FRIDA Data Availability Sampling from FRI

Mathias Hall-Andersen

Mark Simkin

Benedikt Wagner

Data Availability Sampling from FRI

Data Availability Sampling from FRI

Central For Roadmap

Vague Idea / Concept

Few Constructions

Central For Roadmap

Vague Idea / Concept

Few Constructions

Central For Roadmap

Vague Idea / Concept

Few Constructions

Formal Definitions

New Constructions

Central For Roadmap

Vague Idea / Concept

Few Constructions

New Constructions

Foundations of Data Availability Sampling

Mathias Hall-Andersen*1 Mark Simkin 2 Benedikt Wagner $^{\dagger \ 3,4}$ July 11, 2023

¹ Aarhus University

ma@cs.au.dk

² Ethereum Foundation

mark.simkin@ethereum.org

³ CISPA Helmholtz Center for Information Security

benedikt.wagner@cispa.de

⁴ Saarland University

Abstract

Towards building more scalable blockchains, an approach known as data availability sampling (DAS) has emerged over the past few years. Even large blockchains like Ethereum are planning to eventually deploy DAS to improve their scalability. In a nutshell, DAS allows the participants of a network to ensure the full availability of some data without any one participant downloading it entirely. Despite the significant practical interest that DAS has received, there are currently no formal definitions for this primitive, no security notions, and no security proofs for any candidate constructions. For a cryptographic primitive that may end up being widely deployed in large real-world systems, this is a rather unsatisfactory state of affairs.

In this work, we initiate a cryptographic study of data availability sampling. To this end, we define data availability sampling precisely as a clean cryptographic primitive. Then, we show how data availability sampling relates to erasure codes. We do so by defining a new type of commitment schemes which naturally generalizes vector commitments and polynomial commitments. Using our

define data availability sampling precisely as a clean cryptographic primitive. Then, we show how data availability sampling relates to erasure codes. We do so by defining a new type of commitment schemes which naturally generalizes vector commitments and polynomial commitments. Using our

ystems, this is a rather unsatisfactory state of affairs.

In this work, we initiate a cryptographic study of data availability sampling. To this end, we

constructions. For a cryptographic primitive that may end up being widely deployed in large real-world

Foundations of Data Availability Sampling

Mathias Hall-Andersen*1 Mark Simkin 2 Benedikt Wagner† 3,4 July 11, 2023

Aarhus University

ma@cs.au.dk

Ethereum Foundation

mark.simkin@ethereum.org

CISPA Helmholtz Center for Information Security

benedikt.wagner@cispa.de

Agarland University

Abstract

Towards building more scalable blockchains, an approach known as data availability sampling (DAS) has emerged over the past few years. Even large blockchains like Ethereum are planning to eventually deploy DAS to improve their scalability. In a nutshell, DAS allows the participants of a network to ensure the full availability of some data without any one participant downloading it entirely. Despite the significant practical interest that DAS has received, there are currently no formal definitions for this primitive, no security notions, and no security proofs for any candidate constructions. For a cryptographic primitive that may end up being widely deployed in large real-world systems, this is a rather unsatisfactory state of affairs.

In this work, we initiate a cryptographic study of data availability sampling. To this end, we define data availability sampling precisely as a clean cryptographic primitive. Then, we show how data availability sampling relates to erasure codes. We do so by defining a new type of commitment schemes which naturally generalizes vector commitments and polynomial commitments. Using our

define data availability sampling precisely as a clean cryptographic primitive. Then, we show how data availability sampling relates to erasure codes. We do so by defining a new type of commitment schemes which naturally generalizes vector commitments and polynomial commitments. Using our

c study of data availability sampling. To this end, we

hat may end up being widely deployed in large real-world

Definitions

Foundations of Data Availability Sampling

Mathias Hall-Andersen*1 Mark Simkin ² Benedikt Wagner^{† 3,4}

July 11, 2023

Aarhus University

ma@cs.au.dk

Ethereum Foundation

mark.simkin@ethereum.org

CISPA Helmholtz Center for Information Security

benedikt.wagner@cispa.de

Agarland University

Abstract

Towards building more scalable blockchains, an approach known as data availability sampling (DAS) has emerged over the past few years. Even large blockchains like Ethereum are planning to eventually deploy DAS to improve their scalability. In a nutshell, DAS allows the participants of a network to ensure the full availability of some data without any one participant downloading it entirely. Despite the significant practical interest that DAS has received, there are currently no formal definitions for this primitive, no security notions, and no security proofs for any candidate constructions. For a cryptographic primitive that may end up being widely deployed in large real-world systems, this is a rather unsatisfactory state of affairs.

In this work, we initiate a cryptographic study of data availability sampling. To this end, we define data availability sampling precisely as a clean cryptographic primitive. Then, we show how data availability sampling relates to erasure codes. We do so by defining a new type of commitment schemes which naturally generalizes vector commitments and polynomial commitments. Using our

define data availability sampling precisely as a clean cryptographic primitive. Then, we show how data availability sampling relates to erasure codes. We do so by defining a new type of commitment schemes which naturally generalizes vector commitments and polynomial commitments. Using our

Definitions

Constructions

Foundations of Data Availability Sampling

Mathias Hall-Andersen*1 Mark Simkin 2 Benedikt Wagner $^{\dagger \ 3,4}$ July 11, 2023

¹ Aarhus University

ma@cs.au.dk

² Ethereum Foundation

mark.simkin@ethereum.org

³ CISPA Helmholtz Center for Information Security

benedikt.wagner@cispa.de

⁴ Saarland University

Abstract

Towards building more scalable blockchains, an approach known as data availability sampling (DAS) has emerged over the past few years. Even large blockchains like Ethereum are planning to eventually deploy DAS to improve their scalability. In a nutshell, DAS allows the participants of a network to ensure the full availability of some data without any one participant downloading it entirely. Despite the significant practical interest that DAS has received, there are currently no formal definitions for this primitive, no security notions, and no security proofs for any candidate constructions. For a cryptographic primitive that may end up being widely deployed in large real-world systems, this is a rather unsatisfactory state of affairs.

In this work, we initiate a cryptographic study of data availability sampling. To this end, we define data availability sampling precisely as a clean cryptographic primitive. Then, we show how data availability sampling relates to erasure codes. We do so by defining a new type of commitment schemes which naturally generalizes vector commitments and polynomial commitments. Using our

define data availability sampling precisely as a clean cryptographic primitive. Then, we show how data availability sampling relates to erasure codes. We do so by defining a new type of commitment schemes which naturally generalizes vector commitments and polynomial commitments. Using our

Long Talk

YouTube

Definitions

Constructions

Is data available?

Is data available?

Naively

root

Data Availability Sampling Naively data₁ $data_k$ $data_k$ data₁ Merkle Tree datai datai path, root root root

Bad Soundness

Using Erasure Codes

root

Using Erasure Codes

Using Erasure Codes

Better Soundness

Using Erasure Codes - Inconsistency

 $data_2$

Data Availability Sampling Using Erasure Codes - Inconsistency data₁ data₂ Merkle Tree root root root

Inconsistency

data₁

data₂

Erasure Code Commitment

Always Consistent with a Codeword

Always Consistent with a Codeword

with a Codeword

Erasure Code Commitments / DAS

D: size of data

 λ : security parameter

Erasure Code Commitments / DAS

D: size of data

 λ : security parameter

Erasure Code Commitments / DAS

D: size of data

 λ : security parameter

Erasure Code Commitments / DAS

D: size of data

 λ : security parameter

Hash-Based with Polylog Overhead?

Data Availability Sampling from FRI

Data Availability Sampling from FRI

FRI = Fast Reed-Solomon IOPP

IOPPs vs Erasure Code Commitments

IOPPs vs Erasure Code Commitments

IOPPs vs Erasure Code Commitments

IOPPs vs Erasure Code Commitments

Erasure Code
Commitments

Few Red Positions

IOPPs vs Erasure Code Commitments

Erasure Code
Commitments

Few Red Positions

Can't Open Red Positions

IOPPs to Erasure Code Commitments

IOPPs to Erasure Code Commitments

IOPPs to Erasure Code Commitments

IOPP with Opening-Consistency

IOPPs to Erasure Code Commitments

FRI

IOPP with Opening-Consistency

Efficiency of FRIDA

D: size of data

 λ : security parameter

Efficiency of FRIDA

D: size of data

 λ : security parameter

Trusted Setup

Commitment $\Theta(\lambda)$ Openings $\Theta(\lambda)$

Efficiency of FRIDA

D: size of data

 λ : security parameter

Trusted Setup

Commitment $\Theta(\lambda)$

Openings $\Theta(\lambda)$

Hash-Based

Commitment $\Theta(\lambda \sqrt{D})$

Openings $\Theta(\sqrt{D})$

FRIDA - Commitment from FRI

Commitment $\Theta(\lambda^2 \log^2 D)$

Openings $\Theta(\lambda \log^2 D)$

DAS and Erasure Code Commitments

DAS and Erasure Code Commitments

DAS from FRI

DAS and Erasure Code Commitments

DAS from FRI

No Trusted Setup

DAS and Erasure Code Commitments

DAS from FRI

No Trusted Setup

Polylog Overhead

DAS and Erasure Code Commitments

DAS from FRI

No Trusted Setup

Polylog Overhead

Compiler from IOPP

DAS and Erasure Code Commitments

DAS from FRI

No Trusted Setup

Polylog Overhead

Compiler from IOPP

Opening-Consistency

DAS and Erasure Code Commitments

DAS from FRI

No Trusted Setup

Polylog Overhead

Compiler from IOPP

Opening-Consistency

Better IOPPs with Opening-Consistency

Mathias Hall-Andersen

Mark Simkin

Benedikt Wagner

FRIDA: Data Availability Sampling from FRI

Mathias Hall-Andersen*1 Mark Simkin ² Benedikt Wagner^{† 3,4} February 15, 2024

¹ Aarhus University

ma@cs.au.dk

² Ethereum Foundation

mark.simkin@ethereum.org

³ CISPA Helmholtz Center for Information Security

benedikt.wagner@cispa.de

⁴ Saarland University

Abstract

As blockchains like Ethereum continue to grow, clients with limited resources can no longer store the entire chain. Light nodes that want to use the blockchain, without verifying that it is in a good state overall, can just download the block headers without the corresponding block contents. As those light nodes may eventually need some of the block contents, they would like to ensure that they are in principle available.

Data availability sampling, introduced by Bassam et al., is a process that allows light nodes to check the availability of data without download it. In a recent effort, Hall-Andersen, Simkin, and Wagner have introduced formal definitions and analyzed several constructions. While their work thoroughly lays the formal foundations for data availability sampling, the constructions are either prohibitively expensive, use a trusted setup, or have a download complexity for light clients scales

eprint: 2024/248

Erasure Code Commitments

Position-Binding

Code-Binding

Erasure Code Commitments

Position-Binding

Code-Binding

Erasure Code Commitments

Position-Binding

Code-Binding

Erasure Code Commitments

No two distinct openings for same position

Erasure Code Commitments

No two distinct openings for same position

Erasure Code Commitments

No two distinct openings for same position

Erasure Code Commitments

No two distinct openings for same position

Always consistent with at least one codeword