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Need for advanced cryptography:

Problem: Not enough ways to construct post-quantum primitives!
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The Current State of Post-Quantum Crypto

Proof Systems (BARGs SNARGs) Advanced Encryptlon (ABE, FE, FHE), .

Why should we care about dlver5|ty of assumptlons'?
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1. Hedge against advances in cryptanalysis
e Continual attempts to break lattices

- 2. Different assumptions give different algebraic structures:

 Enable new feasibility results
* Improved practical performance
| 3. Cross-pollination with other areas:

e Coding theory, number theory, algebraic geometry, etc.
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Linear algebra Noise

l—‘—\ l_‘_\

(A,sA+e) ~. (A, u)

Different noise models (sparse vs. small-magnitude) lead to:
o Little understanding of worst-case hardness

e Huge gap in cryptographic constructions

Can we build more advanced primitives from
code-based assumptions?
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Our Result

A new code-based assumption: Dense-Sparse LPN

e Variant of Learning Parity with Noise (LPN) with structured matrix distribution

* Initial cryptanalysis shows resistance to known attacks (linear tests, etc.)

We construct lossy trapdoor functions (LTDFs) from Dense-Sparse LPN
e Simple-to-state primitive with many applications such as CCA-secure PKE, etc.
* |n the post-quantum setting, only achieved by lattices [PWO08]

Why a new assumption?

e Overcome a barrier in noise management for LPN

e Circumvent a new attack against Sparse LPN (in relevant parameter regime)
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Lossy Trapdoor Functions irwog

Setup(l’l, inj) = (ek,td) =~ Setup(l’l, loss) — ek

C

Eval(ek,x) — v Invert(td,y) — x

Applications of LTDFs:

CCA-secure encryption Deterministic encryption
Collision-resistant hash functions  Analyzing OAEP

Selective opening security  Incompressible encodings

Computational extractors ~ Point function obfuscation

: |
Pseudo-entropy functions -..and more!
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Noisy Learning Problems: LWE vs. LPN

( Ai%nXm . Siggf)(n. A

Learning with Errors: [Regev05]

_|_

R = /2/qZ, y = Discrete Gaussian(a)

Entries of E are small

0 a Q(poly(n)) = q/2

—_—

£Xm )R}J

$ nxm
c( A — RBNX

A,S-A+E)=. (A, U)

Ui@f)(m )

Learning Parity with Noise: [BKFL94]

K = [, (usually g = 2), y = Bernoulli(e)

Entries of E are mostly zero

0

€-n

n
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LTDF Template from Noisy Learning Problem

ek =(A,B:=S-A+E+C)
4

Lossy Mode: ek = (A,B =5 -A+ E) ~. Injective: { i
1t =

suitable code

Function: F: Supp(y)" — [F2”+”ﬂ (Supp(y) = support of error distribution)

|l Evaluation: F( (A, B) ,x) = (A - X, B - x) = (A-x,S5-A-x+E-x) focuson lossiness

Proof sketch: in lossy mode, second argument = first argument + noise

—> requires x — A - x be compressing, and E - x remains low noise

Inversion: F~! (S, (V1> V) ) = Decodec(y, =S -y;) = Decodec(C-x+ E - x)

Proof sketch: in injective mode, recover x via decoding from noise using C
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LTDF Template Fails for LPN

Hash Function: [’ 2 {t-sparse} > x = A-x €eF
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Noise growth: 6 ~ er < O(1) — c =0 ( Og”)
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LTDF Template Fails for LPN

Hash Function: [’ 2 {t-sparse} > x = A-x €eF

{ .
m m requires n
Compression: ( ) ~ (—) > 2" — m=n*tD =0 ( )
t ! log n

Accurt  Can we achieve compression with better parameters?

®
F a
<<
7
2

Jise growth: § ~ er < Yes, by restricting the hash range

(via changing distribution of A)!
LPN Security: S

() n coordinates, solve for s 1

€ %
poly-time
broken!
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Sparse Learning Parity with Noise

random :
Y| k-sparse cols (A’ S.-A+ E) 3 (A’ U)
A i ”:nXm $ A i ﬂ:nXm $
> , SEE A + [E<Ber@™ " | & 2 , | U & Eoxm
k-sparse cols ¢ k-sparse cols 2

Well-studied variant of LPN [alekhnovich03] with prior cryptographic applications

(PKE [ABW10], correlated randomness [ADI+17, AK23, BCG+23], HSS [DIJK23], etc.)

Our Setting: m < n*’?, k is constant* or slightly super-constant ( ~ log log n)
g ghtly sup g 108

* Requires non-uniformly random distribution of A [AK19]
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LTDF Template Also Fails for Sparse LPN

Hash Function: [’ 2 {t-sparse} 5 x B A-x € { < kt-sparse} G

m n requires A
Compression: > LN = ol [
! <kt .

[ Example: }

k=26
. $ $ |
Accumulated Noise: FE « Ber(e)”ﬂxm — F.x « Ber(é)”ﬂ - m = n’
f o n08 |
requires | Lk=1) 08 ¢
Noise rate: 6~ et = O(1) — =0 (7) — 0 ((ﬂk) - emn 0.8 ]
1/(k—1)
Sparse LPN Security: 0(10g(n)) o =
0 7 kl(k—1) |
c —t
poly-time secure?

~—___ no! (our new attack)

broken!
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random k-sparse

J
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Attack on Sparse LPN in Compression Regime

random k-sparse = L”_I_ .
Given (A € F}*", u € F, *™): 0
1. Pick a random subset & of size L S| =L
2. Find all columns whose non-zero
entries are all in & 0

3. If there are > L columns, find a ,
Solve for linear dependency!

linear dependency, e.qg. <L -sparse (L>

1

F\ k=1
m . — n I n
x € [} such that A - x =0 Want: E[# cols] = - o7 e I (_)
4. Compute (i, x) to detect bias. (’Z) / m

(more likely O if u = 5A + ¢) Same parameters for compression!
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> L+ 1

random k-sparse
/ : :

Given (A € F/*™, u € F, *™): 0

1. Pick a random subset & of size L S| =L

| Can we avoid this attack while still allowing us to build LTDFs? |
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Attack on Sparse LPN in Compression Regime

> L+ 1

random k-sparse
/ : :

Given (A € F/*™, u € F, *™): 0

1. Pick a random subset & of size L ‘5‘ _

’ Can we av0|d thls attack whlle stlll aIIowmg us to bmld LTDFs’? ;f

b, |
en y
1 o Ol 3 . = o o O _ = o O . = o s - = o o B - = e B ——x TRy P
Py MRS ST e S S S > AT A NP TR » S ONGR —_— NS =R IDARAS RGP —re
x 4
= < =

3_: Athere are > L columns, {
& Jear dependency, e.g. 4 Perhaps by masking sparsity pattern ofA'

X € ) such that A - X = O reprreesrerpec e emeeeermmemmerepoemegeremgmeeaoeegen & /?

VUSSR T I =TT —=

e

4. Compute (u, x) to detect bias. (Z)

(more likely O if u = sA + ¢)
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Dense-Sparse LPN
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Dense-Sparse LPN

(A,sA+¢) =, (A, u)

&

A« 98F,nmk)| ¢ |S & IF%X” o A -+ e « Ber(e)*™ A~ DSEpn,m k)| s y & gplxm

where A =T - M with T € F}*“" random (dense),

cCnXxXm
R n| . M & [F2

random k-sparse

M € F5"*™ is random k-sparse, ¢ > 1 any constant

(say c = 1.1)
Masks sparsity pattern!

Inspiration from McEliece: hide code via linear transformation

Now LTDF construction works! (7' - M - x has image size at most M - x)
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Theorem: LTDF from Dense-Sparse LPN that loses a factor D > 1 in lossy mode...

1

m Dk—-1
—> requires Dense-Sparse LPN with m < n"? and € < ( Dk)
n

2

Concrete settings: k =6, m =n~, any 6 > 0

e D =10 (loses 90 % of input): ¢ =n S0 — 0 g g =0.984

e D =2 (loses 50 % of input): € =n T =0y 091
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Putting Things Together: LTDF Parameters

Theorem: LTDF from Dense-Sparse LPN that loses a factor D > 1 in lossy mode...

1

m Dk—-1
—> requires Dense-Sparse LPN with m < n"? and € < ( Dk)

n
Concrete settings: k = 6, m = n?, any 6 > 0
e D =10 (loses 90 % of input): ¢=n 59— 0y 0984 How secure is this?
e D=2 (loses 50 % of input): € =n T =0y =091 /
e D—>1: e=n g 2 ~ n_0'86 0 log(n) (ﬂ)’)’;l
0 ( " ) A\ 1
¢ ————
poly-time

broken!
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Summary of Cryptanalysis
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Summary of Cryptanalysis

A,s-A+e)=. (A u)

R m
( A<~ DSE,n,mk)| o | S« [F%Xn . A + e < Ber(e)'™ ) %C ( A« DS, n,mk)| U & gplxm )

1.Information Set Decoding: guess error coordinates of ¢ =— time Den)

2.Find a sparse vector x in the (right) kernelof A=T7T-M — time DQ(n’)

(inherited from M such that M - x = 0) Parameter: m = 1. <l§ 1>(1—5)

3.Decompose Dense-Sparse matrix — time Q)



Summary of Cryptanalysis

A,s-A+e)=. (A u)

R m
( A—DSEnmk)| 5 |5 |- A + | e < Ber(®)™ ) %C( A= DSEpn,m k)| s u & gxm )

1.Information Set Decoding: guess error coordinates of ¢ =— time Den)

2.Find a sparse vector x in the (right) kernelof A=T7T-M — time DQ(n’)

( & _
(inherited from M such that M - x = 0) Parameter: m =1 <2 1>(1 0)

3.Decompose Dense-Sparse matrix — time Q)

Conjectured Security: secure against attackers w/ time < pmin(O(e - n), O(n°))
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l.1Inxm
A€ [I:nXm R 4 : . . M & [FZ
) :

|
~
T
ﬁ
S
X
S

k-sparse cols

Find 7, M from A = T - M = break DS-LPN with compression parameters!

Why do we need ¢ > 1? Suppose not...

nxXm
M e[,
k-sparse cols

A Fpxm T = Fp*n




Decomposing a Dense-Sparse Matrix

l.1lInxm
M e,

k-sparse cols

R
nxl1l.1n|
T [I:2

A e

Find 7, M from A = T - M = break DS-LPN with compression parameters!

Why do we need ¢ > 1? Suppose not...

nxXm
M e[,
k-sparse cols

R
nxn| .
T « [F2

A e

This is insecure! We can find Z such that Z - A is sparse
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Decomposing a Dense-Sparse Matrix
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This is insecure! We can find Z such that Z - A is sparse
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Decomposing a Dense-Sparse Matrix
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The attack breaks down when 7' € F'”* L1n s rectangular

—> time complexity is now 22 due to guessing 1’
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Summary & Open Problems

;’ Our Result: We introduce a new code-based assumption, Dense-Sparse LPN, ;’
and show how it gives rise to Lossy Trapdoor Functions. |
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Future Directions: Read our paper!
(ePrint 2024/175)

e Cryptanalysis:

e Reductions: search-to-decision? worst-to-average-case?

* Concrete parameters: we need help!

e Applications: PIR? Laconic OT? NIZK? IBE? ABE?

* Coding Theory: better constant-sparse matrix distributions?

Thank you! Questions?



