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Post-Quantum Cryptography
Exciting time for standardization & industry adoption!

Need for advanced cryptography:

Problem: Not enough ways to construct post-quantum primitives!

Threshold Sign’s, FHE, SNARGs, quantum, etc.
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many proposals, most are broken
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The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Images from Quanta Magazine

Why should we care about diversity of assumptions?

1. Hedge against advances in cryptanalysis 
• Continual attempts to break lattices 

2. Different assumptions give different algebraic structures: 
• Enable new feasibility results 
• Improved practical performance 

3. Cross-pollination with other areas: 
• Coding theory, number theory, algebraic geometry, etc.

Proof Systems (BARGs, SNARGs), Advanced Encryption (ABE, FE, FHE), …
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Code-Based vs. Lattice-Based Cryptography

Can we build more advanced primitives from 
code-based assumptions?

(A, sA + e) ≈c (A, u)

e+As ⋅A ,( ) uA ,( )≈c

Linear algebra Noise

Different noise models (sparse vs. small-magnitude) lead to: 

• Little understanding of worst-case hardness 

• Huge gap in cryptographic constructions 
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Our Result
A new code-based assumption: Dense-Sparse LPN  

• Variant of Learning Parity with Noise (LPN) with structured matrix distribution

• Initial cryptanalysis shows resistance to known attacks (linear tests, etc.)

We construct lossy trapdoor functions (LTDFs) from Dense-Sparse LPN
• Simple-to-state primitive with many applications such as CCA-secure PKE, etc.

• In the post-quantum setting, only achieved by lattices [PW08]

Why a new assumption?
• Overcome a barrier in noise management for LPN

• Circumvent a new attack against Sparse LPN   (in relevant parameter regime)



Our Result

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Lossy Trapdoor Functions

Images from Quanta Magazine
only achieve constant # bits of lossiness, not sufficient for many applications

[PW08]Ours!
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Lossy Trapdoor Functions

         

               

Setup(1λ, inj) → (ek, td) ≈c Setup(1λ, loss) → ek

Eval(ek, x) → y Invert(td, y) → x

Applications of LTDFs:

𝒳 𝒴

Finj Ftd

𝒳

≈c

CCA-secure encryption Deterministic encryption

Collision-resistant hash functions

Computational extractors

Incompressible encodings

Analyzing OAEP

Selective opening security
Point function obfuscation

Pseudo-entropy functions …and more!

Floss

𝒳 𝒴

[PW08]
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Noisy Learning Problems: LWE vs. LPN

(A, S ⋅ A + E) ≈c (A, U)

E $← χ ℓ × m+AS $← ℛℓ × n ⋅A $← ℛ n × m ,( ) U $← ℛ ℓ × mA $← ℛ n × m ,( )≈c

Learning with Errors: [Regev05] 

, Discrete Gaussian  

Entries of  are small

ℛ = ℤ/qℤ χ = (α)

E

q/20 Ω(poly(n)) =α

Learning Parity with Noise: [BKFL94] 

 (usually ), Bernoulli  

Entries of  are mostly zero

ℛ = 𝔽q q = 2 χ = (ϵ)

E

n0 ϵ ⋅ n



LTDF Template from Noisy Learning Problem



LTDF Template from Noisy Learning Problem

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

suitable code



LTDF Template from Noisy Learning Problem

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

Function:        ( support of error distribution)F : 𝖲𝗎𝗉𝗉(χ) m → 𝔽 n + ℓ
2 𝖲𝗎𝗉𝗉(χ) =

suitable code



LTDF Template from Noisy Learning Problem

Evaluation: F( (A, B) , x) = (A ⋅ x, B ⋅ x) = (A ⋅ x, S ⋅ A ⋅ x + E ⋅ x)

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

Function:        ( support of error distribution)F : 𝖲𝗎𝗉𝗉(χ) m → 𝔽 n + ℓ
2 𝖲𝗎𝗉𝗉(χ) =

Proof sketch: in lossy mode, second argument = first argument + noise 

 requires    be compressing,  and    remains low noise⟹ x ↦ A ⋅ x E ⋅ x

suitable code



LTDF Template from Noisy Learning Problem

Evaluation: F( (A, B) , x) = (A ⋅ x, B ⋅ x) = (A ⋅ x, S ⋅ A ⋅ x + E ⋅ x)

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

Function:        ( support of error distribution)F : 𝖲𝗎𝗉𝗉(χ) m → 𝔽 n + ℓ
2 𝖲𝗎𝗉𝗉(χ) =

Inversion: F−1(S, (y1, y2) )= DecodeC (y2 − S ⋅ y1) = DecodeC (C ⋅ x + E ⋅ x)

Proof sketch: in lossy mode, second argument = first argument + noise 

 requires    be compressing,  and    remains low noise⟹ x ↦ A ⋅ x E ⋅ x

Proof sketch: in injective mode, recover  via decoding from noise using x C

suitable code



LTDF Template from Noisy Learning Problem

Evaluation: F( (A, B) , x) = (A ⋅ x, B ⋅ x) = (A ⋅ x, S ⋅ A ⋅ x + E ⋅ x)

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

Function:        ( support of error distribution)F : 𝖲𝗎𝗉𝗉(χ) m → 𝔽 n + ℓ
2 𝖲𝗎𝗉𝗉(χ) =

Inversion: F−1(S, (y1, y2) )= DecodeC (y2 − S ⋅ y1) = DecodeC (C ⋅ x + E ⋅ x)

Proof sketch: in lossy mode, second argument = first argument + noise 

 requires    be compressing,  and    remains low noise⟹ x ↦ A ⋅ x E ⋅ x

Proof sketch: in injective mode, recover  via decoding from noise using x C

focus on lossiness

suitable code
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Hash Function: 𝔽m
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Compression:            (m
t ) ≈ ( m

t )
t

> 2n
requires

⟹ m = n1+Ω(1), t = Ω ( n
log n )

LTDF Template Fails for LPN
Hash Function: 𝔽m

2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ 𝔽n
2

Noise growth:            δ ≈ ϵt ≤ O(1)
requires

⟹ ϵ = O ( log n
n )

Accumulated Noise: E $← Ber(ϵ) k×m ⟹ E ⋅ x $← Ber(δ) k

Attack: pick  random 
coordinates, solve for 

n
s 10

ϵ

O(log(n)
n )

poly-time 
broken!

LPN Security:

Can we achieve compression with better parameters?

Yes, by restricting the hash range 
(via changing distribution of )!A
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Sparse Learning Parity with Noise

E $← Ber(ϵ) ℓ × mS $← 𝔽 ℓ × n
2 +A⋅ 

-sparse cols
A $← 𝔽 n × m

2
k

,( ) U $← 𝔽 ℓ × m
2

 
-sparse cols
A $← 𝔽 n × m

2
k

,( )≈c

(A, S ⋅ A + E) ≈c (A, U)
random 

-sparse colsk⋮
⋮



Sparse Learning Parity with Noise

Well-studied variant of LPN [Alekhnovich03] with prior cryptographic applications 

(PKE [ABW10], correlated randomness [ADI+17, AK23, BCG+23], HSS [DIJK23], etc.) 

Our Setting: ,  is constant* or slightly super-constant m ≪ nk / 2 k ( ≈ log log n)

* Requires non-uniformly random distribution of  [AK19]A

E $← Ber(ϵ) ℓ × mS $← 𝔽 ℓ × n
2 +A⋅ 

-sparse cols
A $← 𝔽 n × m

2
k

,( ) U $← 𝔽 ℓ × m
2

 
-sparse cols
A $← 𝔽 n × m

2
k

,( )≈c

(A, S ⋅ A + E) ≈c (A, U)
random 

-sparse colsk⋮
⋮
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Hash Function: 𝔽m
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LTDF Template Also Fails for Sparse LPN

Example:
k = 6

m = n2

t ≈ n0.8

ϵ ≈ n−0.8
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Sparse LPN Security:

LTDF Template Also Fails for Sparse LPN

Example:
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Compression:             (m
t ) > ( n

≤kt)
requires

⟹ t = Ω ( nk

m )
1/(k−1)

Hash Function: 𝔽m
2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ { ≤ kt -sparse} ⊊ 𝔽n

2

Noise rate:         δ ≈ ϵ ⋅ t = O(1)
requires

⟹ ϵ = O ( 1
t ) = O (( m

nk )
1/(k−1)

)

Accumulated Noise: E $← Ber(ϵ) ℓ × m ⟹ E ⋅ x $← Ber(δ) ℓ

10
ϵ

O(log(n)
n ) O(m1/(k−1)

nk/(k−1) )
poly-time 
broken!

secure?

Sparse LPN Security:

LTDF Template Also Fails for Sparse LPN

Example:
k = 6

m = n2

t ≈ n0.8

ϵ ≈ n−0.8

no! (our new attack)
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entries are all in 𝒮
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{
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… …
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|𝒮| = L

Solve for linear dependency!

Want:  𝔼[# cols] = m ⋅
(L

k)
(n

k)
> L ⟺ L ≈ ( nk

m )
1

k − 1

random -sparsek

Same parameters for compression!(more likely  if )0 u = sA + e

Can we avoid this attack while still allowing us to build LTDFs?

Perhaps, by masking sparsity pattern of !A



1. LTDF Template from Noisy Learning Problems 
(and why it fails from LPN) 

2. Introducing Dense-Sparse LPN 

3. Cryptanalysis & Open Questions

Talk Outline



Dense-Sparse LPN

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,( ) u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,( )≈c

(A, sA + e) ≈c (A, u)



Dense-Sparse LPN

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,( ) u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,( )≈c

(A, sA + e) ≈c (A, u)

where  with  random (dense), 

 is random -sparse,  any constant

A = T ⋅ M T ∈ 𝔽 n × c⋅n
2

M ∈ 𝔽 c⋅n × m
2 k c > 1

T R← 𝔽 n × c⋅n
2 ⋅

{

Masks sparsity pattern!

 
random -sparse

M ∈ 𝔽 c⋅n × m
2
k⋮

⋮

(say )c = 1.1



Dense-Sparse LPN

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,( ) u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,( )≈c

(A, sA + e) ≈c (A, u)

where  with  random (dense), 

 is random -sparse,  any constant

A = T ⋅ M T ∈ 𝔽 n × c⋅n
2

M ∈ 𝔽 c⋅n × m
2 k c > 1

T R← 𝔽 n × c⋅n
2 ⋅

{

Masks sparsity pattern!

 
random -sparse

M ∈ 𝔽 c⋅n × m
2
k⋮

⋮

(say )c = 1.1

Inspiration from McEliece: hide code via linear transformation



Dense-Sparse LPN

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,( ) u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,( )≈c

(A, sA + e) ≈c (A, u)

Now LTDF construction works!  (  has image size at most )T ⋅ M ⋅ x M ⋅ x

where  with  random (dense), 

 is random -sparse,  any constant

A = T ⋅ M T ∈ 𝔽 n × c⋅n
2

M ∈ 𝔽 c⋅n × m
2 k c > 1

T R← 𝔽 n × c⋅n
2 ⋅

{

Masks sparsity pattern!

 
random -sparse

M ∈ 𝔽 c⋅n × m
2
k⋮

⋮

(say )c = 1.1

Inspiration from McEliece: hide code via linear transformation
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Theorem: LTDF from Dense-Sparse LPN that loses a factor  in lossy mode…D > 1

 requires Dense-Sparse LPN with    and  ⟹ m ≪ nk/2 ϵ ≪ ( m
nD k )

1
D k − 1

Concrete settings: , , any  

•  (loses of input):    

•  (loses of input):    

• :   

k = 6 m = n2 δ > 0

D = 10 90 % ϵ = n− 58
59 − δ ≈ n−0.984
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D → 1 ϵ = n− 6
7 − δ ≈ n−0.86



Putting Things Together: LTDF Parameters

10
ϵ

O(log(n)
n ) o ( m

nD k )
1

D k − 1

poly-time 
broken!

Theorem: LTDF from Dense-Sparse LPN that loses a factor  in lossy mode…D > 1

 requires Dense-Sparse LPN with    and  ⟹ m ≪ nk/2 ϵ ≪ ( m
nD k )

1
D k − 1

Concrete settings: , , any  

•  (loses of input):    

•  (loses of input):    

• :   

k = 6 m = n2 δ > 0

D = 10 90 % ϵ = n− 58
59 − δ ≈ n−0.984

D = 2 50 % ϵ = n− 10
11 − δ ≈ n−0.91

D → 1 ϵ = n− 6
7 − δ ≈ n−0.86

How secure is this?



1. LTDF Template from Noisy Learning Problems 
(and why it fails from LPN) 

2. Introducing Dense-Sparse LPN 

3. Cryptanalysis & Open Questions

Talk Outline



Summary of Cryptanalysis

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,( ) u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,( )≈c

(A, s ⋅ A + e) ≈c (A, u)
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1. Information Set Decoding: guess error coordinates of       time e ⟹ 2Ω̃(ϵ⋅n)

2.Find a sparse vector  in the (right) kernel of       time  

(inherited from  such that )

x A = T ⋅ M ⟹ 2Ω̃(nδ)

M M ⋅ x = 0

3.Decompose Dense-Sparse matrix      time ⟹ 2Ω̃(n)

e ← Ber(ϵ)1×m+As R← 𝔽1×n
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Parameter: m = n1+( k
2 − 1)(1−δ)



Summary of Cryptanalysis

1. Information Set Decoding: guess error coordinates of       time e ⟹ 2Ω̃(ϵ⋅n)

2.Find a sparse vector  in the (right) kernel of       time  

(inherited from  such that )

x A = T ⋅ M ⟹ 2Ω̃(nδ)

M M ⋅ x = 0

3.Decompose Dense-Sparse matrix      time ⟹ 2Ω̃(n)

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,( ) u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,( )≈c

(A, s ⋅ A + e) ≈c (A, u)

Conjectured Security: secure against attackers w/ time ≪ 2min(Õ(ϵ ⋅ n), Õ(nδ))

Parameter: m = n1+( k
2 − 1)(1−δ)
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Decomposing a Dense-Sparse Matrix

Find  from   break DS-LPN with compression parameters!T, M A = T ⋅ M ⟹

 
-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
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2A ∈ 𝔽 n × m
2 ⋅=

 (using our earlier Sparse LPN attack on )M
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Find  from   break DS-LPN with compression parameters!T, M A = T ⋅ M ⟹
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k⋮
⋮T R← 𝔽 n × 1.1n
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2 ⋅=

 
-sparse cols
M ∈ 𝔽 n × m

2
k⋮

⋮T R← 𝔽 n × n
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Why do we need ? Suppose not…c > 1
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Decomposing a Dense-Sparse Matrix

This is insecure! We can find  such that  is sparseZ Z ⋅ A

Z ∈ 𝔽 n × n
2 A ∈ 𝔽 n × m

2⋅ =  
-sparse cols
M ∈ 𝔽 n × m

2
k⋮

⋮

 
-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮T R← 𝔽 n × 1.1n

2A ∈ 𝔽 n × m
2 ⋅=

z1⋅ z2⋅ zn⋅a1,j + a2,j an,j+ +… = ∀ j ∈ [m]mj



 
-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮

Decomposing a Dense-Sparse Matrix

The attack breaks down when  is rectangular 

 time complexity is now  due to guessing 

T ∈ 𝔽 n × 1.1n
2

⟹ 2Ω̃(n) T′ 

Z ∈ 𝔽 n × n
2 A ∈ 𝔽 n × m

2⋅ = In T′ ⋅

 
-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮T R← 𝔽 n × 1.1n

2A ∈ 𝔽 n × m
2 ⋅=
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Our Result: We introduce a new code-based assumption, Dense-Sparse LPN, 
and show how it gives rise to Lossy Trapdoor Functions.



Summary & Open Problems

Our Result: We introduce a new code-based assumption, Dense-Sparse LPN, 
and show how it gives rise to Lossy Trapdoor Functions.

Future Directions: 
• Cryptanalysis:  

• Reductions: search-to-decision? worst-to-average-case? 

• Concrete parameters: we need help! 

• Applications: PIR? Laconic OT? NIZK? IBE? ABE? 

• Coding Theory: better constant-sparse matrix distributions?

Thank you! Questions?

Read our paper! 
(ePrint 2024/175)


