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Background

Threshold cryptography

Goal: Share a secret key among n parties, such that:

Any t + 1 parties can jointly perform some cryptographic operation

An adversary compromising up to t parties cannot

Two components of a threshold cryptosystem:

1 Key distribution, either via a trusted dealer or a distributed key
generation (DKG) protocol

2 Distributed protocol for signing, decrypting, etc.
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Background

Our results

Focus on fully secure DKG in the dlog setting

Define security via an appropriate ideal functionality

Modular: secure DKG protocols can be composed with arbitrary
(secure) threshold protocols
Cleaner; security guarantees more clear

Study the round complexity of fully secure DKG in the
honest-majority setting (assuming synchrony + broadcast)

Lower bound: No one-round protocols (regardless of setup)

Upper bound: Several round-optimal protocols with tradeoffs in terms
of efficiency, setup, and assumptions
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Background

DKG in the dlog setting

Notation

n is the total number of parties

t is an upper bound on the number of corrupted parties

G is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

Common public key y = g x

(t + 1)-out-of-n secret sharinga {σi}ni=1 of the private key x

Common commitments {gσi}ni=1 to the parties’ shares

aAssume Shamir secret sharing, but it could also be n-out-of-n additive sharing
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Background

DKG in the dlog setting

Setup

Parties may have some (correlated) state before protocol execution, e.g.,

CRS

PKI

ROM

Correlated randomness

Ideally, state suffices for an unbounded (polynomial) number of executions
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Defining security

“Full security”

Desired security properties:

Corrupted parties should not learn anything about x (beyond what is
implied by y)

Honest parties should hold a correct sharing of x (and commitments
to other parties’ shares)

Unbiasable: Corrupted parties should be unable to bias y

Robustness (aka guaranteed output delivery): Corrupted parties
should be unable to prevent generation of a key

. . .

Define security via an ideal functionality in a simulation-based framework
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Defining security

Ideal functionalities for (dlog-based) DKG

There are multiple ideal functionalities one could consider for DKG
(see paper for examples and discussion)

Here: (one possible) ideal functionality for fully secure DKG
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Defining security

Ideal functionality for fully secure DKG (cf. [Wik04])

(For simplicity, assume |C| = t)

F t,n
DKG

1 Receive {σi}i∈C from the adversary.

2 Choose x ← Zq and set y := g x .

3 Let f be the polynomial of degree at most t such that f (0) = x
and f (i) = σi for i ∈ C′. Set σi := f (i) for i ∈ [n] \ C′.

4 For i ∈ [n], set yi := gσi . Let Y := (y1, . . . , yn).

5 For i ∈ [n], send (y , σi ,Y ) to Pi .

Impossible to t-securely realize unless t < n/2
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Results

Prior work

Lots of DKG protocols, but very few achieving full security

Most round-efficient (explicit) fully secure DKG protocol:

6 rounds [GJKR07]

Based on generic (honest-majority) MPC [GLS15, G+21, D+21]:

3 rounds with a CRS; 2 rounds with a CRS + PKI

complex / impractical / based on strong cryptographic assumptions

Impossibility results for 1-round MPC with guaranteed output delivery do
not apply here
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Results

Impossibility result

Fully secure DKG is impossible in one round, regardless of prior setup

Even without robustness

Even tolerating only a single corrupted party
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Results

Two-round protocols?

Note we assume a rushing adversary . . .

Natural strategy

Protocol Simulation

1 Parties commit to shares 1 Simulator extracts shares of
corrupted parties

2 Parties decommit their shares 2 Corrupted parties open to
extracted values; (simulated)
honest parties force output to
desired value

Problem: Some corrupted parties can abort in the second round. . .
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Results

Positive results

Intuitively, need protocols with the following property:

Key is determined at the end of the first round (regardless of what
corrupted parties do in the second round), but the adversary cannot
compute it!
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Results

Positive results

Setup Rounds Assumptions

CRS + PKI 2 NIZK + PKE

CRS 2 NIZK + MP-NIKE

ROM +
1-round preprocessing 2 (none)
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CRS 2 NIZK + MP-NIKE

ROM +
1-round preprocessing 2 —

CRS +
2-round preprocessing 1 NIZK + OWF

(See also concurrent work [BHL24])

Fully secure∗ DKG is impossible in one round (regardless of prior setup)

∗ Impossibility only holds for statistically unbiased protocols
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Results

Positive results

Setup Rounds Assumptions

CRS + PKI 2 NIZK + PKE

CRS 2 NIZK + MP-NIKE

ROM +
1-round preprocessing 2 —

CRS +
2-round preprocessing 1 NIZK + OWF

Based on hash functions alone

Very efficient for moderate t, n
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Fully secure DKG

Background: Pseudorandom secret sharing [CDI05]

Notation

Let Sn−t,n be the collection of all subsets of [n] of size n − t

For S ∈ Sn−t,n, let ZS ∈ Zq[X ] be the degree-t polynomial with ZS(0) = 1
and ZS(i) = 0 for i ∈ [n] \ S

Let F : {0, 1}κ × {0, 1}ℓ → Zq be a pseudorandom function

Assume for all S ∈ Sn−t,n and all i ∈ S , party Pi holds kS ∈ {0, 1}κ

Given a nonce N ∈ {0, 1}ℓ, each party Pi can compute the share

σi :=
∑

S∈Sn−t,n : i∈S FkS (N) · ZS(i)

This is a (t + 1)-out-of-n Shamir secret sharing of

xN =
∑

S∈Sn−t,n
FkS (N) · ZS(0) =

∑
S∈Sn−t,n

FkS (N)
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Fully secure DKG

DKG from PRSS

PRSS implies a one-round (semi-honest) DKG protocol:

For each set S ∈ Sn−t,n, a designated party broadcasts ŷS := gFkS
(N)

Parties compute public key y = g xN from the {ŷS}

Problems:

Corrupted party may broadcast incorrect ŷS
Even if multiple parties in S broadcast ŷS , other parties don’t know
which value is correct

PRSS assumes a trusted dealer, which we want to avoid
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Fully secure DKG

A fully secure DKG protocol

A fully secure protocol (high-level):

Round 1: All parties in S broadcast a “deterministic commitment”
to ŷS (i.e., H(ŷS))

If there is disagreement, ignore S
(equivalent to treating FkS (N) = 0, ŷS = 1)

Round 2: Parties reveal ŷS
Incorrect preimages of H(ŷS) ignored

Parties compute public key y = g xN from the {ŷS}

No longer any need for a trusted dealer – a designated party in each set S
can simply distribute kS in a preprocessing phase!

Note: we do not assume correct behavior during preprocessing
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Fully secure DKG

A fully secure DKG protocol

Theorem

Let F be a pseudorandom function, and model H as a random oracle.
Then for t < n/2 this protocol t-securely realizes F t,n

DKG.

A small modification to the protocol achieves adaptive security (assuming
secure erasure)
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Fully secure DKG

Proof intuition

Useful observations:

Every S ∈ Sn−t,n contains at least one honest party

There exists a set SH ∈ Sn−t,n containing only honest parties

Robustness/no bias: Fix some S ∈ Sn−t,n.

If there is disagreement among the {hi ,S}i∈S , then S is excluded

Otherwise, a preimage ŷS for the common value hS will be sent (since
S contains an honest party)

Moreover, at most one preimage will be sent (by collision resistance)

Secrecy: SH is never excluded, so the pseudorandom contribution kSH is
always included in the effective private key
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Conclusions

Open questions

Some of our protocols have complexity O(
(n
t

)
) – can this be

improved?

Some of our protocols rely on preprocessing – can this be avoided?

Is 2-round fully secure DKG in the plain model possible?
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Thank you!

Paper available at https://eprint.iacr.org/2023/1094
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