Round-Optimal, Fully Secure Distributed Key Generation

Jonathan Katz Google and University of Maryland*

Work done while at Dfns Labs

*This work was not part of my UMD duties or responsibilities

Threshold cryptography

Goal: Share a secret key among n parties, such that:

- Any t + 1 parties can jointly perform some cryptographic operation
- An adversary compromising up to t parties cannot

Threshold cryptography

Goal: Share a secret key among n parties, such that:

- Any t + 1 parties can jointly perform some cryptographic operation
- An adversary compromising up to t parties cannot

Two components of a threshold cryptosystem:

- Key distribution, either via a trusted dealer or a distributed key generation (DKG) protocol
- 2 Distributed protocol for signing, decrypting, etc.

- Define security via an appropriate ideal functionality
 - Modular: secure DKG protocols can be composed with arbitrary (secure) threshold protocols
 - Cleaner; security guarantees more clear

- Define security via an appropriate ideal functionality
 - Modular: secure DKG protocols can be composed with arbitrary (secure) threshold protocols
 - Cleaner; security guarantees more clear
- Study the round complexity of fully secure DKG in the honest-majority setting (assuming synchrony + broadcast)

- Define security via an appropriate ideal functionality
 - Modular: secure DKG protocols can be composed with arbitrary (secure) threshold protocols
 - Cleaner; security guarantees more clear
- Study the round complexity of fully secure DKG in the honest-majority setting (assuming synchrony + broadcast)
 - Lower bound: No one-round protocols (regardless of setup)

- Define security via an appropriate ideal functionality
 - Modular: secure DKG protocols can be composed with arbitrary (secure) threshold protocols
 - Cleaner; security guarantees more clear
- Study the round complexity of fully secure DKG in the honest-majority setting (assuming synchrony + broadcast)
 - Lower bound: No one-round protocols (regardless of setup)
 - Upper bound: Several round-optimal protocols with tradeoffs in terms of efficiency, setup, and assumptions

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

• Common public key $y = g^x$

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for *n* parties to generate

- Common public key $y = g^{x}$
- (t+1)-out-of-*n* secret sharing^{*a*} $\{\sigma_i\}_{i=1}^n$ of the private key *x*

Notation

- *n* is the total number of parties
- t is an upper bound on the number of corrupted parties
- \mathbb{G} is a cyclic group of prime order q, with generator g

Goal

Distributed protocol for n parties to generate

- Common public key $y = g^x$
- (t+1)-out-of-*n* secret sharing^a $\{\sigma_i\}_{i=1}^n$ of the private key x
- Common commitments $\{g^{\sigma_i}\}_{i=1}^n$ to the parties' shares

^aAssume Shamir secret sharing, but it could also be *n*-out-of-*n* additive sharing

Setup

Parties may have some (correlated) state before protocol execution, e.g.,

- CRS
- PKI
- ROM
- Correlated randomness

Setup

Parties may have some (correlated) state before protocol execution, e.g.,

- CRS
- PKI
- ROM
- Correlated randomness

Ideally, state suffices for an unbounded (polynomial) number of executions

Desired security properties:

- Corrupted parties should not learn anything about x (beyond what is implied by y)
- Honest parties should hold a correct sharing of x (and commitments to other parties' shares)

Desired security properties:

- Corrupted parties should not learn anything about x (beyond what is implied by y)
- Honest parties should hold a correct sharing of x (and commitments to other parties' shares)
- Unbiasable: Corrupted parties should be unable to bias y

Desired security properties:

- Corrupted parties should not learn anything about x (beyond what is implied by y)
- Honest parties should hold a correct sharing of x (and commitments to other parties' shares)
- Unbiasable: Corrupted parties should be unable to bias y
- Robustness (aka guaranteed output delivery): Corrupted parties should be unable to prevent generation of a key

Desired security properties:

- Corrupted parties should not learn anything about x (beyond what is implied by y)
- Honest parties should hold a correct sharing of x (and commitments to other parties' shares)
- Unbiasable: Corrupted parties should be unable to bias y
- Robustness (aka guaranteed output delivery): Corrupted parties should be unable to prevent generation of a key

∍ ...

Desired security properties:

- Corrupted parties should not learn anything about x (beyond what is implied by y)
- Honest parties should hold a correct sharing of x (and commitments to other parties' shares)
- Unbiasable: Corrupted parties should be unable to bias y
- Robustness (aka guaranteed output delivery): Corrupted parties should be unable to prevent generation of a key

Ο...

Define security via an ideal functionality in a simulation-based framework

Ideal functionalities for (dlog-based) DKG

There are multiple ideal functionalities one could consider for DKG (see paper for examples and discussion)

Here: (one possible) ideal functionality for fully secure DKG

Ideal functionality for fully secure DKG (cf. [Wik04])

(For simplicity, assume $|\mathcal{C}| = t$)

Ideal functionality for fully secure DKG (cf. [Wik04])

(For simplicity, assume $|\mathcal{C}| = t$)

Impossible to *t*-securely realize unless t < n/2

Prior work

Lots of DKG protocols, but very few achieving full security

Most round-efficient (explicit) fully secure DKG protocol:

• 6 rounds [GJKR07]

Based on generic (honest-majority) MPC [GLS15, G+21, D+21]:

- \bullet 3 rounds with a CRS; 2 rounds with a CRS + PKI
 - complex / impractical / based on strong cryptographic assumptions

Prior work

Lots of DKG protocols, but very few achieving full security

Most round-efficient (explicit) fully secure DKG protocol: • 6 rounds [GJKR07]

Based on generic (honest-majority) MPC [GLS15, G+21, D+21]:

- \bullet 3 rounds with a CRS; 2 rounds with a CRS + PKI
 - ${\scriptstyle \bullet }$ complex / impractical / based on strong cryptographic assumptions

Impossibility results for 1-round MPC with guaranteed output delivery do not apply here

Impossibility result

Fully secure DKG is impossible in one round, regardless of prior setup

- Even without robustness
- Even tolerating only a single corrupted party

Two-round protocols?

Two-round protocols?

Note we assume a rushing adversary ...

Natural strategy

Protocol

Parties commit to shares

2 Parties decommit their shares

Simulation

- Simulator extracts shares of corrupted parties
- 2 Corrupted parties open to extracted values; (simulated) honest parties force output to desired value

Two-round protocols?

Note we assume a rushing adversary ...

Natural strategy Protocol

- Parties commit to shares
- 2 Parties decommit their shares

Simulation

- Simulator extracts shares of corrupted parties
- 2 Corrupted parties open to extracted values; (simulated) honest parties force output to desired value

Problem: Some corrupted parties can abort in the second round...

Intuitively, need protocols with the following property:

• Key is determined at the end of the first round (regardless of what corrupted parties do in the second round), but the adversary cannot compute it!

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM +		
1-round preprocessing	2	(none)

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM +		
1-round preprocessing	2	—
CRS +		
2-round preprocessing	1	NIZK + OWF

(See also concurrent work [BHL24])

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM +		
1-round preprocessing	2	—
CRS +		
2-round preprocessing	1	NIZK + OWF

(See also concurrent work [BHL24])

Fully secure* DKG is impossible in one round (regardless of prior setup)

* Impossibility only holds for statistically unbiased protocols

Setup	Rounds	Assumptions
CRS + PKI	2	NIZK + PKE
CRS	2	NIZK + MP-NIKE
ROM +		
1-round preprocessing	2	—
CRS +		
2-round preprocessing	1	NIZK + OWF

Based on hash functions alone

Very efficient for moderate t, n

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S \in S_{n-t,n}$, let $Z_S \in \mathbb{Z}_q[X]$ be the degree-*t* polynomial with $Z_S(0) = 1$ and $Z_S(i) = 0$ for $i \in [n] \setminus S$

Let $F: \{0,1\}^{\kappa} \times \{0,1\}^{\ell} \to \mathbb{Z}_q$ be a pseudorandom function

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S \in S_{n-t,n}$, let $Z_S \in Z_q[X]$ be the degree-*t* polynomial with $Z_S(0) = 1$ and $Z_S(i) = 0$ for $i \in [n] \setminus S$

Let $F: \{0,1\}^{\kappa} \times \{0,1\}^{\ell} \to \mathbb{Z}_q$ be a pseudorandom function

Assume for all $S \in \mathbb{S}_{n-t,n}$ and all $i \in S$, party P_i holds $k_S \in \{0,1\}^{\kappa}$

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S \in S_{n-t,n}$, let $Z_S \in Z_q[X]$ be the degree-*t* polynomial with $Z_S(0) = 1$ and $Z_S(i) = 0$ for $i \in [n] \setminus S$

Let $F: \{0,1\}^{\kappa} \times \{0,1\}^{\ell} \to \mathbb{Z}_q$ be a pseudorandom function

Assume for all $S \in \mathbb{S}_{n-t,n}$ and all $i \in S$, party P_i holds $k_S \in \{0,1\}^{\kappa}$

Given a nonce $N \in \{0,1\}^{\ell}$, each party P_i can compute the share

$$\sigma_i := \sum_{S \in \mathbb{S}_{n-t,n} : i \in S} F_{k_S}(N) \cdot Z_S(i)$$

Notation

Let $\mathbb{S}_{n-t,n}$ be the collection of all subsets of [n] of size n-t

For $S \in S_{n-t,n}$, let $Z_S \in \mathbb{Z}_q[X]$ be the degree-*t* polynomial with $Z_S(0) = 1$ and $Z_S(i) = 0$ for $i \in [n] \setminus S$

Let $F: \{0,1\}^{\kappa} imes \{0,1\}^{\ell} o \mathbb{Z}_q$ be a pseudorandom function

Assume for all $S \in \mathbb{S}_{n-t,n}$ and all $i \in S$, party P_i holds $k_S \in \{0,1\}^{\kappa}$

Given a nonce $N \in \{0,1\}^{\ell}$, each party P_i can compute the share

$$\sigma_i := \sum_{S \in \mathbb{S}_{n-t,n} : i \in S} F_{k_S}(N) \cdot Z_S(i)$$

This is a (t + 1)-out-of-*n* Shamir secret sharing of

$$x_{N} = \sum_{S \in \mathbb{S}_{n-t,n}} F_{k_{S}}(N) \cdot Z_{S}(0) = \sum_{S \in \mathbb{S}_{n-t,n}} F_{k_{S}}(N)$$

DKG from PRSS

PRSS implies a one-round (semi-honest) DKG protocol:

- For each set $S \in \mathbb{S}_{n-t,n}$, a designated party broadcasts $\hat{y}_S := g^{F_{k_S}(N)}$
- Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

DKG from PRSS

PRSS implies a one-round (semi-honest) DKG protocol:

- For each set $S\in\mathbb{S}_{n-t,n}$, a designated party broadcasts $\hat{y}_S:=g^{\mathcal{F}_{k_S}(\mathcal{N})}$
- Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

Problems:

- Corrupted party may broadcast incorrect \hat{y}_S
 - Even if multiple parties in S broadcast \hat{y}_S , other parties don't know which value is correct

DKG from PRSS

PRSS implies a one-round (semi-honest) DKG protocol:

- For each set $S\in\mathbb{S}_{n-t,n}$, a designated party broadcasts $\hat{y}_S:=g^{\mathcal{F}_{k_S}(\mathcal{N})}$
- Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

Problems:

- Corrupted party may broadcast incorrect \hat{y}_S
 - Even if multiple parties in S broadcast \hat{y}_S , other parties don't know which value is correct
- PRSS assumes a trusted dealer, which we want to avoid

A fully secure protocol (high-level):

- Round 1: All parties in S broadcast a "deterministic commitment" to ŷ_S (i.e., H(ŷ_S))
 - If there is disagreement, ignore S (equivalent to treating $F_{k_S}(N) = 0$, $\hat{y}_S = 1$)

A fully secure protocol (high-level):

- Round 1: All parties in S broadcast a "deterministic commitment" to ŷ_S (i.e., H(ŷ_S))
 - If there is disagreement, ignore S (equivalent to treating $F_{k_S}(N) = 0$, $\hat{y}_S = 1$)
- Round 2: Parties reveal \hat{y}_S
 - Incorrect preimages of $H(\hat{y}_S)$ ignored
- Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

A fully secure protocol (high-level):

- Round 1: All parties in S broadcast a "deterministic commitment" to ŷ_S (i.e., H(ŷ_S))
 - If there is disagreement, ignore S (equivalent to treating $F_{k_S}(N) = 0$, $\hat{y}_S = 1$)
- Round 2: Parties reveal \hat{y}_S
 - Incorrect preimages of $H(\hat{y}_S)$ ignored
- Parties compute public key $y = g^{x_N}$ from the $\{\hat{y}_S\}$

No longer any need for a trusted dealer – a designated party in each set S can simply distribute k_S in a preprocessing phase!

Note: we do not assume correct behavior during preprocessing

Theorem

Let F be a pseudorandom function, and model H as a random oracle. Then for t < n/2 this protocol t-securely realizes $\mathcal{F}_{\mathsf{DKG}}^{t,n}$.

A small modification to the protocol achieves adaptive security (assuming secure erasure)

Proof intuition

Useful observations:

- Every $S \in \mathbb{S}_{n-t,n}$ contains at least one honest party
- There exists a set $S_{\mathcal{H}} \in \mathbb{S}_{n-t,n}$ containing only honest parties

Proof intuition

Useful observations:

- Every $S \in \mathbb{S}_{n-t,n}$ contains at least one honest party
- There exists a set $S_{\mathcal{H}} \in \mathbb{S}_{n-t,n}$ containing only honest parties

Robustness/no bias: Fix some $S \in \mathbb{S}_{n-t,n}$.

- If there is disagreement among the $\{h_{i,S}\}_{i\in S}$, then S is excluded
- Otherwise, a preimage ŷ_S for the common value h_S will be sent (since S contains an honest party)
- Moreover, at most one preimage will be sent (by collision resistance)

Proof intuition

Useful observations:

- Every $S \in \mathbb{S}_{n-t,n}$ contains at least one honest party
- There exists a set $S_{\mathcal{H}} \in \mathbb{S}_{n-t,n}$ containing only honest parties

Robustness/no bias: Fix some $S \in \mathbb{S}_{n-t,n}$.

- If there is disagreement among the $\{h_{i,S}\}_{i\in S}$, then S is excluded
- Otherwise, a preimage ŷ_S for the common value h_S will be sent (since S contains an honest party)
- Moreover, at most one preimage will be sent (by collision resistance)

Secrecy: S_H is never excluded, so the pseudorandom contribution k_{S_H} is always included in the effective private key

Open questions

Open questions

- Some of our protocols have complexity $O(\binom{n}{t})$ can this be improved?
- Some of our protocols rely on preprocessing can this be avoided?
- Is 2-round fully secure DKG in the plain model possible?

Thank you!

Paper available at https://eprint.iacr.org/2023/1094