

Resettable Statistical Zero-Knowledge for NP

Susumu Kiyoshima*

Zero-knowledge (ZK) arguments

Zero-knowledge (ZK) arguments

- **Completeness**: When $x \in L$, honest P can convince V
- **Soundness**: When $x \notin L$, any PPT P^* cannot convince V
- **ZK**: When $x \in L$, any PPT V^* cannot learn anything beyond $x \in L$

Resettable ZK

➤ ZK in setting where **P** generates many proofs using same randomness [Canetti, Goldreich, Goldwasser, Micali, 2000]

$$P(x_1, w_1; R) \Longrightarrow V^*$$

$$P(x_2, w_2; R) \Longrightarrow V^*$$

$$P(x_3, w_3; R) \Longrightarrow$$

Resettable ZK

➤ ZK in setting where **P** generates many proofs using same randomness [Canetti, Goldreich, Goldwasser, Micali. 2000]

 $\forall \mathsf{PPT} \; V^* \exists \mathsf{PPT} \; \mathcal{S} \; \mathsf{s.t.}$

$$P(x_1, w_1; R) \Longrightarrow V^* \stackrel{c}{\approx} V^*$$

$$P(x_2, w_2; R) \Longrightarrow V^* \stackrel{c}{\approx} S$$

Why study resettable ZK?

- ► Theoretical motivation:
 - Understanding the role of randomness
 (P doesn't need to sample fresh randomness in each proof)
- **▶** Practical motivation:
 - Minimizing cost of randomness generation (Let's sample randomness once and reuse it subsequently!)
 - Preventing physical resetting attacks
 (ZK holds even when V* "unplugs" P to force P to reuse same randomness!)

Known results on resettable ZK

- ► Strong positive results are known ©
 - E.g., construction from one-way functions in the plain model [Chung, Pass, Seth. 2013]
- High-level idea:
 - Different proofs are generated with "computationally independent" pseudorandomness (all sampled with common PRF key R)

Resettable ZK + Statistical ZK?

► Resettable statistical ZK (Resettable SZK):

SZK in setting where many proofs are generated using the same prover randomness [Garg, Ostrovsky, Visconti, Wadia. 2012]

Resettable SZK is hard to obtain (2)

- ▶ Difficulty: We need to achieve SZK in unbounded-poly number of proofs using fixed-length prover randomness
 - · Pseudorandomness does not seem helpful to overcome this difficulty

Known result on resettable SZK

- ▶ Resettable SZK proof exists for any language L that admits hash proof systems [Garg, Ostrovsky, Visconti, Wadia. 2012] <a>©
 - ullet More precisely requirement for $oldsymbol{L}$ is to have appropriate instance-dependent commitments

Known result on resettable SZK

- ▶ Resettable SZK proof exists for any language L that admits hash proof systems [Garg, Ostrovsky, Visconti, Wadia. 2012] <a>©
 - More precisely requirement for $m{L}$ is to have appropriate instance-dependent commitments

Our target: Resettable SZK argument for NP

Assuming the existence of one-way functions (OWFs), resettable SZK argument for NP ⇔ witness encryption for NP

Assuming the existence of one-way functions (OWFs), resettable SZK argument for NP ← witness encryption for NP

- ► Witness encryption (WE) [Garg, Gentry, Sahai, Waters. 2013]:
 - A generalization of public-key encryption, where \mathbf{pk} is an NP instance $x \in L$ and \mathbf{sk} is any corresponding witness w. (Semantic security holds when $x \notin L$)

Assuming the existence of one-way functions (OWFs), resettable SZK argument for NP ← witness encryption for NP

- ▶ Theorem 1 (WE \Rightarrow Resettable SZK): Assume OWF and WE for NP language L. Then, there exists resettable SZK argument for L.
 - Easy (folklore)
- ► Theorem 2 (Resettable SWI ⇒ WE): Assume OWF and resettable statistical witness-indistinguishable (resettable SWI) argument for NP. Then, there exists WE for NP.
 - Difficult (main technical contribution)

How to interpret our result

- ▶ If you are pessimist: negative result for resettable SZK 😢
 - Constructing resettable SWI/SZK for NP is as hard as constructing WE for NP

- ▶ If you are optimist: yet another reason to study WE ⓒ
 - The only way to improve state-of-the-art of resettable SZK (efficiency, assumption, etc.) is to improve state-of-the-art of WE

Our Techniques, part 1

(WE for $L \Longrightarrow \text{Resettable SZK for } L$)

Protocol description

► Simple case: Resettable SWI against honest *V*

Protocol description

► Simple case: Resettable SWI against honest *V*

Protocol description

► Simple case: Resettable SWI against honest *V*

► Full-fledged resettable SZK is obtained via known transformation (enabling simulator to obtain trapdoor) [Garg, Ostrovsky, Visconti, Wadia. 2012]

Our Techniques, part 2

(Resettable SWI for NP \Longrightarrow WE for NP)

Overall approach

- ► Main lemma: "Witness-independent transcript" is necessary for resettable SWI
 - I.e., $P(x, w_0; R)$ and $P(x, w_1; R)$ generate identical transcript w.h.p. (This is much stronger than normal SWI)

Overall approach

- ► Main lemma: "Witness-independent transcript" is necessary for resettable SWI
 - I.e., $P(x, w_0; R)$ and $P(x, w_1; R)$ generate identical transcript w.h.p. (This is much stronger than normal SWI)

Predictable argument (PA)

- PA = Interactive argument where V can predict prover messages using its secret coin [Faonio, Nielsen, Venturi. 2017]
- **Example:** Interactive proof for graph non-isomorphism [Goldreich, Micali, Wigderson. 1991]
 - Given (G_0, G_1) , V picks $b \in \{0, 1\}$, sends random graph isomorphic to G_b , and checks whether P replies with b

Predictable argument (PA)

- PA = Interactive argument where V can predict prover messages using its secret coin [Faonio, Nielsen, Venturi. 2017]
- **Example:** Interactive proof for graph non-isomorphism [Goldreich, Micali, Wigderson. 1991]
 - Given (G_0, G_1) , V picks $b \in \{0, 1\}$, sends random graph isomorphic to G_b , and checks whether P replies with b
- Security: Completeness and soundness
- ► Known result: PA for *L* ⇔ WE for *L* [Faonio, Nielsen, Venturi. 2017]

▶ **Approach:** Constructing PA for L using resettable SWI argument $(P_{\text{RSWI}}, V_{\text{RSWI}})$ for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = \text{PRG}(s)\}$

▶ Approach: Constructing PA for L using resettable SWI argument $(P_{\text{RSWI}}, V_{\text{RSWI}})$ for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = \text{PRG}(s)\}$

V(x)

Approach: Constructing PA for L using resettable SWI argument $(P_{\text{RSWI}}, V_{\text{RSWI}})$ for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$

P(x, w)

- V(x) | In V's head: 1. Sample $\hat{x} \in \hat{L}$ by $\hat{x} := (x, PRG(s))$ for $s \leftarrow \{0, 1\}^n$
 - 2. Run $(P_{\text{RSWI}}, V_{\text{RSWI}})$ with statement \hat{x} , witness s, and prover randomness $R \stackrel{\$}{\leftarrow} \{0,1\}^*$
 - 3. Let $(v_1, p_1, \dots, v_o, p_o)$ be the resulting transcript

17/20

▶ **Approach:** Constructing PA for L using resettable SWI argument $(P_{\text{RSWI}}, V_{\text{RSWI}})$ for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = \text{PRG}(s)\}$

n $oldsymbol{V}$'s head:

- 1. Sample $\hat{x} \in \hat{L}$ by $\hat{x} := (x, PRG(s))$ for $s \stackrel{\$}{\leftarrow} \{0, 1\}^n$
- 2. Run $(P_{\text{RSWI}}, V_{\text{RSWI}})$ with statement \hat{x} , witness s, and prover randomness $R \xleftarrow{\$} \{0,1\}^*$
- 3. Let $(v_1,p_1,\ldots,v_
 ho,p_
 ho)$ be the resulting transcript

▶ **Approach:** Constructing PA for L using resettable SWI argument (P_{RSWI}, V_{RSWI}) for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$

In V's head:

- 1. Sample $\hat{x} \in \hat{L}$ by $\hat{x} := (x, PRG(s))$ for $s \stackrel{\$}{\leftarrow} \{0, 1\}^n$
- 2. Run $(P_{\text{RSWI}}, V_{\text{RSWI}})$ with statement \hat{x} , witness s, and prover randomness $R \xleftarrow{\$} \{0, 1\}^*$
- 3. Let $(v_1, p_1, \ldots, v_\rho, p_\rho)$ be the resulting transcript

▶ **Approach:** Constructing PA for L using resettable SWI argument (P_{RSWI}, V_{RSWI}) for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$

In V's head:

- 1. Sample $\hat{x} \in \hat{L}$ by $\hat{x} := (x, PRG(s))$ for $s \stackrel{\$}{\leftarrow} \{0, 1\}^n$
- 2. Run $(P_{\text{RSWI}}, V_{\text{RSWI}})$ with statement \hat{x} , witness s, and prover randomness $R \xleftarrow{\$} \{0, 1\}^*$
- 3. Let $(v_1,p_1,\ldots,v_{
 ho},p_{
 ho})$ be the resulting transcript

▶ **Approach:** Constructing PA for L using resettable SWI argument $(P_{\text{RSWI}}, V_{\text{RSWI}})$ for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = \text{PRG}(s)\}$

In V's head:

- 1. Sample $\hat{x} \in \hat{L}$ by $\hat{x} := (x, PRG(s))$ for $s \stackrel{\$}{\leftarrow} \{0, 1\}^n$
- 2. Run $(P_{\text{RSWI}}, V_{\text{RSWI}})$ with statement \hat{x} , witness s, and prover randomness $R \xleftarrow{\$} \{0, 1\}^*$
- 3. Let $(v_1,p_1,\ldots,v_
 ho,p_
 ho)$ be the resulting transcript

▶ **Approach:** Constructing PA for L using resettable SWI argument $(P_{\text{RSWI}}, V_{\text{RSWI}})$ for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = \text{PRG}(s)\}$

In V's head:

- 1. Sample $\hat{x} \in \hat{L}$ by $\hat{x} := (x, PRG(s))$ for $s \stackrel{\$}{\leftarrow} \{0, 1\}^n$
- 2. Run $(P_{\text{RSWI}}, V_{\text{RSWI}})$ with statement \hat{x} , witness s, and prover randomness $R \leftarrow \{0, 1\}^*$
- 3. Let $(v_1, p_1, \ldots, v_{\rho}, p_{\rho})$ be the resulting transcript

Accept iff $p_i = \tilde{p}_i$ for all i

▶ **Approach:** Constructing PA for L using resettable SWI argument $(P_{\text{RSWI}}, V_{\text{RSWI}})$ for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = \text{PRG}(s)\}$

In V's head:

- 1. Sample $\hat{x} \in \hat{L}$ by $\hat{x} := (x, PRG(s))$ for $s \stackrel{\$}{\leftarrow} \{0, 1\}^n$
- 2. Run $(P_{\text{RSWI}}, V_{\text{RSWI}})$ with statement \hat{x} , witness s, and prover randomness $R \leftarrow \{0, 1\}^*$
- 3. Let $(v_1, p_1, \dots, v_\rho, p_\rho)$ be the resulting transcript

predictability & soundness: 🗸

Accept iff $p_i = \tilde{p}_i$ for all i

▶ **Approach:** Constructing PA for L using resettable SWI argument $(P_{\text{RSWI}}, V_{\text{RSWI}})$ for related language $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = \text{PRG}(s)\}$

In V's head:

- 1. Sample $\hat{x} \in \hat{L}$ by $\hat{x} := (x, PRG(s))$ for $s \stackrel{\$}{\leftarrow} \{0, 1\}^n$
- 2. Run $(P_{\text{RSWI}}, V_{\text{RSWI}})$ with statement \hat{x} , witness s, and prover randomness $R \xleftarrow{\$} \{0, 1\}^*$
- 3. Let $(v_1, p_1, \ldots, v_\rho, p_\rho)$ be the resulting transcript

predictability & soundness: ✓
completeness: ✓ (from Main Lemma, guaranteeing witness-independent transcript)

Accept iff $p_i = \tilde{p}_i$ for all i

How is Main Lemma proven?

© NTT CORPORATION 2024 18/20

How is Main Lemma proven?

See the paper!

Hint: If ¬(witness-independent transcript), we can break resettable SWI by comparing:

- Exp 1: For each i = 1, ..., t, run $P_{RSWI}((x, PRG(s_i)), w; R)$ with common R
- Exp 2: For each $i=1,\ldots,t$, run $P_{\text{RSWI}}((x,\text{PRG}(s_i)),w;R)$ or $P_{\text{RSWI}}((x,\text{PRG}(s_i)),s_i;R)$ with common R

© NTT CORPORATION 2024 18/20

Conclusion

© NTT CORPORATION 2024 19/20

Conclusion

Our Result:

- ▶ Theorem 1 (WE \Rightarrow Resettable SZK): Assume OWF and WE for NP language L. Then, there exists resettable SZK argument for L.
 - Easy (folklore)
- ► Theorem 2 (Resettable SWI ⇒ WE): Assume OWF and resettable SWI argument for NP. Then, there exists WE for NP.
 - Difficult (main technical contribution)

© NTT CORPORATION 2024 20/20

Conclusion

Our Result:

- ▶ Theorem 1 (WE \Rightarrow Resettable SZK): Assume OWF and WE for NP language L. Then, there exists resettable SZK argument for L.
 - Easy (folklore)
- ► Theorem 2 (Resettable SWI ⇒ WE): Assume OWF and resettable SWI argument for NP. Then, there exists WE for NP.
 - Difficult (main technical contribution)

Thanks!

© NTT CORPORATION 2024 20/20

Appendix

Resettable SWI ⇒ Witness-independent transcript

Toy example (We assume ¬ Witness-independent transcript for all statements & randomness)

Suppose $P(\hat{x}_i, w_i; R)$ and $P(\hat{x}_i, s_i; R)$ generate different transcripts for $\forall \hat{x}_1, \dots, \hat{x}_t \in \hat{L}$ (Recall: $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$)

Toy example (We assume ¬ Witness-independent transcript for all statements & randomness)

Suppose $P(\hat{x}_i, w_i; R)$ and $P(\hat{x}_i, s_i; R)$ generate different transcripts for $\forall \hat{x}_1, \dots, \hat{x}_t \in \hat{L}$ (Recall: $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$)

Exp1: Exp2:

Toy example (We assume ¬ Witness-independent transcript for all statements & randomness)

Suppose $P(\hat{x}_i, w_i; R)$ and $P(\hat{x}_i, s_i; R)$ generate different transcripts for $\forall \hat{x}_1, \dots, \hat{x}_t \in \hat{L}$ (Recall: $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$)

Exp1: (for each
$$i$$
, w_i is used)
$$P(\hat{x}_1, w_1; R) \text{ proof}$$

$$\vdots \qquad V^*$$

$$P(\hat{x}_t, w_t; R) \text{ proof}$$

Exp2:

Toy example (We assume ¬ Witness-independent transcript for all statements & randomness)

Suppose $P(\hat{x}_i, w_i; R)$ and $P(\hat{x}_i, s_i; R)$ generate different transcripts for $\forall \hat{x}_1, \dots, \hat{x}_t \in \hat{L}$ (Recall: $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$)

Exp1: (for each
$$i$$
, w_i is used)

$$P(\hat{x}_1, w_1; R) \text{ proof}$$

$$\vdots V^*$$

$$P(\hat{x}_t, w_t; R) \text{ proof}$$

$$P(\hat{x}_t, w_t; R) \text{ or } P(\hat{x}_t, s_t; R) \text{ proof}$$

Toy example (We assume ¬ Witness-independent transcript for all statements & randomness)

Suppose $P(\hat{x}_i, w_i; R)$ and $P(\hat{x}_i, s_i; R)$ generate different transcripts for $\forall \hat{x}_1, \dots, \hat{x}_t \in \hat{L}$ (Recall: $\hat{L} \coloneqq \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$)

Exp1: (for each
$$i$$
, w_i is used)
$$P(\hat{x}_1, w_1; R) \xrightarrow{\text{proof}} V^*$$

$$\vdots \qquad V^*$$

$$P(\hat{x}_t, w_t; R) \xrightarrow{\text{proof}} V^*$$

$$\#(\text{transcripts}) \leq 2^{|R|}$$
Exp2: (for each i , w_i or s_i is chosen randomly)
$$P(\hat{x}_1, w_1; R) \text{ or } P(\hat{x}_1, s_1; R) \xrightarrow{\text{proof}} V$$

Toy example (We assume ¬ Witness-independent transcript for all statements & randomness)

Suppose $P(\hat{x}_i, w_i; R)$ and $P(\hat{x}_i, s_i; R)$ generate different transcripts for $\forall \hat{x}_1, \dots, \hat{x}_t \in \hat{L}$ (Recall: $\hat{L} \coloneqq \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$)

Exp1: (for each
$$i$$
, w_i is used)
$$P(\hat{x}_1, w_1; R) \text{ proof}$$

$$\vdots V^*$$

$$P(\hat{x}_t, w_t; R) \text{ proof}$$

$$\#(\text{transcripts}) \leq 2^{|R|}$$

$$Exp2: (for each i , w_i or s_i is chosen randomly)
$$P(\hat{x}_1, w_1; R) \text{ or } P(\hat{x}_1, s_1; R) \text{ proof}$$

$$\vdots V^*$$

$$P(\hat{x}_t, w_t; R) \text{ or } P(\hat{x}_t, s_t; R) \text{ proof}$$

$$\#(\text{transcripts}) \leq 2^{|R|}$$$$

Toy example (We assume ¬ Witness-independent transcript for all statements & randomness)

Suppose $P(\hat{x}_i, w_i; R)$ and $P(\hat{x}_i, s_i; R)$ generate different transcripts for $\forall \hat{x}_1, \dots, \hat{x}_t \in \hat{L}$ (Recall: $\hat{L} := \{(x, r) \mid x \in L \text{ OR } \exists s \text{ s.t. } r = PRG(s)\}$)

Exp1: (for each
$$i$$
, w_i is used)
$$P(\hat{x}_1, w_1; R) \text{ proof}$$

$$\vdots V^*$$

$$P(\hat{x}_t, w_t; R) \text{ proof}$$

$$\#(\text{transcripts}) \leq 2^{|R|}$$

$$Exp2: (for each i , w_i or s_i is chosen randomly)
$$P(\hat{x}_1, w_1; R) \text{ or } P(\hat{x}_1, s_1; R) \text{ proof}$$

$$\vdots V^*$$

$$P(\hat{x}_t, w_t; R) \text{ or } P(\hat{x}_t, s_t; R) \text{ proof}$$

$$\#(\text{transcripts}) \geq 2^t$$$$

When $t \gg |R|$, we have Exp1 $\not\approx$ Exp2