On the practical CPA^D security of "exact" and threshold FHE schemes and libraries #### Marina Checri, Renaud Sirdey, Aymen Boudguiga, Jean-Paul Bultel Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France {marina.checri, renaud.sirdey, jean-paul.bultel, aymen.boudguiga}@cea.fr CRYPTO - August 18-22, 2024 France 2030 ANR Programs SecureCompute & TRUSTINCloudS Horizon Europe Program #### Table of contents - Introduction & Background - Homomorphic Encryption - ullet Security model and CPA D game - ② A CPA^D attack on "exact" FHE schemes - 3 Impact on Threshold FHE - 4 Countermeasures for "exact" and Threshold Schemes - **5** Conclusion and Key takeaways #### Table of contents - Introduction & Background - Homomorphic Encryption - Security model and CPA^D game - ② A CPA^D attack on "exact" FHE schemes - 3 Impact on Threshold FHE - 6 Conclusion and Key takeaways What are we talking about? Ensure confidentiality during calculations Typically, for Cloud Computing What are we talking about? #### What are we talking about? FHE relies on LWE #### What are we talking about? $$c = \left(\begin{array}{c} \\ \end{array} \right), \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c$$ $$c = \begin{pmatrix} a & , & b & = m + \langle a, s \rangle + e \end{pmatrix}$$ FHE relies on LWE To ensure security, **noise is added during encryption** but **it increases** at each homomorphic operation, and may lead... m to **incorrect decryptions**! # $\overline{\text{CPA}, \text{CCA} \text{ and } \text{CPA}^D}$ security game # CPA, CCA and CPA^D security game #### **CPA Security Game** Chosen Plaintext Attack Encryption oracle ✓ FHE # CPA, CCA and CPA^D security game ### **CPA Security Game** Chosen Plaintext Attack Encryption oracle ✓ FHE ## **CCA Security Game** Chosen Ciphertext Attack - Encryption oracle - Decryption oracle # CPA, CCA and CPA^D security game ### **CPA Security Game** Chosen Plaintext Attack Encryption oracle ✓ FHE ### **CCA Security Game** Chosen Ciphertext Attack - > Encryption oracle - Decryption oracle **X** FHE ### **CPA**^D Security Game Chosen Plaintext Attack with "Decryption oracle" - Encryption oracle - Evaluation oracle - Limited Decryption oracle on well-formed ctxt ? FHE Li & Micciancio. On the security of homomorphic encryption on approximate numbers. EUROCRYPT'21 # $\overline{\text{CPA}} = \overline{\text{CPA}}^D$? ## $CPA = CPA^{D}$? - $CPA^D = CPA + Limited Decryption Oracle$ - The adversary seems to know all the output of the decryption oracle! ## $CPA = CPA^{D}$? - $CPA^D = CPA + Limited Decryption Oracle$ - CPA = CPA + Limited Decryption Oracle The adversary seems to know all the output of the decryption oracle! #### Li & Micciancio attack on CKKS Approximate LWE Scheme - EUROCRYPT'21 CKKS.Encrypt($$m$$): return $(c_0, c_1) = (m - a \cdot s + e, a)$, with $a \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, $e \stackrel{\$}{\leftarrow} \chi$ CKKS.Decrypt((c_0, c_1)): return $c_0 + c_1 \cdot s = m - a \cdot s + e + a \cdot s$ $= m + e$ $\simeq m$ ## $CPA = CPA^{D}$? - $CPA^D = CPA + Limited Decryption Oracle$ - The adversary seems to know all the output of the decryption oracle! \rightarrow CPA = CPA^D? #### Li & Micciancio attack on CKKS Approximate LWE Scheme - EUROCRYPT'21 CKKS.Encrypt($$m$$): return $(c_0,c_1)=(m-a\cdot s+e,\,a),$ with $a\stackrel{\$}{\leftarrow}\mathbb{Z}_q,\,e\stackrel{\$}{\leftarrow}\chi$ CKKS.Decrypt((c_0,c_1)): return $c_0+c_1\cdot s=m-a\cdot s+e+a\cdot s=m+e$ $\cong m$ #### Compare to usual "Exact" LWE Schemes Encrypt(m): return $$(c_0, c_1) = (Bm - a \cdot s + e, a)$$, with $a \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, $e \stackrel{\$}{\leftarrow} \chi$ Decrypt((c_0, c_1)): return $[(c_0 + c_1 \cdot s)/B] = [(Bm - a \cdot s + e + a \cdot s)/B]$ $= m$ #### Table of contents - - Homomorphic Encryption - Security model and CPA^D game - \bigcirc A CPA^D attack on "exact" FHE schemes - 3 Impact on Threshold FHE - Ountermeasures for "exact" and Threshold Schemes - 6 Conclusion and Key takeaways $\begin{array}{c} Encryption \\ oracle \end{array}$ $c^{(\alpha_*)}$ encryption of 0 with noise α_*e $c^{(\alpha_*+1)}$ encryption of 0 with noise $(\alpha_*+1)e$ $c^{(\alpha_*)}$ encryption of 0 with noise α_*e $c^{(\alpha_*+1)}$ encryption of 0 with noise $(\alpha_*+1)e$ with $$\frac{q}{2t(\alpha_*+1)} \le |e| < \frac{q}{2t\alpha_*}$$ ightharpoonup |e| is uniquely determined when $\left\lceil \frac{q}{2t(\alpha_*+1)} \right\rceil = \left\lfloor \frac{q}{2t\alpha_*} \right\rfloor$ $c^{(\alpha_*)}$ encryption of 0 with noise α_*e $c^{(\alpha_*+1)}$ encryption of 0 with noise $(\alpha_*+1)e$ $$ightharpoonup |e|$$ is uniquely determined when $\left\lceil \frac{q}{2t(\alpha_*+1)} \right\rceil = \left\lceil \frac{q}{2t\alpha_*} \right\rceil$ \rightarrow Occurs when $|e| < \sqrt{\frac{q}{2t}}$ $c^{(\alpha_*)}$ encryption of 0 with noise α_*e $c^{(\alpha_*+1)}$ encryption of 0 with noise $(\alpha_*+1)e$ $$\blacktriangleright$$ |e| is uniquely determined when $\left[\frac{q}{2t(\alpha_s+1)}\right] = \left|\frac{q}{2t\alpha_s}\right| \rightarrow$ $$ightharpoonup |e|$$ is uniquely determined when $\left\lceil \frac{q}{2t(\alpha_*+1)} \right\rceil = \left\lfloor \frac{q}{2t\alpha_*} \right\rfloor \quad o \quad ext{Occurs when } |e| < \sqrt{\frac{q}{2t}}$ $$ightharpoonup$$ Construct $c_k = c_{k-1} + c_{k-1}$ and $c^{(\alpha)} := \sum\limits_k (\alpha_k = 1) c_k$, then $c^{(\alpha)} = (\alpha a, \langle \alpha a, s \rangle + \alpha e)$ hen $$c^{(\alpha)} = (\alpha a, \langle \alpha a, s \rangle + \alpha e)$$ #### Identify ciphertexts with same noise sign. \hookrightarrow Evaluation and decryption oracles Solve two systems of n linear equations to recover the key $$\begin{cases} b_1 &= \langle a_1, s \rangle + |e_1| \\ b_2 &= \langle a_2, s \rangle + |e_2| \\ b_3 &= \langle a_3, s \rangle + |e_3| \\ b_4 &= \langle a_4, s \rangle + |e_4| \\ \cdots &= & \cdots \\ b_n &= \langle a_n, s \rangle + |e_n| \end{cases}$$ $$\begin{cases} b_1 &= \langle a_1, s \rangle - |e_1| \\ b_2 &= \langle a_2, s \rangle - |e_2| \\ b_3 &= \langle a_3, s \rangle - |e_3| \\ b_4 &= \langle a_4, s \rangle - |e_4| \\ \cdots &= & \cdots \\ b_n &= \langle a_n, s \rangle - |e_n| \end{cases}$$ Try to decrypt fresh encryptions of $0 \rightarrow$ the correct key always outputs 0 Win the CPA^D game by decrypting the challenge ciphertext c^* ! ## Some experimental results | Library | Scheme | Parameters | | | | | Proportion of ctxt | Proportion of | Time | |---------|-------------------|------------|-------|-------------|-----------|-------|----------------------|----------------|--------| | | | λ | n | $\log_2(q)$ | σ | t | with $ e $ recovered | noisefree ctxt | Time | | SEAL | BFV | 95 | 4096 | 109 | 3.2 | 1024 | 1 | 6250/232858 | 2m50s | | | BFV | 227 | 4096 | 58 | 3.2 | 1024 | 1 | 1481/860557 | 1m20s | | | BGV | 227 | 4096 | 58 | 3.2 | 1024 | 1 | 124/65405 | 52s | | OpenFHE | BFV | 128 | 8192 | 120 | 3.19 | 1024 | 1 | 69/48929 | 19m30s | | | BFV | 256 | 16384 | 120 | 3.19 | 1024 | 1 | 173/130535 | 75m30s | | | $_{\mathrm{BGV}}$ | 128 | 8192 | 69 | 3.19 | 1024 | 1 | 59/32811 | 18m30s | | | BGV | 256 | 16384 | 71 | 3.19 | 1024 | 1 | 80/65559 | 68m50s | | TFHElib | TFHE | 97 | 630 | 32 | 2^{17} | 2 | 1295/5427 | 0 | 0.245s | | | TFHE | 128 | 700 | 32 | 81604.378 | 2 | 1363/3678 | 0 | 0.195s | | | TFHE | 128 | 1024 | 32 | 81604.378 | 4 | 2070/5608 | 0 | 0.412s | | | TFHE | 128 | 1024 | 32 | 279.172 | 16 | 2021/2041 | 11/2041 | 0.237s | | Lattigo | BFV | 95 | 4096 | 109 | 3.2 | 65537 | 1 | 785/29241 | 5m50s | | | BFV | 98 | 2048 | 54 | 3.2 | 65537 | 1 | 69/24518 | 46s | | | BFV | 106 | 4096 | 101 | 3.2 | 65537 | 1 | 829/32260 | 6m40s | | | BFV | 106 | 8192 | 202 | 3.2 | 65537 | 1 | 457/23943 | 52m00s | | | BFV | 217 | 4096 | 60 | 3.2 | 65537 | 1 | 828/31934 | 1m25s | #### Table of contents - - Homomorphic Encryption - Security model and CPA^D game - 2 A CPA^D attack on "exact" FHE schemes - 3 Impact on Threshold FHE - 4 Countermeasures for "exact" and Threshold Schemes - 6 Conclusion and Key takeaways ## Impact on Threshold FHE Joint public key pk* Joint secret key sk* ## Impact on Threshold FHE ## Relationship between CPA^D and Threshold FHE ## Relationship between CPA^D and Threshold FHE ## Does the attack work against Threshold FHE schemes? #### **Algorithm 1:** Collective Key Switch **Input:** Ciphertext $ct = (c_0, c_1)$ of variance σ_{ct}^2 **Private input:** s_i, s'_i for each party P_i **Output:** Key-switched ciphertext $ct' = (c'_0, c_1)$ Each party P_i Samples $e_i \leftarrow \chi_{CKS}(\sigma_{ct}^2)$ Computes and Discloses $h_i = (s_i - s_i') \cdot c_1 + e_i$ return $ct' = (c_0 + \sum_{P_i} h_i, c_1)$ Mouchet et al. Multiparty Homomorphic Encryption from Ring-Learning-with-Errors. PoPETs'21 # Does the attack work against Threshold FHE schemes? ### **Algorithm 1:** Collective Key Switch **Input:** Ciphertext $ct = (c_0, c_1)$ of variance σ_{ct}^2 **Private input:** s_i, s'_i for each party P_i **Output:** Key-switched ciphertext $ct' = (c'_0, c_1)$ Each party P_i Samples $e_i \leftarrow \chi_{CKS}(\sigma_{ct}^2)$ \triangleright Smudging noise sampled from $\chi_{CKS} = \mathcal{N}(0, 2^{\lambda}\sigma_{ct}^2)$ Computes and Discloses $h_i = (s_i - s_i') \cdot c_1 + e_i$ return $ct' = (c_0 + \sum_{P_i} h_i, c_1)$ Mouchet et al. Multiparty Homomorphic Encryption from Ring-Learning-with-Errors. PoPETs'21 # Does the attack work against Threshold FHE schemes? ### **Algorithm 1:** Collective Key Switch **Input:** Ciphertext $ct = (c_0, c_1)$ of variance σ_{ct}^2 **Private input:** s_i, s'_i for each party P_i **Output:** Key-switched ciphertext $ct' = (c'_0, c_1)$ Each party P_i Samples $e_i \leftarrow \chi_{CKS}(\sigma_{ct}^2)$ \triangleright Smudging noise sampled from $\chi_{CKS} = \mathcal{N}(0, 2^{\lambda}\sigma_{ct}^2)$ Computes and Discloses $h_i = (s_i - s_i') \cdot c_1 + e_i$ return $ct' = (c_0 + \sum_{P_i} h_i, c_1)$ Mouchet et al. Multiparty Homomorphic Encryption from Ring-Learning-with-Errors. PoPETs'21 $$c_k^{(\mathrm{smg})} = (2^k a, \langle 2^k a, s \rangle + 2^k e + e_{\mathrm{smg}}) \quad \text{indistinguishable from} \quad c_k = (2^k a, \langle 2^k a, s \rangle + e_{\mathrm{smg}}),$$ where $\sigma_{\mathrm{smg}} = \sigma_{\mathrm{ct}} \sqrt{K} 2^{\frac{\lambda}{2}}$ and $\sigma_{\mathrm{ct}} = 2^k \sigma$ ## Table of contents - Introduction & Background - Homomorphic Encryption - Security model and CPA^D game - 3 Impact on Threshold FHE - Ountermeasures for "exact" and Threshold Schemes - (5) Conclusion and Key takeaways ### Countermeasures ## ➤ **Bootstrapping** (~ 50% cost) - **Bootstrap** after each homomorphic operation - Since bootstrapping resets the noise variance to a preset value, decryption errors cannot occur. - \blacksquare Choose FHE parameters such that bootstrapping errors occur with prob $neg(\lambda)$. ### ➤ Monitor & Block (~ 35% cost) - Fix a noise deviation budget B. - Choose FHE parameters such that decryption error occur with prob $neg(\lambda)$ at noise dev. B. - Monitor (worst-case) noise deviation during FHE execution. - **Block**: return \bot when noise deviation > B. ## ➤ Monitor & Smudge (~ 45% cost) - Prior to decryption, **flood/smudge** the ciphertext with a large λ -dependent and σ_{ct} -dependent variance. - Works for threshold scheme (and must not be optional) ## Table of contents - - Homomorphic Encryption - Security model and CPA^D game - 2 A CPA^D attack on "exact" FHE schemes - 3 Impact on Threshold FHE - Ountermeasures for "exact" and Threshold Schemes - 6 Conclusion and Key takeaways ## Concurrent works ### ➤ Guo et al. Key recovery attacks on approximate homomorphic encryption with non worst-case noise flooding countermeasures. Usenix Security 2024 ■ CPA^D attack on CKKS, when smudging based on non worst-case noise estimation ### > Cheon et al. Attacks Against the IND-CPAD Security of Exact FHE Schemes. IACR Eprint 2024/127 - lacksquare BGV/BFV CPA D attack, migrate the noise polynomial in the plaintext domain - lacktriangle TFHE CPA D attack, exploit bootstrapping error ### > Alexandru et al. Application-aware approximate homomorphic encryption: configuring FHE for practical use. IACR Eprint 2024/203 - Application-aware security: new *weaker* variant of CPA^D security - lacktriangleright CPA D security should be defined relative to a circuit class and a noise estimation strategy # Key Takeaways - CPA^D is not just a theoretical threat, thus... CPA^D security must be carefully considered by all FHE schemes - Simple CPA^D attacks can be implemented in most popular FHE libraries, but... Simple countermeasures can be devised, but have an impact on performance - Recall that CPA^D is a natural security context in multi-user threshold FHE, so... Recall to have smudging appropriately implemented in your favorite threshold library # CPA^{D} key recovery attack on "exact" and threshold FHE # Thank you for your kind attention! credit: xkcd.com ## Generalization to RLWE ### **LWE** $$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q, e \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q)$$ $$c = (a, b := m + \langle a, s \rangle + e)$$ ### **RLWE** $$A \stackrel{\$}{\leftarrow} \mathbb{Z}_q[X]/X^n + 1, E \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q[X]/X^n + 1)$$ $$C = (A, B := M + A \cdot S + E)$$ > Just have to look at one coefficient of the RLWE polynomial: it is an LWE instance! $$C = c_0 + \lceil c_1 \rceil X + c_2 X + \dots + c_{n-1} X^{n-1}$$ ## Bootstrapping ## Bootstrapping ($\sim 50\%$ cost). - Bootstrap after each homomorphic operation. - Since bootstrapping resets the noise variance to a preset value, decryption errors cannot occur. - \triangleright Choose FHE parameters such that bootstrapping errors occur with prob neg(λ). And boot...boot... What? Bootstrapping! What is it and what for? Noise grows with each homomorphic operations. We need to regularly reduce the noise: that's bootstrapping! ## Monitor & Block ### Monitor & Block (\sim 35% cost). - \triangleright Fix a noise deviation budget B. - ightharpoonup Choose FHE parameters such that decryption error occur with prob $neg(\lambda)$ at noise dev. B. - Monitor (worst-case) noise deviation during FHE execution. - **Block** decryption when noise dev. > B. - Scheme becomes "somewhat correct". | d | $\log_2(q)$ | n | $\log_2(q)$ | n | ratio | |----|-------------|-------|-------------|-------|-------| | 1 | 120 | 8192 | 131 | 8192 | 1,09 | | 2 | 180 | 8192 | 181 | 8192 | 1,00 | | 3 | 180 | 8192 | 237 | 16384 | 2,96 | | 4 | 240 | 16384 | 289 | 16384 | 1,35 | | 5 | 240 | 16384 | 341 | 16384 | 1,68 | | 6 | 300 | 16384 | 392 | 16384 | 1,46 | | 7 | 300 | 16384 | 444 | 16384 | 1,66 | | 8 | 360 | 16384 | 516 | 32768 | 3,37 | | 9 | 360 | 16384 | 570 | 32768 | 3,93 | | 10 | 420 | 16384 | 624 | 32768 | 3,65 | Illustration of the performance cost of the Monitor&Block countermeasure for OpenFHE/BFV. # Monitor & Smudge ## Monitor & Smudge (\sim 45% cost). - \triangleright Prior to decryption, flood the ciphertext with a large λ -dependent and $\sigma_{\rm ct}$ -dependent variance. - > Works for threshold scheme - \hookrightarrow must not be optional! | d | $\log_2(q)$ | n | $\log_2(q)$ | \overline{n} | ratio | |----|-------------|-------|-------------|----------------|------------| | 1 | 120 | 8192 | 153 | 8192 | 1,28 | | 2 | 180 | 8192 | 202 | 8192 | 1,12 | | 3 | 180 | 8192 | 258 | 16384 | $ 3,\!22 $ | | 4 | 240 | 16384 | 310 | 16384 | 1,45 | | 5 | 240 | 16384 | 362 | 16384 | 1,79 | | 6 | 300 | 16384 | 414 | 16384 | $ 1,\!55 $ | | 7 | 300 | 16384 | 483 | 32768 | 3,99 | | 8 | 360 | 16384 | 537 | 32768 | 3,70 | | 9 | 360 | 16384 | 591 | 32768 | 4,30 | | 10 | 420 | 16384 | 645 | 32768 | 3,95 | Illustration of the performance cost of the Monitor&Smudge countermeasure for OpenFHE/BFV and K-out-of-K decryption, with K=5. ## Correctness and CPA^{D} #### Correctness A scheme is a correct/exact scheme if $$\mathbf{P}\left(\mathsf{Dec}\left(\mathsf{Enc}(m,r)\right) \neq m\right) \leqslant \mathsf{neg}(\lambda)$$ and $$\mathbf{P}\left(\mathsf{Dec}\left(\mathsf{Eval}\left(f,\mathsf{Enc}(m_1,r_1),\ldots,\mathsf{Enc}(m_k,r_k)\right)\right) \neq f(m1,\ldots,m_k)\right) \leqslant \mathsf{neg}(\lambda)$$ If the scheme is correct/exact, our attack is not applicable ### Li & Micciancio, EUROCRYPT'21, Lemma 1. "Any exact homomorphic encryption scheme & is IND-CPA secure if and only if it is IND-CPAD secure." # CPA^D Security Game Encryption scheme $\mathscr{E} = (\mathsf{KeyGen}, \mathsf{Enc}, \mathsf{Dec}, \mathsf{Eval})$, plaintext domain \mathscr{P} and security parameter λ . Adversary \mathscr{A} . Game parameterized by $b^* \stackrel{\$}{\leftarrow} \{0,1\}$ unknown to \mathcal{A} , and an initially empty state S of msg-msg-ctxt triplets: - **Key generation.** Run (ek, dk) \leftarrow KeyGen(1 $^{\lambda}$), and give ek to \mathscr{A} . - Encryption request. \mathscr{A} queries (test_messages, m_0, m_1), where $m_0, m_1 \in \mathscr{P}$. Compute $c = \mathsf{Enc}_{\mathsf{ek}(m_{b,*})}$, give c to \mathscr{A} and do $S := [S; (m_0, m_1, c)]$. - Evaluation request. \mathscr{A} queries (eval, f, l_1, \ldots, l_K). Compute $m_0' = f(S[l_1].m_0, \ldots, S[l_K].m_0), m_1' = f(S[l_1].m_1, \ldots, S[l_K].m_1)$, and $c' = \text{Eval}(f, S[l_1].c, \ldots, S[l_K].c)$. Update S as follows: $S := [S; (m_0', m_1', c')]$ - Decryption request. \mathcal{A} queries (ciphertext, l). If $S[l].m_0 \neq S[l].m_1$, return \bot . Otherwise return $\mathsf{Dec}_{\mathsf{dk}}(S[l].c)$. - Guessing stage. \mathcal{A} outputs (guess, b). If $b = b^*$, \mathcal{A} wins the game, otherwise \mathcal{A} looses it.