiy[Countermeasure]

Side-channel Can we prove countermeasure X
attacks on algorithm Y in model Z?

5
How do we model Ieakage.\[ Model ]

Countermeasure: masking.

[[X]] = (X07X17"'7xd—1)
X  =Xo+tX1+ -+ Xg-1
-» Computations performed via MPC-style techniques

-» Split sensitive value x in d shares:

Model: threshold probing model. Adversary can probe any t circuit values.
-» Less realistic but more convenient than other models
-» Ideally, any set of t probes leaks nothing (think: masking with d > t shares)




Masking Dilithium: what to expect

Dilithium-Sign

@ Sample r + Uniform(S) Observations:
Ow—A -» All operations except @ and © need to
p w ':._ r be masked
el - Three operations require
O c:=H(wT,msg) mask conversions (overhead: O(d? logq)) :
© z:=sc + r @ Sampling
® Ifznotin 5, goto @ © Rounding
@ h:=wr— |Az —tc], ® Rejection sampling
© Output sig = (c,z,h)




Masked Dilithium |[ ] - only the fast operations: "SHIELD

Speed (billions of cycles)
Dilithium-Sign 0.01 T

T
—o— NTT

@ Sampler«+ S

O w:=Ar > O(d)
O wr = |w],

O c:=H(wT, msg) > No mask
O z:=sc+r > O(d)

OIfz¢ S, goto @
@ h:=wr—|Az—tc], > O0(d)
© Output sig = (c,z,h)

Number of shares d




Masked Dilithium | ] - add rounding & rejectiorSHIELD

Speed (billions of cycles
Dilithium-Sign P peed ( ycles)

—o— NTT
@ Sampler + S . Ar
® w:=Ar > O(d) S -
O wr = |w]i > O(d?logq) -~ Lh]
L —— w k
O c:=H(wT, msg) > No mask - Reject )

O z:=sc+r > O(d)
OIfz¢ S, goto® > 0(d’logq)
@ h:=wr—|Az—tc], > O0(d)
© Output sig = (c,z,h)

Number of shares d




Masked Dilithium |[ ] - add sampling ’“SHlE[n

Speed (billions of cycles)
Dilithium-Sign 15 \ T

—o— NTT
© Sampler <« S (d2 logq) = Ar
A w:=Ar O(d) —— Z
O wr = |w], > O(d2 log q) 0l h
O c:=H(wr, msg) > No mask f Ig}gét
O z:=sc+r O(d) —— Sample
OIfz¢ 5, goto® O(cl2 Iog q) —e— Total
@ h:=wr - |Az—tc], O(d) >
© Output sig = (c,z,h)

Number of shares d







Contribution

Contribution and main idea

-» Masking-friendly lattice signature from scratch
-» Security proof: instead of
{Masked scheme, t probes} < {Unmasked scheme}
we prove:
{Masked Raccoon, t probes} > {Unmasked Raccoon w/ different parameters}

Timeline:
@ SP 2023: Raccoon SP [dPRS23] © EC 2024: Plover [EEN24]
> Fully heuristic > Applies our ideas to Hash-&-Sign

> Introduce the SNIu property
@ CRYPTO 2024: This paper

) > Formal security proof for Raccoon
> Still no proof > Smooth Rényi divergence

@ NIST PQC 2023: Raccoon NIST
> Much improved construction




Unmasked and masked Raccoon

Sign(sk,vk = (A, t), msg) — sig

@ Generate a short ephemeral r
@ Computew = [A ] -r
© Compute the challenge
¢ = H(w, msg, vk)
@ Compute the response z = sk-c+r
© Output sig = (c,z)

Starting point is “Schnorr over lattices”:
v/ No Rejection sampling
> Wearguethatsk-c+r~r
v/ Rounding is not needed for security
> No need to mask it

? What about Sampling (step €)?




Unmasked and masked Raccoon

Sign(sk,vk = (A, t), msg) — sig MaskSign([sk], vk, msg) — sig

© Generate a short ephemeral r @ [r] =10]

@ Computew = [A ] -r @ Fori € [rep):

© Compute the challenge Wl =g, ha) < XF
¢ = Hiw, msg, vk) 2 M=+

@ Compute the response z = sk-c+r

(W

(3 Refresh([r])
© Output sig = (c,z) O W =[A I [
@ Refresh([w])
© w = Decode([w])
O c = H(w, msg, vk)
@ [2] = [k - c + 1]
© Refresh([z], [sk])
© z = Decode([z])
@ Output sig = (c, 2)




Unmasked and masked Raccoon

Sign(sk,vk = (A, t), msg) — sig

@ Generate a short ephemeral r
@ Computew = [A ] -r
© Compute the challenge
¢ = H(w, msg, vk)
@ Compute the response z = sk-c+r
© Output sig = (c,z)

-» AddRepNoise in lime green

> A t-probing adversary learns at
most t of the (d - rep) values r;
> Formal analysis in [EENT24]
> Refresh is useful for:
> Concrete security
> Composing gadgets (SNI)
> Moving probes around (SNI)

MaskSign([sk], vk, msg) — sig

@ [r] = [0]
@ Fori € [rep):
Ol = (fia, . Fig) < XE
2 [ =[]+ [r]
(3) Refresh([r])
O wl=[A 1]-[r]
@ Refresh([w])
© w = Decode([w])
O c = H(w, msg, vk)
@ [z] = [sk] - c+[r]
© Refresh([z], [sk])
© z = Decode([z])
@ Output sig = (c,z)




‘"SHIELD

Proof outline (simplified)

(.

4 ) ( 1 (
t-probing Game 3 SelfTargetMSIS
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Proof outline (simplified)

@ Rewriting
s /\f\A N r a s N
t-probing Game 3 SelfTargetMSIS
EUF-CMA Game 1 Game 2 (EUFCMA) + MLWE
(. J | J | J (. J
@ @) @ @
(" MaskKeygen ) ((MaskKeygengg ) (MaskKeygen| o) ( Keygen
MaskSign MaskSigngg MaskSign| ¢a« Sign
Verify ) L Verify ) L Verify ) L Verify

(.

@ Rewriting: make randomness explicit as input




Proof outline (simplified) ’“SHIE[II

@ Only probe
@ Rewriting AddRepNoise

( ) ( ) ( 1 ( )
t-probing Game 3 SelfTargetMSIS
EUF-CMA Game 1 Game 2 (EUFCMA) [ + MLWE ]
(. J |\ J |\ J (. J
@ @) @ @
(" MaskKeygen ) ((MaskKeygengg ) (MaskKeygen| o) ( Keygen
MaskSign MaskSigngg MaskSign| ¢a« Sign
Verify ) L Verify ) L Verify L Verify

(.

@ Rewriting: make randomness explicit as input
@ SNI(u) property: move all probes to AddRepNoise randomness




Proof outline (simplified)

@ Only probe
@ Rewriting AddRepNoise © Linearity

( ) ( ) ( 1 ( )
t-probing Game 3 SelfTargetMSIS
EUF-CMA Game 1 Game 2 (EUFCMA) [ + MLWE ]
(. J | J | J (. J
@ @) @ @
(" MaskKeygen ) ((MaskKeygengg ) (MaskKeygen| o) ( Keygen
MaskSign MaskSigngg MaskSign| ¢a« Sign
L Verify ) L Verify ) L Verify L Verify

@ Rewriting: make randomness explicit as input
@ SNI(u) property: move all probes to AddRepNoise randomness

© Linearity: we argue that we can can simulate Game 2 from Game 3
Game2: w=[A I].r wherer=73.,randwe leak (r)ics for |S| = t

Game3: w=[A I]-r wherer' =3 (e i




Proof outline (simplified)

@ Only probe O Smooth Rényi
@ Rewriting AddRepNoise © Linearity divergence
t-probing Game 3 SelfTargetMSIS
EUF-CMA Game 1 Game 2 (EUFCMA) + MLWE
(. J | J | J (. J
@ o0 O O
(" MaskKeygen ) ((MaskKeygengg ) (MaskKeygen| o) ( Keygen
MaskSign MaskSigngg MaskSign| ¢a« Sign
Verify ) L Verify ) L Verify Verify

(.

@ Rewriting: make randomness explicit as input
@ SNI(u) property: move all probes to AddRepNoise randomness
© Linearity: we argue that we can can simulate Game 2 from Game 3
Game2: w=[A I].r wherer=73.,randwe leak (r)ics for |S| = t
Game3: w=[A I]-r wherer' =3y ¢Fi
© Final hop: {EUFCMA of Raccoon} > {SelfTargetMSIS + MLWE }
> Making this formal requires introducing the smooth Rényi divergence
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Sums of Uniforms

The final reduction argues that:
c-s+rr, where re X4 +x (1)
N——
T=(d-rep—t) times

How do we choose x,?

> Choice 1: x, is the discrete Gaussian Dyg,.
< Security analysis:

Statistical distance SD = 6,VT > o(sk) - [c[l1 - 2 (2)

Rényi divergence R, =  0,VT > o(sk) - ||c|| - /Queries - dim(sk) - A (3)
= Gaussians are difficult to sample securely against SCA

= Choice 2: y, is uniform over {—2° ... 2V —1}.

< Way simpler to sample securely against SCA
— The Rényi divergence proof strategy goes through the window




Sums of Uniforms and their caveat

e T =
e T=2
-~ T=4
- T=8

—64 56

Figure 1: Sums of T uniformsin {—23,...,2% — 1}, for T € {1,2,4,8}

<= The sum of T uniforms quickly become “Gaussian-like”
= The support is finite, so the Rényi divergence is infinite (therefore useless)




Solution: Smooth Rényi Divergence

W

The smooth Rényi divergence of param-

eters (a, €) between P and Q is: We can leverage the complementary

RE(P:Q) = min Re(P:Q), strengths of SD and R, on different parts

SD(P';P)<e of the support:
SD@Q)<e -» The tightness of R, on the heads
where SD is the statistical distance and = The robustness of SD on the tails

R, is the usual Rényi divergence.

Since R, is a simple composition of two
f-divergences, the usual “nice” properties
are immediate:

+ Data processing SD
v/ Probability preservation
v/ Tensorization

)




Wrap-up and open questions

What we have:
-» A masking-friendly lattice signature in the t-probing model
-» Simple design, but required new analytic tools (SNIu, smooth Rényi)

Open questions:
-» Security proof/arguments in more realistic models?
-» Concrete SCA resistance?
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What happens inside AddRepNoise?

-

Problem: a probing adversary can learn the sum of T random in 2 probes.




What happens inside AddRepNoise?

O OO0

+ri11

+r21

)

+r3.1

—_——

O
O
O
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+r12

+r32

Tr42

O
O
O
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+ri13

+ra3

+r33

+ra3

O
O
O

O

+ri4

+r24

——

+r44

O OO0

Solution: add refresh gadgets to separate the algorithm in independent layers

Now a probing adversary learns at most (the sum of) t short noises.




Parameter selection and the modulus g. P“S|-||E|,|]

Signature sizes are quadratic in (logq), so we want to minimize q (see below).

Method Modulus g (logarithmic scale)
o(sig) MSIS (forgery)
Smooth Reényi ‘ |||c||\/Quer|es dim(sk) - A - d3| V2 | Q(1) ‘
[Proven] -
MLWE (key rec) Smooth Rényi Probing
o(sig) MSIS
Smooth Rényi | o(sk) ||ic|l\/Queries -dim(sk) 2| v2 | Q@) |
[Conjecture] N = -
MLWE Smooth Rényi (heuristic) Probing
o(sig) MSIS
Hint-MLWE L o6k | lelvQueries | v2 | Q@) |

[Heuristic]

MLWE Hint-MLWE r&jucﬁon (heur.) ProEing
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