Advancing Scalability in Decentralized Storage: a Novel Approach to Proof-of-Replication via Polynomial Evaluation

Giuseppe Ateniese¹, Foteini Baldimtsi¹, Matteo Campanelli², **Danilo Francati**¹, Ioanna Karantaidou¹

¹George Mason University, ²Matter Labs

Proof of Space (PoS)

Commit: I dedicate 1GB of storage space

Proof of Space (PoS)

(eco-friendly) Alternative to Proof-of-Work

Applications: spam prevention, DDoS attack resistance, Sybil-resistant blockchain consensus

Proof of Space (PoS)

(eco-friendly) Alternative to Proof-of-Work

Applications: spam prevention, DDoS attack resistance, Sybil-resistant blockchain consensus

Commit: I storage store

Commit: I dedicate 1GB of storage space where I store **the data D**

Commit: I dedicate 1GB of storage space where I store **the data D**

111

Prover

No waste of the dedicated space!

PoRep guarantees that the prover is dedicating unique storage resources per replica of the data

decentralized and verifiable file storage

No waste of the dedicated space!

PoRep guarantees that the prover is dedicating unique storage resources per replica of the data

decentralized and verifiable file storage

"Filecoin (FIL) is an open-source, public cryptocurrency and digital payment system intended to be a blockchain-based cooperative digital storage and data retrieval method."

preprocessing

public keys

• Setup $(1^{\lambda}, 1^{t}, 1^{n}) \rightarrow ek, pk, vk$

• Encode(m,ek,id) \rightarrow encoding c and digest h

Publish h

preprocessing

public keys

• Setup $(1^{\lambda}, 1^{t}, 1^{n}) \rightarrow ek, pk, vk$

• Encode(m,ek,id) \rightarrow encoding c and digest h

Publish h

• Prove(pk, challenge, c) $\rightarrow \pi$

preprocessing

public keys

• Setup $(1^{\lambda}, 1^{t}, 1^{n}) \rightarrow ek, pk, vk$

• Encode(m,ek,id) \rightarrow encoding c and digest h

Publish h

- Prove(pk, challenge, c) $\rightarrow \pi$
- Verify(vk,h, π) \rightarrow 0/1

preprocessing

public keys

• Setup $(1^{\lambda}, 1^{t}, 1^{n}) \rightarrow ek, pk, vk$

• Encode(m,ek,id) \rightarrow encoding c and digest h

Publish h

- Prove(pk, challenge, c) $\rightarrow \pi$
- Verify(vk,h, π) \rightarrow 0/1
- Decode(ek,id,c) → m

preprocessing

public keys

- Setup $(1^{\lambda}, 1^{t}, 1^{n}) \rightarrow ek, pk, vk$
- Encode(m,ek,id) \rightarrow encoding c and digest h

Publish h

- Prove(pk, challenge, c) $\rightarrow \pi$
- Verify(vk,h, π) \rightarrow 0/1
- Decode(ek,id,c) → m

Properties: encoding correctness, proof completeness, replication and extraction

preprocessing

public keys

- Setup $(1^{\lambda}, 1^{t}, 1^{n}) \rightarrow \text{ek,pk,vk}$
- Encode(m,ek,id) → encoding c and digest h
 Publish h
- Prove(pk, challenge, c) $\rightarrow \pi$
- Verify(vk,h, π) \rightarrow 0/1
- Decode(ek,id,c) → m

In some settings, messages might be highly compressible, i.e. m=(F_k(1), F_k(2),...). There, a prover could avoid storing m and generate as needed when challenged.

preprocessing

Setup Phase

Verifier

Prover

Depth Robust Graphs (DRGs)

The auditing phase is probabilistic – a large set of challenges is needed to get a good level of security.

File of n blocks - > Memory usage is $n(1-\epsilon)$ where ϵ is constant

c_i : data encodings

c_i : data encodings

c_i : data encodings

Depth Robust Graphs (DRGs)

Depth Robust Graphs (DRGs)

u file of n blocks - > Memory usage is $u^{n}(1-\epsilon)$ where ϵ is constant.

Loss scales with u (the number of files stored), i.e., loss is u*n* ϵ

The problem is the probabilistic check on the last layer (the encoding)

u file of n blocks - > Memory usage is $u^n(1-\epsilon)$ where ϵ is constant.

Loss scales with u (the number of files stored), i.e., loss is $u^*n^*\epsilon$

The problem is the probabilistic check on the last layer (the encoding)

Remove the loss proportional to u -> Scales the challenges proportional to u

Our work

public keys • Setup $(1^{\lambda}, 1^{t}, 1^{n}) \rightarrow \text{ek,pk,vk}$ preprocessing • Encode(m,ek,id) \rightarrow encoding c and digest h Publish h audit phase

- Prove(pk, challenge, c) $\rightarrow \pi$
- Verify(vk,h, π) \rightarrow 0/1
- Decode(ek,c) \rightarrow m

Our work

- Prove(pk, challenge, c) $\rightarrow \pi$
- Verify(vk,h, π) \rightarrow 0/1
- Decode(ek,c) \rightarrow m

Our work

In this work we assume **the** encoding is honestly executed (i.e., digest h is honest). Worst case: Use a SNARK to verify h

Encode(m,ek,id) → encoding c and digest h

public keys

Publish h

- Prove(pk, challenge, c) $\rightarrow \pi$
- Verify(vk,h, π) \rightarrow 0/1

• Setup $(1^{\lambda}, 1^{t}, 1^{n}) \rightarrow \text{ek,pk,vk}$

• Decode(ek,c) \rightarrow m

Our focus is to **reduce complexity** and **increase security** of this phase

audit phase

Our construction

Polynomial Evaluation

degree d polynomial
$$f(X) \leftarrow \mathbb{Z}_p[X]$$

 $f(X) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_d \cdot x^d$

Polynomial Evaluation

degree d polynomial
$$f(X) \leftarrow \mathbb{Z}_p[X]$$

 $f(X) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_d \cdot x^d$

Polynomial Evaluation

degree d polynomial
$$f(X) \leftarrow \mathbb{Z}_p[X]$$

$$f(X) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_d \cdot x^d$$

space requirements?

Incompressibility of Random Polynomials

$$f(X) \leftarrow \mathbb{Z}_p[X]$$

randomly sampled polynomial of degree d

The goal: evaluating f(X) should require memory close to |f(X)|
Incompressibility of Random Polynomials

$$f(X) \leftarrow \mathbb{Z}_p[X]$$

randomly sampled polynomial of degree d

The goal: evaluating f(X) should require memory close to |f(X)|

- pre-processes f(X) to compute a memory α smaller than |f(X)|
 - shouldn't be possible to evaluate f(x) on a random point x, unless $|\alpha| \approx |f(X)|$

Incompressibility of Random Polynomials

$$f(X) \leftarrow \mathbb{Z}_p[X]$$

randomly sampled polynomial of degree d

The goal: evaluating f(X) should require memory close to |f(X)|

- pre-processes f(X) to compute a memory α smaller than |f(X)|
 - shouldn't be possible to evaluate f(x) on a random point x, unless $|\alpha| \approx |f(X)|$

 $[ACFPT'23]: |\alpha| \approx |f(X)| - d^*|x|$

Multiple polynomials?

$$f_{1}(X) \leftarrow \mathbb{Z}_{p}[X]$$

$$f(X)_{\mathsf{u}} \leftarrow \mathbb{Z}_p[X]$$

. . .

$[\mathsf{ACFPT'23}]: |\alpha| \approx |\mathsf{f}(\mathsf{X})| - \mathsf{d}^*|\mathsf{x}|$

single polynomial

$$f_1(x) \dots f_u(x)$$

$$f_1(X) \leftarrow \mathbb{Z}_p[X] \qquad \dots \qquad \dots$$

$$f(X)_{\mathsf{u}} \leftarrow \mathbb{Z}_p[X]$$

Multiple polynomials?

$[\mathsf{ACFPT'23}]: |\alpha| \approx |\mathsf{f}(\mathsf{X})| - \mathsf{d}^*|\mathsf{x}|$

single polynomial

 $|\alpha| \approx u^* |f(X)| - d^* |x|$

multiple polynomials

$$f_1(X) \leftarrow \mathbb{Z}_p[X] \qquad \dots$$

$$f(X)_{\mathsf{u}} \leftarrow \mathbb{Z}_p[X]$$

Multiple polynomials?

preprocessing

Prover

	data D
Setup Phase	Commit on ???

Verifier

Prover

preprocessing

Prover

preprocessing

xor D_1=

👳 xor D_u =

 $f_u(X)$

 c_5

 c_{10}

f_1(X)

Memory usage: $u^*|f(x)| - d^*|x| \approx u^*|f(x)|$ for large values of u

Memory usage: $u^*|f(x)| - d^*|x| \approx u^*|f(x)|$ for large values of u

Prover needs to read $f_1(X)$, ... $f_u(X)$ entirely - Problem for efficiency How verify that $f_1(x)$, ... $f_u(x)$ are correct evaluations (efficiently)?

 $f_u(X)$

Kedlaya and Uman 2011: "Fast polynomial factorization and modular composition"

Kedlaya and Uman 2011: "Fast polynomial factorization and modular composition"

uses a RAM data structure to expedite polynomial evaluations

(computes f(x) in poly-log time in d)

Kedlaya and Uman 2011: "Fast polynomial factorization and modular composition"

Kedlaya and Uman 2011: "Fast polynomial factorization and modular composition"

Partial construction preprocessing data D Setup Phase Commit ??? xor D_1= f_1(X) Audit **Phase** Х c_2 Prover $f_1(x), ..., f_u(x)$ Verifier C_7 🥶 xor D_u =

Memory usage: $u^*|f(x)| - d^*|x| \approx u^*|f(x)|$ for large values of u

Prover needs to read $f_1(X)$, ... $f_u(X)$ entirely - Problem for efficiency

 $f_u(X)$

How verify that $f_1(x)$, ... $f_u(x)$ are correct evaluations?

Memory usage: $u^*|f(x)| - d^*|x| \approx u^*|f(x)|$ for large values of u

Х

 $f_1(x), ..., f_u(x)$

Verifier

Prover needs to read f_1(X), \dots f_u(X) entirely Problem for efficiency A How verify that f_1(x), \dots f_u(x) are correct evaluations?

 c_2

 C_7

Co

🥶 xor D_u =

 $f_u(X)$

Prover

Let's use SNARKs!

prover time becomes linear to D

data structure D"

What if the verifier also computes f(x)?

What if the verifier also computes f(x)?

What if the verifier also computes f(x)?

Prover only needs to access a poly-log number of blocks D ' \subset D

What if the verifier also computes f(x)?

Prover only needs to access a poly-log number of blocks D ' \subset D

What if the verifier also computes f(x)?

Prover only needs to access a poly-log number of blocks D ' \subset D

preprocessing

What if the verifier also computes f(x)?

Final Construction (Example: 1 File)

Prover

Final Construction (Example: 1 File)

blocks

- compute y from D'
- check y ?= f(x)٠

- compute y from D'
- check y ?= f(x)۲

Memory usage \approx u*|f(X)| for large number of files

[Fisch'18]

Files sizes $u \cdot n$

Limitation = Space gap

Limitation = Space gap

Keep efficiency and high (absolute) memory usage while minimising space gap

THANK YOU!