
Lossy Cryptography from
Code-Based Assumptions

Crypto 2024

Quang Dao Aayush Jain

Post-Quantum Cryptography

Post-Quantum Cryptography
Exciting time for standardization & industry adoption!

Post-Quantum Cryptography
Exciting time for standardization & industry adoption!

Need for advanced cryptography: Threshold Sign’s, FHE, SNARGs, quantum, etc.

Post-Quantum Cryptography
Exciting time for standardization & industry adoption!

Need for advanced cryptography:

Problem: Not enough ways to construct post-quantum primitives!

Threshold Sign’s, FHE, SNARGs, quantum, etc.

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Images from Quanta Magazine

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

One-way Functions

Images from Quanta Magazine

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Public-Key Encryption

Images from Quanta Magazine
SIDH broken, but still CSIDH, new proposals, etc.

many proposals, most are broken

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Identity-Based Encryption

Images from Quanta Magazine

* Only quasi-polynomially secure

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Proof Systems (BARGs, SNARGs), Advanced Encryption (ABE, FE, FHE), …

Images from Quanta Magazine

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Program Obfuscation

Images from Quanta Magazine

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Proof Systems (BARGs, SNARGs), Advanced Encryption (ABE, FE, FHE), …

Images from Quanta Magazine

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Images from Quanta Magazine

Why should we care about diversity of assumptions?

Proof Systems (BARGs, SNARGs), Advanced Encryption (ABE, FE, FHE), …

The Current State of Post-Quantum Crypto

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Images from Quanta Magazine

Why should we care about diversity of assumptions?

1. Hedge against advances in cryptanalysis
• Continual attempts to break lattices

2. Different assumptions give different algebraic structures:
• Enable new feasibility results
• Improved practical performance

3. Cross-pollination with other areas:
• Coding theory, number theory, algebraic geometry, etc.

Proof Systems (BARGs, SNARGs), Advanced Encryption (ABE, FE, FHE), …

Code-Based vs. Lattice-Based Cryptography

Code-Based vs. Lattice-Based Cryptography

(A, sA + e) ≈c (A, u)

e+As ⋅A ,() uA ,()≈c

Linear algebra Noise

Code-Based vs. Lattice-Based Cryptography

(A, sA + e) ≈c (A, u)

e+As ⋅A ,() uA ,()≈c

Linear algebra Noise

Different noise models (sparse vs. small-magnitude) lead to:

• Little understanding of worst-case hardness

• Huge gap in cryptographic constructions

Code-Based vs. Lattice-Based Cryptography

Can we build more advanced primitives from
code-based assumptions?

(A, sA + e) ≈c (A, u)

e+As ⋅A ,() uA ,()≈c

Linear algebra Noise

Different noise models (sparse vs. small-magnitude) lead to:

• Little understanding of worst-case hardness

• Huge gap in cryptographic constructions

Our Result

Our Result
A new code-based assumption: Dense-Sparse LPN

• Variant of Learning Parity with Noise (LPN) with structured matrix distribution

• Initial cryptanalysis shows resistance to known attacks (linear tests, etc.)

Our Result
A new code-based assumption: Dense-Sparse LPN

• Variant of Learning Parity with Noise (LPN) with structured matrix distribution

• Initial cryptanalysis shows resistance to known attacks (linear tests, etc.)

We construct lossy trapdoor functions (LTDFs) from Dense-Sparse LPN
• Simple-to-state primitive with many applications such as CCA-secure PKE, etc.

• In the post-quantum setting, only achieved by lattices [PW08]

Our Result
A new code-based assumption: Dense-Sparse LPN

• Variant of Learning Parity with Noise (LPN) with structured matrix distribution

• Initial cryptanalysis shows resistance to known attacks (linear tests, etc.)

We construct lossy trapdoor functions (LTDFs) from Dense-Sparse LPN
• Simple-to-state primitive with many applications such as CCA-secure PKE, etc.

• In the post-quantum setting, only achieved by lattices [PW08]

Why a new assumption?
• Overcome a barrier in noise management for LPN

• Circumvent a new attack against Sparse LPN (in relevant parameter regime)

Our Result

Lattice-basedCode-based

Isogeny-basedMultivariate-based

Lossy Trapdoor Functions

Images from Quanta Magazine
only achieve constant # bits of lossiness, not sufficient for many applications

[PW08]Ours!

1. LTDF Template from Noisy Learning Problems
(and why it fails from LPN)

2. Introducing Dense-Sparse LPN

3. Cryptanalysis & Open Questions

Talk Outline

1. LTDF Template from Noisy Learning Problems
(and why it fails from LPN)

2. Introducing Dense-Sparse LPN

3. Cryptanalysis & Open Questions

Talk Outline

Lossy Trapdoor Functions [PW08]

Lossy Trapdoor Functions

Setup(1λ, inj) → (ek, td) ≈c Setup(1λ, loss) → ek

Eval(ek, x) → y Invert(td, y) → x
𝒳 𝒴

Finj Ftd

𝒳

≈c

Floss

𝒳 𝒴

[PW08]

Lossy Trapdoor Functions

Setup(1λ, inj) → (ek, td) ≈c Setup(1λ, loss) → ek

Eval(ek, x) → y Invert(td, y) → x

Applications of LTDFs:

𝒳 𝒴

Finj Ftd

𝒳

≈c

CCA-secure encryption Deterministic encryption

Collision-resistant hash functions

Computational extractors

Incompressible encodings

Analyzing OAEP

Selective opening security
Point function obfuscation

Pseudo-entropy functions …and more!

Floss

𝒳 𝒴

[PW08]

Noisy Learning Problems: LWE vs. LPN

(A, S ⋅ A + E) ≈c (A, U)

E $← χ ℓ × m+AS $← ℛℓ × n ⋅A $← ℛ n × m ,() U $← ℛ ℓ × mA $← ℛ n × m ,()≈c

Noisy Learning Problems: LWE vs. LPN

(A, S ⋅ A + E) ≈c (A, U)

E $← χ ℓ × m+AS $← ℛℓ × n ⋅A $← ℛ n × m ,() U $← ℛ ℓ × mA $← ℛ n × m ,()≈c

Learning with Errors: [Regev05]

, Discrete Gaussian

Entries of are small

ℛ = ℤ/qℤ χ = (α)

E

q/20 Ω(poly(n)) =α

Learning Parity with Noise: [BKFL94]

 (usually), Bernoulli

Entries of are mostly zero

ℛ = 𝔽q q = 2 χ = (ϵ)

E

n0 ϵ ⋅ n

LTDF Template from Noisy Learning Problem

LTDF Template from Noisy Learning Problem

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

suitable code

LTDF Template from Noisy Learning Problem

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

Function: (support of error distribution)F : 𝖲𝗎𝗉𝗉(χ) m → 𝔽 n + ℓ
2 𝖲𝗎𝗉𝗉(χ) =

suitable code

LTDF Template from Noisy Learning Problem

Evaluation: F((A, B) , x) = (A ⋅ x, B ⋅ x) = (A ⋅ x, S ⋅ A ⋅ x + E ⋅ x)

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

Function: (support of error distribution)F : 𝖲𝗎𝗉𝗉(χ) m → 𝔽 n + ℓ
2 𝖲𝗎𝗉𝗉(χ) =

Proof sketch: in lossy mode, second argument = first argument + noise

 requires be compressing, and remains low noise⟹ x ↦ A ⋅ x E ⋅ x

suitable code

LTDF Template from Noisy Learning Problem

Evaluation: F((A, B) , x) = (A ⋅ x, B ⋅ x) = (A ⋅ x, S ⋅ A ⋅ x + E ⋅ x)

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

Function: (support of error distribution)F : 𝖲𝗎𝗉𝗉(χ) m → 𝔽 n + ℓ
2 𝖲𝗎𝗉𝗉(χ) =

Inversion: F−1(S, (y1, y2))= DecodeC (y2 − S ⋅ y1) = DecodeC (C ⋅ x + E ⋅ x)

Proof sketch: in lossy mode, second argument = first argument + noise

 requires be compressing, and remains low noise⟹ x ↦ A ⋅ x E ⋅ x

Proof sketch: in injective mode, recover via decoding from noise using x C

suitable code

LTDF Template from Noisy Learning Problem

Evaluation: F((A, B) , x) = (A ⋅ x, B ⋅ x) = (A ⋅ x, S ⋅ A ⋅ x + E ⋅ x)

Injective: {ek = (A, B := S ⋅ A + E + C)
td = S

Lossy Mode: ek = (A, B := S ⋅ A + E) ≈c

Function: (support of error distribution)F : 𝖲𝗎𝗉𝗉(χ) m → 𝔽 n + ℓ
2 𝖲𝗎𝗉𝗉(χ) =

Inversion: F−1(S, (y1, y2))= DecodeC (y2 − S ⋅ y1) = DecodeC (C ⋅ x + E ⋅ x)

Proof sketch: in lossy mode, second argument = first argument + noise

 requires be compressing, and remains low noise⟹ x ↦ A ⋅ x E ⋅ x

Proof sketch: in injective mode, recover via decoding from noise using x C

focus on lossiness

suitable code

LTDF Template Fails for LPN

Compression: (m
t) ≈ (m

t)
t

> 2n
requires

⟹ m = n1+Ω(1), t = Ω (n
log n)

LTDF Template Fails for LPN
Hash Function: 𝔽m

2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ 𝔽n
2

Compression: (m
t) ≈ (m

t)
t

> 2n
requires

⟹ m = n1+Ω(1), t = Ω (n
log n)

LTDF Template Fails for LPN
Hash Function: 𝔽m

2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ 𝔽n
2

Noise growth: δ ≈ ϵt ≤ O(1)
requires

⟹ ϵ = O (log n
n)

Accumulated Noise: E $← Ber(ϵ) ℓ × m ⟹ E ⋅ x $← Ber(δ) ℓ

Compression: (m
t) ≈ (m

t)
t

> 2n
requires

⟹ m = n1+Ω(1), t = Ω (n
log n)

LTDF Template Fails for LPN
Hash Function: 𝔽m

2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ 𝔽n
2

Noise growth: δ ≈ ϵt ≤ O(1)
requires

⟹ ϵ = O (log n
n)

Accumulated Noise: E $← Ber(ϵ) ℓ × m ⟹ E ⋅ x $← Ber(δ) ℓ

Attack: pick random
coordinates, solve for

n
s 10

ϵ

O(log(n)
n)

poly-time
broken!

LPN Security:

Compression: (m
t) ≈ (m

t)
t

> 2n
requires

⟹ m = n1+Ω(1), t = Ω (n
log n)

LTDF Template Fails for LPN
Hash Function: 𝔽m

2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ 𝔽n
2

Noise growth: δ ≈ ϵt ≤ O(1)
requires

⟹ ϵ = O (log n
n)

Accumulated Noise: E $← Ber(ϵ) k×m ⟹ E ⋅ x $← Ber(δ) k

Attack: pick random
coordinates, solve for

n
s 10

ϵ

O(log(n)
n)

poly-time
broken!

LPN Security:

Can we achieve compression with better parameters?

Compression: (m
t) ≈ (m

t)
t

> 2n
requires

⟹ m = n1+Ω(1), t = Ω (n
log n)

LTDF Template Fails for LPN
Hash Function: 𝔽m

2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ 𝔽n
2

Noise growth: δ ≈ ϵt ≤ O(1)
requires

⟹ ϵ = O (log n
n)

Accumulated Noise: E $← Ber(ϵ) k×m ⟹ E ⋅ x $← Ber(δ) k

Attack: pick random
coordinates, solve for

n
s 10

ϵ

O(log(n)
n)

poly-time
broken!

LPN Security:

Can we achieve compression with better parameters?

Yes, by restricting the hash range
(via changing distribution of)!A

Sparse Learning Parity with Noise

Sparse Learning Parity with Noise

E $← Ber(ϵ) ℓ × mS $← 𝔽 ℓ × n
2 +A⋅

-sparse cols
A $← 𝔽 n × m

2
k

,() U $← 𝔽 ℓ × m
2

-sparse cols
A $← 𝔽 n × m

2
k

,()≈c

(A, S ⋅ A + E) ≈c (A, U)
random

-sparse colsk⋮
⋮

Sparse Learning Parity with Noise

Well-studied variant of LPN [Alekhnovich03] with prior cryptographic applications

(PKE [ABW10], correlated randomness [ADI+17, AK23, BCG+23], HSS [DIJK23], etc.)

Our Setting: , is constant* or slightly super-constant m ≪ nk / 2 k (≈ log log n)

* Requires non-uniformly random distribution of [AK19]A

E $← Ber(ϵ) ℓ × mS $← 𝔽 ℓ × n
2 +A⋅

-sparse cols
A $← 𝔽 n × m

2
k

,() U $← 𝔽 ℓ × m
2

-sparse cols
A $← 𝔽 n × m

2
k

,()≈c

(A, S ⋅ A + E) ≈c (A, U)
random

-sparse colsk⋮
⋮

LTDF Template Also Fails for Sparse LPN

Compression: (m
t) > (n

≤kt)
requires

⟹ t = Ω (nk

m)
1/(k−1)

Hash Function: 𝔽m
2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ { ≤ kt -sparse} ⊊ 𝔽n

2

LTDF Template Also Fails for Sparse LPN

Example:
k = 6

m = n2

t ≈ n0.8

Compression: (m
t) > (n

≤kt)
requires

⟹ t = Ω (nk

m)
1/(k−1)

Hash Function: 𝔽m
2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ { ≤ kt -sparse} ⊊ 𝔽n

2

Noise rate: δ ≈ ϵ ⋅ t = O(1)
requires

⟹ ϵ = O (1
t) = O ((m

nk)
1/(k−1)

)

Accumulated Noise: E $← Ber(ϵ) ℓ × m ⟹ E ⋅ x $← Ber(δ) ℓ

LTDF Template Also Fails for Sparse LPN

Example:
k = 6

m = n2

t ≈ n0.8

ϵ ≈ n−0.8

Compression: (m
t) > (n

≤kt)
requires

⟹ t = Ω (nk

m)
1/(k−1)

Hash Function: 𝔽m
2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ { ≤ kt -sparse} ⊊ 𝔽n

2

Noise rate: δ ≈ ϵ ⋅ t = O(1)
requires

⟹ ϵ = O (1
t) = O ((m

nk)
1/(k−1)

)

Accumulated Noise: E $← Ber(ϵ) ℓ × m ⟹ E ⋅ x $← Ber(δ) ℓ

10
ϵ

O(log(n)
n) O(m1/(k−1)

nk/(k−1))
poly-time
broken!

secure?

Sparse LPN Security:

LTDF Template Also Fails for Sparse LPN

Example:
k = 6

m = n2

t ≈ n0.8

ϵ ≈ n−0.8

Compression: (m
t) > (n

≤kt)
requires

⟹ t = Ω (nk

m)
1/(k−1)

Hash Function: 𝔽m
2 ⊋ {t-sparse} ∋ x ↦ A ⋅ x ∈ { ≤ kt -sparse} ⊊ 𝔽n

2

Noise rate: δ ≈ ϵ ⋅ t = O(1)
requires

⟹ ϵ = O (1
t) = O ((m

nk)
1/(k−1)

)

Accumulated Noise: E $← Ber(ϵ) ℓ × m ⟹ E ⋅ x $← Ber(δ) ℓ

10
ϵ

O(log(n)
n) O(m1/(k−1)

nk/(k−1))
poly-time
broken!

secure?

Sparse LPN Security:

LTDF Template Also Fails for Sparse LPN

Example:
k = 6

m = n2

t ≈ n0.8

ϵ ≈ n−0.8

no! (our new attack)

Attack on Sparse LPN in Compression Regime

Attack on Sparse LPN in Compression Regime

Given :(A ∈ 𝔽 n × m
2 , u ∈ 𝔽 1 × m

2)

random -sparsek

A

Attack on Sparse LPN in Compression Regime

{|𝒮| = L1. Pick a random subset of size 𝒮 L

Given :(A ∈ 𝔽 n × m
2 , u ∈ 𝔽 1 × m

2)

random -sparsek

Attack on Sparse LPN in Compression Regime{
{

0

0

… …|𝒮| = L1. Pick a random subset of size 𝒮 L
2. Find all columns whose non-zero

entries are all in 𝒮

Given :(A ∈ 𝔽 n × m
2 , u ∈ 𝔽 1 × m

2)

random -sparsek

Attack on Sparse LPN in Compression Regime{
{

0

0

… …

≥ L + 1

|𝒮| = L

Solve for linear dependency!

1. Pick a random subset of size 𝒮 L
2. Find all columns whose non-zero

entries are all in 𝒮
3. If there are columns, find a

linear dependency, e.g. -sparse

 such that

> L
≤L

x ∈ 𝔽m
2 A ⋅ x = 0n

Given :(A ∈ 𝔽 n × m
2 , u ∈ 𝔽 1 × m

2)

random -sparsek

Attack on Sparse LPN in Compression Regime{
{

0

0

… …

≥ L + 1

|𝒮| = L

Solve for linear dependency!

1. Pick a random subset of size 𝒮 L
2. Find all columns whose non-zero

entries are all in 𝒮
3. If there are columns, find a

linear dependency, e.g. -sparse

 such that

> L
≤L

x ∈ 𝔽m
2 A ⋅ x = 0n

4. Compute to detect bias.⟨u, x⟩

Given :(A ∈ 𝔽 n × m
2 , u ∈ 𝔽 1 × m

2)

random -sparsek

(more likely if)0 u = sA + e

Attack on Sparse LPN in Compression Regime{
{

0

0

… …

≥ L + 1

|𝒮| = L

Solve for linear dependency!

1. Pick a random subset of size 𝒮 L
2. Find all columns whose non-zero

entries are all in 𝒮
3. If there are columns, find a

linear dependency, e.g. -sparse

 such that

> L
≤L

x ∈ 𝔽m
2 A ⋅ x = 0n

4. Compute to detect bias.⟨u, x⟩
Want: 𝔼[# cols] = m ⋅

(L
k)

(n
k)

> L ⟺ L ≈ (nk

m)
1

k − 1

Given :(A ∈ 𝔽 n × m
2 , u ∈ 𝔽 1 × m

2)

random -sparsek

Same parameters for compression!(more likely if)0 u = sA + e

1. Pick a random subset of size
2. Find all columns whose non-zero

entries are all in

3. If there are columns, find a

linear dependency, e.g. -sparse

 such that

4. Compute to detect bias.

𝒮 L

𝒮
> L

≤L
x ∈ 𝔽m

2 A ⋅ x = 0n

⟨u, x⟩

Given :(A ∈ 𝔽 n × m
2 , u ∈ 𝔽 1 × m

2)

Attack on Sparse LPN in Compression Regime{
{

0

0

… …

≥ L + 1

|𝒮| = L

Solve for linear dependency!

Want: 𝔼[# cols] = m ⋅
(L

k)
(n

k)
> L ⟺ L ≈ (nk

m)
1

k − 1

random -sparsek

Same parameters for compression!(more likely if)0 u = sA + e

Can we avoid this attack while still allowing us to build LTDFs?

1. Pick a random subset of size
2. Find all columns whose non-zero

entries are all in

3. If there are columns, find a

linear dependency, e.g. -sparse

 such that

4. Compute to detect bias.

𝒮 L

𝒮
> L

≤L
x ∈ 𝔽m

2 A ⋅ x = 0n

⟨u, x⟩

Given :(A ∈ 𝔽 n × m
2 , u ∈ 𝔽 1 × m

2)

Attack on Sparse LPN in Compression Regime{
{

0

0

… …

≥ L + 1

|𝒮| = L

Solve for linear dependency!

Want: 𝔼[# cols] = m ⋅
(L

k)
(n

k)
> L ⟺ L ≈ (nk

m)
1

k − 1

random -sparsek

Same parameters for compression!(more likely if)0 u = sA + e

Can we avoid this attack while still allowing us to build LTDFs?

Perhaps, by masking sparsity pattern of !A

1. LTDF Template from Noisy Learning Problems
(and why it fails from LPN)

2. Introducing Dense-Sparse LPN

3. Cryptanalysis & Open Questions

Talk Outline

Dense-Sparse LPN

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,() u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,()≈c

(A, sA + e) ≈c (A, u)

Dense-Sparse LPN

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,() u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,()≈c

(A, sA + e) ≈c (A, u)

where with random (dense),

 is random -sparse, any constant

A = T ⋅ M T ∈ 𝔽 n × c⋅n
2

M ∈ 𝔽 c⋅n × m
2 k c > 1

T R← 𝔽 n × c⋅n
2 ⋅

{

Masks sparsity pattern!

random -sparse

M ∈ 𝔽 c⋅n × m
2
k⋮

⋮

(say)c = 1.1

Dense-Sparse LPN

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,() u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,()≈c

(A, sA + e) ≈c (A, u)

where with random (dense),

 is random -sparse, any constant

A = T ⋅ M T ∈ 𝔽 n × c⋅n
2

M ∈ 𝔽 c⋅n × m
2 k c > 1

T R← 𝔽 n × c⋅n
2 ⋅

{

Masks sparsity pattern!

random -sparse

M ∈ 𝔽 c⋅n × m
2
k⋮

⋮

(say)c = 1.1

Inspiration from McEliece: hide code via linear transformation

Dense-Sparse LPN

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,() u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,()≈c

(A, sA + e) ≈c (A, u)

Now LTDF construction works! (has image size at most)T ⋅ M ⋅ x M ⋅ x

where with random (dense),

 is random -sparse, any constant

A = T ⋅ M T ∈ 𝔽 n × c⋅n
2

M ∈ 𝔽 c⋅n × m
2 k c > 1

T R← 𝔽 n × c⋅n
2 ⋅

{

Masks sparsity pattern!

random -sparse

M ∈ 𝔽 c⋅n × m
2
k⋮

⋮

(say)c = 1.1

Inspiration from McEliece: hide code via linear transformation

Putting Things Together: LTDF Parameters

Putting Things Together: LTDF Parameters
Theorem: LTDF from Dense-Sparse LPN that loses a factor in lossy mode…D > 1

 requires Dense-Sparse LPN with and ⟹ m ≪ nk/2 ϵ ≪ (m
nD k)

1
D k − 1

Putting Things Together: LTDF Parameters
Theorem: LTDF from Dense-Sparse LPN that loses a factor in lossy mode…D > 1

 requires Dense-Sparse LPN with and ⟹ m ≪ nk/2 ϵ ≪ (m
nD k)

1
D k − 1

Concrete settings: , , any

• (loses of input):

• (loses of input):

• :

k = 6 m = n2 δ > 0

D = 10 90 % ϵ = n− 58
59 − δ ≈ n−0.984

D = 2 50 % ϵ = n− 10
11 − δ ≈ n−0.91

D → 1 ϵ = n− 6
7 − δ ≈ n−0.86

Putting Things Together: LTDF Parameters

10
ϵ

O(log(n)
n) o (m

nD k)
1

D k − 1

poly-time
broken!

Theorem: LTDF from Dense-Sparse LPN that loses a factor in lossy mode…D > 1

 requires Dense-Sparse LPN with and ⟹ m ≪ nk/2 ϵ ≪ (m
nD k)

1
D k − 1

Concrete settings: , , any

• (loses of input):

• (loses of input):

• :

k = 6 m = n2 δ > 0

D = 10 90 % ϵ = n− 58
59 − δ ≈ n−0.984

D = 2 50 % ϵ = n− 10
11 − δ ≈ n−0.91

D → 1 ϵ = n− 6
7 − δ ≈ n−0.86

How secure is this?

1. LTDF Template from Noisy Learning Problems
(and why it fails from LPN)

2. Introducing Dense-Sparse LPN

3. Cryptanalysis & Open Questions

Talk Outline

Summary of Cryptanalysis

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,() u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,()≈c

(A, s ⋅ A + e) ≈c (A, u)

Summary of Cryptanalysis

1. Information Set Decoding: guess error coordinates of time e ⟹ 2Ω̃(ϵ⋅n)

2.Find a sparse vector in the (right) kernel of time

(inherited from such that)

x A = T ⋅ M ⟹ 2Ω̃(nδ)

M M ⋅ x = 0

3.Decompose Dense-Sparse matrix time ⟹ 2Ω̃(n)

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,() u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,()≈c

(A, s ⋅ A + e) ≈c (A, u)

Parameter: m = n1+(k
2 − 1)(1−δ)

Summary of Cryptanalysis

1. Information Set Decoding: guess error coordinates of time e ⟹ 2Ω̃(ϵ⋅n)

2.Find a sparse vector in the (right) kernel of time

(inherited from such that)

x A = T ⋅ M ⟹ 2Ω̃(nδ)

M M ⋅ x = 0

3.Decompose Dense-Sparse matrix time ⟹ 2Ω̃(n)

e ← Ber(ϵ)1×m+As R← 𝔽1×n
2 ⋅A ← 𝒟𝒮(𝔽2, n, m, k) ,() u R← ℛ1×mA ← 𝒟𝒮(𝔽2, n, m, k) ,()≈c

(A, s ⋅ A + e) ≈c (A, u)

Conjectured Security: secure against attackers w/ time ≪ 2min(Õ(ϵ ⋅ n), Õ(nδ))

Parameter: m = n1+(k
2 − 1)(1−δ)

Decomposing a Dense-Sparse Matrix

Decomposing a Dense-Sparse Matrix

Find from break DS-LPN with compression parameters!T, M A = T ⋅ M ⟹

-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮T R← 𝔽 n × 1.1n

2A ∈ 𝔽 n × m
2 ⋅=

 (using our earlier Sparse LPN attack on)M

Decomposing a Dense-Sparse Matrix

Find from break DS-LPN with compression parameters!T, M A = T ⋅ M ⟹

-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮T R← 𝔽 n × 1.1n

2A ∈ 𝔽 n × m
2 ⋅=

-sparse cols
M ∈ 𝔽 n × m

2
k⋮

⋮T R← 𝔽 n × n
2A ∈ 𝔽 n × m

2 ⋅=

Why do we need ? Suppose not…c > 1 (using our earlier Sparse LPN attack on)M

Decomposing a Dense-Sparse Matrix

Find from break DS-LPN with compression parameters!T, M A = T ⋅ M ⟹

-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮T R← 𝔽 n × 1.1n

2A ∈ 𝔽 n × m
2 ⋅=

-sparse cols
M ∈ 𝔽 n × m

2
k⋮

⋮T R← 𝔽 n × n
2A ∈ 𝔽 n × m

2 ⋅=

Why do we need ? Suppose not…c > 1

This is insecure! We can find such that is sparseZ Z ⋅ A

 (using our earlier Sparse LPN attack on)M

Z ∈ 𝔽 n × n
2 A ∈ 𝔽 n × m

2⋅ =
-sparse cols
M ∈ 𝔽 n × m

2
k⋮

⋮

Decomposing a Dense-Sparse Matrix

This is insecure! We can find such that is sparseZ Z ⋅ A

Z ∈ 𝔽 n × n
2 A ∈ 𝔽 n × m

2⋅ =
-sparse cols
M ∈ 𝔽 n × m

2
k⋮

⋮

-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮T R← 𝔽 n × 1.1n

2A ∈ 𝔽 n × m
2 ⋅=

z1⋅ z2⋅ zn⋅a1,j + a2,j an,j+ +… = ∀ j ∈ [m]mj

-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮

Decomposing a Dense-Sparse Matrix

The attack breaks down when is rectangular

 time complexity is now due to guessing

T ∈ 𝔽 n × 1.1n
2

⟹ 2Ω̃(n) T′

Z ∈ 𝔽 n × n
2 A ∈ 𝔽 n × m

2⋅ = In T′ ⋅

-sparse cols

M ∈ 𝔽 1.1n × m
2

k⋮
⋮T R← 𝔽 n × 1.1n

2A ∈ 𝔽 n × m
2 ⋅=

Summary & Open Problems

Our Result: We introduce a new code-based assumption, Dense-Sparse LPN,
and show how it gives rise to Lossy Trapdoor Functions.

Summary & Open Problems

Our Result: We introduce a new code-based assumption, Dense-Sparse LPN,
and show how it gives rise to Lossy Trapdoor Functions.

Future Directions:
• Cryptanalysis:

• Reductions: search-to-decision? worst-to-average-case?

• Concrete parameters: we need help!

• Applications: PIR? Laconic OT? NIZK? IBE? ABE?

• Coding Theory: better constant-sparse matrix distributions?

Thank you! Questions?

Read our paper!
(ePrint 2024/175)

