
Advancing Scalability in Decentralized Storage:

a Novel Approach to Proof-of-Replication via
Polynomial Evaluation

Giuseppe Ateniese , Foteini Baldimtsi ,

Matteo Campanelli , Danilo Francati , Ioanna Karantaidou

1 1

2 1 1

Crypto ‘24

George Mason University, Matter Labs1 2

Proof of Space (PoS)

commit

ProverVerifier

Commit: I dedicate
1GB of storage space

challenge

proof

Proof of Space (PoS)

commit

ProverVerifier

Commit: I dedicate
1GB of storage space

challenge

proof

(eco-friendly) Alternative to Proof-of-Work

Applications: spam prevention, DDoS attack resistance, Sybil-resistant blockchain consensus

Proof of Space (PoS)

commit

ProverVerifier

Commit: I dedicate
1GB of storage space

challenge

proof

(eco-friendly) Alternative to Proof-of-Work

Applications: spam prevention, DDoS attack resistance, Sybil-resistant blockchain consensus

no specific/useful data are
being stored by the prover

Proof of Replication (PoRep)

Prover

Verifier

Commit: I dedicate 1GB of
storage space where I

store the data D

Setup
Phase

commit

data D preprocessing

Proof of Replication (PoRep)

Prover

Verifier

Commit: I dedicate 1GB of
storage space where I

store the data D

challenge

proof

Setup
Phase

commit

data D preprocessing

Audit
Phase

Proof of Replication (PoRep)

Prover

Verifier

Commit: I dedicate 1GB of
storage space where I

store the data D

challenge

proof

Setup
Phase

commit

data D

No waste of the dedicated space!

PoRep guarantees that the prover is dedicating unique storage resources per replica of the data

decentralized and verifiable file storage

preprocessing

Audit
Phase

Proof of Replication (PoRep)

Prover

Verifier

Commit: I dedicate 1GB of
storage space where I

store the data D

challenge

proof

Setup
Phase

commit

data D

No waste of the dedicated space!

PoRep guarantees that the prover is dedicating unique storage resources per replica of the data

decentralized and verifiable file storage

preprocessing

Audit
Phase

“Filecoin (FIL) is an open-source, public cryptocurrency and
digital payment system intended to be a blockchain-based cooperative
digital storage and data retrieval method.”	 	 [wikipedia]

PoRep Definition

preprocessing

audit phase

PoRep Definition

preprocessing

audit phase

PoRep Definition

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

public keys

Publish h

preprocessing

audit phase

PoRep Definition

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

• Prove(pk, challenge, c)  π

public keys

Publish h

preprocessing

audit phase

PoRep Definition

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

• Prove(pk, challenge, c)  π

• Verify(vk,h,π)  0/1

public keys

Publish h

preprocessing

audit phase

PoRep Definition

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

• Prove(pk, challenge, c)  π

• Verify(vk,h,π)  0/1

• Decode(ek,id,c)  m

public keys

Publish h

preprocessing

audit phase

PoRep Definition

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

• Prove(pk, challenge, c)  π

• Verify(vk,h,π)  0/1

• Decode(ek,id,c)  m

public keys

Publish h

Properties: encoding correctness, proof completeness, replication and extraction

Proof of Replication (PoRep)

Proof of Storage
PoS

Proof of Data Possession
PDP

Proof of Retrievability
PoR

Proof of Replication (PoRep)

Proof of Storage
PoS

Proof of Data Possession
PDP

Proof of Retrievability
PoR

Memory usage The data/file is stored Data/file can be retrieved
File size n then

memory usage is n
Even if file is compressible

In some settings, messages might be highly
compressible, i.e. m=(Fk(1), Fk(2),…). There,
a prover could avoid storing m and generate
as needed when challenged.

Slow Encode()

Run time of computing proof <
run time of Encode()

PoRep Definition

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

• Prove(pk, challenge, c)  π

• Verify(vk,h,π)  0/1

• Decode(ek,id,c)  m

public keys

Publish h

Properties: encoding correctness, proof completeness, replication and extraction

Prover

Verifier

Setup
Phase

preprocessing

Proof of Replication (PoRep) – [Fisch’18]

Prover

Verifier

Setup
Phase

data D preprocessing

Proof of Replication (PoRep) – [Fisch’18]

Prover

Verifier

Setup
Phase

data D preprocessing

Proof of Replication (PoRep) – [Fisch’18]

Depth Robust Graphs (DRGs)

ci : data encodings

xor D

Prover

Verifier

Setup
Phase commit to the DRG (MT on last layer)

data D preprocessing

Proof of Replication (PoRep) – [Fisch’18]

Depth Robust Graphs (DRGs)

ci : data encodings

xor D

Prover

Verifier

challenge on a subset of Ci’s

proofs (MT openings)

Setup
Phase commit to the DRG (MT on last layer)

data D preprocessing

Audit
Phase

Proof of Replication (PoRep) – [Fisch’18]

Depth Robust Graphs (DRGs)

ci : data encodings

xor D

Prover

Verifier

challenge on a subset of Ci’s

proofs (MT openings)

Setup
Phase commit to the DRG (MT on last layer)

data D preprocessing

Audit
Phase

Proof of Replication (PoRep) – [Fisch’18]

The auditing phase is probabilistic – a large set of challenges is needed to get
a good level of security.

Depth Robust Graphs (DRGs)

ci : data encodings

xor D

File of n blocks - > Memory usage is n(1-) where is constantϵ ϵ

Proof of Replication (PoRep) – [Fisch’18]

Depth Robust Graphs (DRGs)

ci : data encodings

Depth Robust Graphs (DRGs)

ci : data encodings

Depth Robust Graphs (DRGs)

ci : data encodings

xor D_3xor D_2xor D_1

Proof of Replication (PoRep) – [Fisch’18]

Depth Robust Graphs (DRGs)

ci : data encodings

u file of n blocks - > Memory usage is u*n(1-) where is constant.ϵ ϵ
Depth Robust Graphs (DRGs)

ci : data encodings

Depth Robust Graphs (DRGs)

ci : data encodings

xor D_3xor D_2xor D_1

Proof of Replication (PoRep) – [Fisch’18]

Depth Robust Graphs (DRGs)

ci : data encodings

u file of n blocks - > Memory usage is u*n(1-) where is constant.ϵ ϵ
Depth Robust Graphs (DRGs)

ci : data encodings

Depth Robust Graphs (DRGs)

ci : data encodings

Loss scales with u (the number of files stored), i.e., loss is u*n*ϵ
The problem is the probabilistic check on the last layer (the encoding)

xor D_3xor D_2xor D_1

Proof of Replication (PoRep) – [Fisch’18]

Depth Robust Graphs (DRGs)

ci : data encodings

u file of n blocks - > Memory usage is u*n(1-) where is constant.ϵ ϵ
Depth Robust Graphs (DRGs)

ci : data encodings

Depth Robust Graphs (DRGs)

ci : data encodings

Loss scales with u (the number of files stored), i.e., loss is u*n*ϵ
The problem is the probabilistic check on the last layer (the encoding)

Remove the loss proportional to u -> Scales the challenges proportional to u

xor D_3xor D_2xor D_1

Our work

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

public keys

• Prove(pk, challenge, c)  π

• Verify(vk,h,π)  0/1

• Decode(ek,c)  m

preprocessing

Publish h

audit phase

Properties: encoding correctness, proof completeness, replication and extraction

Our work

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

public keys

• Prove(pk, challenge, c)  π

• Verify(vk,h,π)  0/1

• Decode(ek,c)  m

preprocessing

Publish h

audit phase

Properties: encoding correctness, proof completeness, replication and extraction

In this work we assume the
encoding is honestly executed

(i.e., digest h is honest).
Worst case: Use a SNARK to

verify h

Our work

• Setup(1λ,1t,1n)  ek,pk,vk

• Encode(m,ek,id)  encoding c and digest h

public keys

• Prove(pk, challenge, c)  π

• Verify(vk,h,π)  0/1

• Decode(ek,c)  m

preprocessing

Publish h

audit phaseOur focus is to reduce
complexity and

increase security of this
phase

Properties: encoding correctness, proof completeness, replication and extraction

In this work we assume the
encoding is honestly executed

(i.e., digest h is honest).
Worst case: Use a SNARK to

verify h

Our construction

Polynomial Evaluation

degree d polynomial

Polynomial Evaluation

degree d polynomial

random x

f(x)

Polynomial Evaluation

degree d polynomial

random x

f(x)

space
requirements?

Incompressibility of Random Polynomials

randomly sampled
polynomial of degree d

The goal: evaluating f(X) should require memory close to |f(X)|

Incompressibility of Random Polynomials

randomly sampled
polynomial of degree d

The goal: evaluating f(X) should require memory close to |f(X)|

• pre-processes f(X) to compute a memory α smaller than |f(X)|
• shouldn’t be possible to evaluate f(x) on a random point x, unless |α| ≈ |f(Χ)|

Incompressibility of Random Polynomials

randomly sampled
polynomial of degree d

The goal: evaluating f(X) should require memory close to |f(X)|

• pre-processes f(X) to compute a memory α smaller than |f(X)|
• shouldn’t be possible to evaluate f(x) on a random point x, unless |α| ≈ |f(Χ)|

[ACFPT’23]: |α| ≈ |f(X)| − d*|x|

Multiple polynomials?

random x

f_1(x)

1 u

f_u(x)…

…

Multiple polynomials?

random x

f_1(x)

1 u

f_u(x)…

[ACFPT’23]: |α| ≈ |f(X)| − d*|x|
single polynomial

…

Multiple polynomials?

random x

f_1(x)

1 u

f_u(x)…

[ACFPT’23]: |α| ≈ |f(X)| − d*|x|
single polynomial multiple polynomials

|α| ≈ u*|f(X)| − d*|x|

…

Prover

Verifier

Setup
Phase Commit on ???

data D

preprocessingPartial construction

…

Prover

Verifier

Setup
Phase Commit on ???

data D

preprocessingPartial construction

…

xor D_1=
 f_1(X)

xor D_u =
 f_u(X)

Prover

Verifier

x

f_1(x), …, f_u(x)

Setup
Phase Commit on ???

data D

preprocessing

Audit
Phase

Partial construction

…

xor D_1=
 f_1(X)

xor D_u =
 f_u(X)

Prover

Verifier

x

f_1(x), …, f_u(x)

Setup
Phase Commit on ???

data D

preprocessing

Audit
Phase

Partial construction

…

xor D_1=
 f_1(X)

xor D_u =
 f_u(X)Memory usage: u*|f(x)| - d*|x| u*|f(x)| for large values of u ≈

Prover

Verifier

x

f_1(x), …, f_u(x)

Setup
Phase Commit on ???

data D

preprocessing

Audit
Phase

Partial construction

…

xor D_1=
 f_1(X)

xor D_u =
 f_u(X)

Prover needs to read f_1(X), … f_u(X) entirely - Problem for efficiency

How verify that f_1(x), … f_u(x) are correct evaluations (efficiently)?

Memory usage: u*|f(x)| - d*|x| u*|f(x)| for large values of u ≈

Poly-logarithmic prover’s running time
Kedlaya and Uman 2011: “Fast polynomial factorization and modular composition”

Prover

…

Poly-logarithmic prover’s running time
Kedlaya and Uman 2011: “Fast polynomial factorization and modular composition”

uses a RAM data structure to expedite
polynomial evaluations

(computes f(x) in poly-log time in d)

Prover

…

Poly-logarithmic prover’s running time
Kedlaya and Uman 2011: “Fast polynomial factorization and modular composition”

uses a RAM data structure to expedite
polynomial evaluations

(computes f(x) in poly-log time in d)

Prover

…

xor D_1= f_1(X)

xor D_u = f_u(X)

-> Compute data structure D_1

-> Compute data structure D_u

Poly-logarithmic prover’s running time
Kedlaya and Uman 2011: “Fast polynomial factorization and modular composition”

uses a RAM data structure to expedite
polynomial evaluations

(computes f(x) in poly-log time in d)

Prover

…

xor D_1= f_1(X)

xor D_u = f_u(X)

-> Compute data structure D_1

-> Compute data structure D_u

f_i(X) can be evaluated in time
polylog(d)

Prover

Verifier

x

f_1(x), …, f_u(x)

Setup
Phase Commit ???

data D

preprocessing

Audit
Phase

Partial construction

…

Prover needs to read f_1(X), … f_u(X) entirely - Problem for efficiency

How verify that f_1(x), … f_u(x) are correct evaluations?

Memory usage: u*|f(x)| - d*|x| u*|f(x)| for large values of u ≈

xor D_1=
 f_1(X)

xor D_u =
 f_u(X)

Prover

Verifier

x

f_1(x), …, f_u(x)

Setup
Phase Commit ???

data D

preprocessing

Audit
Phase

Partial construction

…

Prover needs to read f_1(X), … f_u(X) entirely - Problem for efficiency

How verify that f_1(x), … f_u(x) are correct evaluations?

Memory usage: u*|f(x)| - d*|x| u*|f(x)| for large values of u ≈

xor D_1=
 f_1(X)

xor D_u =
 f_u(X)

Poly-log verification

Let’s use SNARKs!

x

(fi(x),πi)

Compute fi(x)

SNARK πi

“fi(x) was honestly
computed using the

data structure D”

Poly-log verification

Let’s use SNARKs!

x

(fi(x),πi)

Compute fi(x)

SNARK πi

“fi(x) was honestly
computed using the

data structure D”

prover time becomes
linear to D

Poly-log verification
What if the verifier also computes f(x)?

Poly-log verification
What if the verifier also computes f(x)?

no access to D!

Poly-log verification
What if the verifier also computes f(x)?

Prover only needs to access a poly-log number of blocks D ′ ⊂ D

no access to D!

Poly-log verification
What if the verifier also computes f(x)?

Prover only needs to access a poly-log number of blocks D ′ ⊂ D

no access to D!

preprocessing

Poly-log verification
What if the verifier also computes f(x)?

Prover only needs to access a poly-log number of blocks D ′ ⊂ D

no access to D!

D

preprocessing

Poly-log verification
What if the verifier also computes f(x)?

Prover only needs to access a poly-log number of blocks D ′ ⊂ D

no access to D!

D
Merkle
Tree

h

preprocessing

Poly-log verification
What if the verifier also computes f(x)?

Prover only needs to access a poly-log number of blocks D ′ ⊂ D

no access to D!

D
Merkle
Tree

h

preprocessing

x
Audit phase

Poly-log verification
What if the verifier also computes f(x)?

Compute f(x)
from D.
Let D’ the blocks
read.

Prover only needs to access a poly-log number of blocks D ′ ⊂ D

no access to D!

D
Merkle
Tree

h

preprocessing

x
Audit phase

Poly-log verification
What if the verifier also computes f(x)?

f(x),
blocks D’ + corresponding set of MT openings

Compute f(x)
from D.
Let D’ the blocks
read.

Prover only needs to access a poly-log number of blocks D ′ ⊂ D

no access to D!

D
Merkle
Tree

h

preprocessing

x
Audit phase

Poly-log verification
What if the verifier also computes f(x)?

f(x),
blocks D’ + corresponding set of MT openings

Compute f(x)
from D.
Let D’ the blocks
read.

Prover only needs to access a poly-log number of blocks D ′ ⊂ D

no access to D!

D
Merkle
Tree

h

• check proofs
• compute y from D’
• check y ?= f(x)

poly-log verification

preprocessing

x
Audit phase

Prover

Verifier

Final Construction (Example: 1 File)

Setup
Phase

data D

Prover

Verifier

Final Construction (Example: 1 File)

Setup
Phase

data D

Prover

Verifier

Final Construction (Example: 1 File) preprocessing

Setup
Phase

data D

Prover

Verifier

Final Construction (Example: 1 File) preprocessing

xor D =
 f(X)

Setup
Phase

data D

Prover

Verifier

Final Construction (Example: 1 File) preprocessing

xor D =
 f(X)

Compute from f(X)
data structure D

Setup
Phase

data D

Prover

Verifier

Final Construction (Example: 1 File) preprocessing

xor D =
 f(X)

Compute from f(X)
data structure D

Merkle-tree on D’s
blocks

Setup
Phase

data D

Prover

Verifier

Publish merle-tree root h (digest)

Final Construction (Example: 1 File) preprocessing

xor D =
 f(X)

Compute from f(X)
data structure D

Merkle-tree on D’s
blocks

Setup
Phase

data D

Prover

Verifier

Publish merle-tree root h (digest)

xAudit
Phase

Final Construction (Example: 1 File) preprocessing

xor D =
 f(X)

Compute from f(X)
data structure D

Merkle-tree on D’s
blocks

Setup
Phase

data D

Prover

Verifier

 = (f(x), blocks D’, merle-tree openings)π

Publish merle-tree root h (digest)

xAudit
Phase

Final Construction (Example: 1 File) preprocessing

xor D =
 f(X)

Compute from f(X)
data structure D

Merkle-tree on D’s
blocks

Setup
Phase

data D

Prover

Verifier

 = (f(x), blocks D’, merle-tree openings)π

Publish merle-tree root h (digest)

xAudit
Phase

Final Construction (Example: 1 File) preprocessing

xor D =
 f(X)

Compute from f(X)
data structure D

Merkle-tree on D’s
blocks

• check proofs
• compute y from D’
• check y ?= f(x)

Setup
Phase

data D

Prover

Verifier

 = (f(x), blocks D’, merle-tree openings)π

Publish merle-tree root h (digest)

xAudit
Phase

Final Construction (Example: 1 File) preprocessing

xor D =
 f(X)

Compute from f(X)
data structure D

Merkle-tree on D’s
blocks

• check proofs
• compute y from D’
• check y ?= f(x)

Memory usage u*|f(X)| for large
number of files

≈ Efficient proving and verification time

Absolute memory usage

[Fisch’18]

Ours

Absolute memory usage

[Fisch’18]

Ours
Files sizes u ⋅ n

Files sizes u ⋅ n

Absolute memory usage

[Fisch’18]

Ours
Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Absolute memory usage

[Fisch’18]

Ours
Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Absolute memory usage

[Fisch’18]

Ours

Larger

Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Absolute memory usage

[Fisch’18]

Ours

Larger

Smaller

Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Limitation = Space gap

[Fisch’18]

Ours
Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Limitation = Space gap

[Fisch’18]

Ours
Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Honest
memory usage

u ⋅ n

Limitation = Space gap

[Fisch’18]

Ours
Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Honest
memory usage

δ n ⋅ u ⋅ n

Honest
memory usage

u ⋅ n

Limitation = Space gap

[Fisch’18]

Ours
Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Honest
memory usage

δ n ⋅ u ⋅ n

Honest
memory usage

u ⋅ n

Smaller Space gap

Limitation = Space gap

[Fisch’18]

Ours
Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Honest
memory usage

δ n ⋅ u ⋅ n

Honest
memory usage

u ⋅ n

Smaller Space gap

Larger Space gap

Limitation = Space gap

[Fisch’18]

Ours

Smaller Space gap

Keep efficiency and high (absolute) memory usage while minimising space gap
OPEN PROBLEM

Files sizes u ⋅ n

Files sizes u ⋅ nAdv’s
memory usage
u ⋅ n(1 − ϵ)

Adv’s
memory usage

≈ u ⋅ n

Honest
memory usage

u ⋅ n

Larger Space gap

Honest
memory usage

δ n ⋅ u ⋅ n

THANK YOU!

