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“Filecoin (FIL) is an open-source, public cryptocurrency and 
digital payment system intended to be a blockchain-based cooperative 
digital storage and data retrieval method.”	 	 [wikipedia]
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Memory usage The data/file is stored Data/file can be retrieved 
File size n then 

memory usage is n
Even if file is compressible



In some settings, messages might be highly 
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Depth Robust Graphs (DRGs)

ci : data encodings

u file of n blocks - > Memory usage is u*n(1- ) where  is constant.ϵ ϵ
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ci : data encodings

Depth Robust Graphs (DRGs)

ci : data encodings

Loss scales with u (the number of files stored), i.e., loss is u*n*ϵ
The problem is the probabilistic check on the last layer (the encoding) 

Remove the loss proportional to u -> Scales the challenges proportional to u

xor D_3xor D_2xor D_1
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• Encode(m,ek,id)  encoding c and digest h

public keys

• Prove(pk, challenge, c)  π 

• Verify(vk,h,π)  0/1 

• Decode(ek,c)  m

preprocessing

Publish h

audit phaseOur focus is to reduce 
complexity and 

increase security of this 
phase

Properties: encoding correctness, proof completeness, replication and extraction 

In this work we assume the 
encoding is honestly executed 

(i.e., digest h is honest). 
Worst case: Use a SNARK to 

verify h
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• pre-processes f(X) to compute a memory α smaller than |f(X)| 
• shouldn’t be possible to evaluate f(x) on a random point x, unless |α| ≈ |f(Χ)|

[ACFPT’23]: |α| ≈ |f(X)| − d*|x|
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f_u(x)…

[ACFPT’23]: |α| ≈ |f(X)| − d*|x|
single polynomial multiple polynomials

|α| ≈ u*|f(X)| − d*|x|
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Poly-logarithmic prover’s running time
Kedlaya and Uman 2011: “Fast polynomial factorization and modular composition”

uses a RAM data structure to expedite 
polynomial evaluations  

(computes f(x) in poly-log time in d)

Prover

…

xor D_1= f_1(X)

xor D_u = f_u(X)

-> Compute data structure D_1

-> Compute data structure D_u

f_i(X) can be evaluated in time 
polylog(d)
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x

(fi(x),πi)

Compute fi(x)

SNARK πi

“fi(x) was honestly 
computed using the 

data structure D”

prover time becomes 
linear to D
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f(x),  
blocks D’ + corresponding set of MT openings
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from D.  
Let D’ the blocks 
read.

Prover only needs to access a poly-log number of blocks D ′ ⊂ D 

no access to D!
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• check proofs 
• compute y from D’ 
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Verifier

 = (f(x), blocks D’, merle-tree openings)π

Publish merle-tree root h (digest)

xAudit 
Phase

Final Construction (Example: 1 File) preprocessing

xor D = 
      f(X)

Compute from f(X)  
data structure D

Merkle-tree on D’s 
blocks 

• check proofs 
• compute y from D’ 
• check y  ?= f(x)

Memory usage  u*|f(X)| for large 
number of files

≈ Efficient proving and verification time
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Ours

Smaller Space gap

Keep efficiency and high (absolute) memory usage while minimising space gap
OPEN PROBLEM
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