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DDF’14 Reduction from noisy leakage (total variation information) to the random
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+ points several flaws in previous derivations from PR'13, DDF’14, DFS’15,
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| Adversary’s Model

Let K be the secret. Adversary obtains side information (Y1,...,Y;) about sensitive
values (X1,...,X)) through ¢; = (X; = Y;),i=1,....I. o = (¢1,..., ) is restricted to
limit the adversary’s abilities :
m t-threshold probing : t identity channels and opaque channels otherwise;
B &-random probing : &-erasure channels;
B J-noisy : §-noisy channels with respect to @ i.e. D(X;Y) < § where X is uniformly
distributed and Y is the output of the side-channel X — Y;

m (0, f)-additive : channels X — Y £ f(X) + oN.
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Let K be the secret. Adversary obtains side information (Y1,...,Y;) about sensitive
values (X1,...,X)) through ¢; = (X; = Y;),i=1,....I. o = (¢1,..., ) is restricted to
limit the adversary’s abilities :
m t-threshold probing : t identity channels and opaque channels otherwise;
B &-random probing : &-erasure channels;
B J-noisy : §-noisy channels with respect to @ i.e. D(X;Y) < § where X is uniformly
distributed and Y is the output of the side-channel X — Y;
m (0, f)-additive : channels X — Y £ f(X) + oN.
Let rank(K|Y) be the rank of the correct key in the ranking produced by the adversary
upon observation Y. The performance of the attack is usually assessed using :
1. Success rate of order o, (SRo) : Pso(K|Y) £ P(rank(K|Y) < 0)
2. Guessing entropy (GE) : G(K|Y) £ E{rank(K|Y)}
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| Multiple Leakage Measures

B Mutual Information : I(X; Y) = Dxr(pxy|lpxpy) = £ pxv(x,y) log pi))(x):)(;;(;}(/))/)

m Total Variation Information : A(X; Y) = Drv(pxy|lpxpy) = 3|Pxy — pxpy|1-
B Maximal Leakage : L(X — Y) = Iogfy supy Py|x(¥|X).

B Euclidean Norm bias : 3(X;Y) = Ey|lpxy(-|Y) — px|l2-

® Relative Error : RE(X;Y) = supy, pﬂ;(();gy) - 1’ .

B Average Relative Error : ARE(X;Y) = Ey [supx p’;‘)Y((f(l)Y) — 1H

Complementary Doeblin Coefficient :

EX—=Y)=1- %irxufpyx(nx) = Ey |:SL)l(p (1 — wn :
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] Erasure Channel

Definition (Erasure Channel)

The channel

X —=|ECE|—=Y (1)

is said to be an erasure channel with erasure probability § € [0, 1] and special erasure
symbol L if on input x, Ecg outputs x with probability

E§=1-§ (2)

and the special erasure symbol L otherwise (with probability §). That is

pyix(Lx) =&
{PYX(X|X) g e
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| Optimal Reduction from Noisy Leakage to Random
Probing

Theorem (Optimal Reduction)

Any channel X — |Py|x | = Y is a stochastically degraded erasure channel :

X — |EC# —>X’—>—>Y (4)

with maximum erasure probability given by the Doeblin Coefficient

E(X = Y) = yéxig; Prix(yIx). (5)

TELEFDM
aris

54 i |
- Formal Security Proofs via Doeblin Coefficients N2 1P PARIS




| Proof : Achievability

1. Consider a channel X — | Py|x | = Y with a given Doeblin coeffcient

8 = %X'g; Pyix(y1x).

Py (Y|L) = &1 inf Py x(y[x)
. xeX
pyix (ylx) = & (py|x(y!><) — nf py|x(y\X)>
is such that

(X—>—>Y):(X—>—>X’—>—>Y>.
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] Proof : Converse

1. Assume that there exists & € [0, 1] such that

(X—> Py|x —>Y):(X—>—>X’—> Pyix —>Y).

2. Then for any pair x,y :

PY|X(Y\X) = gpﬂx' (ylx) + EPy|x (y[L) > EPy|x’ (yIL).

3. Since itis true for all x :

ir)1(f pyix(¥[x) = EPyx(y|L).

4. Since fyey Pyix(y|L) =1:
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Example with BSC and Z-channel

(b) Z-Channel

Figure — lllustration of the Theorem
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| Many Good Properties!

1. Strengthened-DPI For any X — Y — Z, CDC satisfies the following
strengthened-DPI
EX = 2)<EX = Y)E(Y — 2) (6)

2. Adaptive Single Letterization

E(K—Y1,...,Y) <1—-(1-86)<qé (7)

3. Fano’s Inequality The adversary’s advantage is bounded as follows :

0 < Pso(K|Y)—Pso(K) < E(K— Y)Asr, Asr, = (1 — Pso(K)),
0 < G(K)—-GK]Y) < &K —=Y)ee Aee = (G(K) — 1),
0 < A(K;Y) < E(K = YV)Av Arvi = (1 — exp(—H2(K)))

)
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| Subsequence Decomposition

For typical block ciphers like the AES, featuring substitution boxes, Prouff and Rivain
(EuroCrypt’13) decompose the computations in four different types of subsequences :

12

Type 1 (z; < g(x;)); where g is a linear function (of the block cipher)
Type 2 (x; < g(yi))i where g is an affine function (of Sbox evaluation)
Type 3 (v;; < a;bj);, (First step of non-linear secure multiplication)
Type 4 (t,'J- —tijo1+ viJ)iJ (Last step of non-linear secure multiplication)
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| Explicit Algorithm in AES (from MS’24 article)

Algorithm 2 Multiplication gadget in Prouff & Rivain’s proof.
Require: A, B: (d+ 1)-sharing of A, B.
Ensure: C: (d+ 1)-sharing of A x B.

1: for i =0,....d do
Algorithm 1 Linear gadget in Prouff & Rivain’s proof. 2 forj=0,...,ddo
3: Vi A; x B Cross products (type 3
Require: A: (d+ 1)-sharing of A, C: elementary calculation linear with its input. . A * B > Cross products (type 3)
r ! 4: end for
Ensure: B : (d + 1)-sharing of C(A). 5 end for
;: foré:‘_ C(A{)i do 5> Type 1 or 2 6: V « Refresh(V) > Assumed to be leak-free
3: end;‘or ' It 7: fori=0,...,d do
4: B « Refresh(B) > Assumed to be leak-free . g 0 da
5: A < Refresh(A) > Only if A used subsequently. e orj=0....ddo .
10: Ci —CidVij > Compression (type 4)
11: end for
12: end for
13: C « Refresh(C) > Assumed to be leak-free
14: A, B « Refresh(A), Refresh(B) > Only if A, B used subsequently.

TELEEOM
a
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Mrs. Gerber’s Lemma for CDC, Type 1 & 2 Subsequences

Let G = (G;)?_, be a d-th order encoding of G = g(X) where g is a given function. Each

share leaks independently through the side-channels (G; — Y,-),?’:O.

Intuition : A shared sensitive value is probed if and only all of its shares are probed.

14
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| Type 3 subsequences

Definition (Rook Domination Polynomial)
Let (E;i )o<ij<d be a collection of independent events with respective probabilities

((gi,j)ogi,jgd). Let

T((Ei)osij<a) = P ((Nflo ULo Eig) U (Mo UiLo Eiy)) - (9)
For short T4(&) £ T((&i))o<ij<a) Wwhen for all i,j we have &;; = &.
Lemma (Type 3 Subsequences)
Consider the channels ((G,', Hj) — Yi,j)0<i,j<d and letY £ (Yi,j)Ogi,jgd- Then one has
E(X = Y) < T((8((Gi, Hj) = Yij))o<ij<d)- (10)
TELEIE’HM
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Let (V;;) be an encoding in (d + 1)? shares of f(X) where f is a given function. Let
Tio =Vio
Tij = Tij—1 ® Vij.

Type 4 subsequences

In particular (Ti4)%, is a d-th order encoding of f(X).

Lemma (Type 4 Subsequences)

(V,‘70, ..

16
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EX —=Y) <

E((Tig—1,Via) = Yig)-

—.

Il
<)
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., Vig) is a d-th order sharing of T; 4. Consider ((T;;j_1, Vij) = Yij)o<ij<a and let
Y = (Yi,j)ogi,jgd then,

(11)
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| Theorem : Direct Security Proof

Consider an implementation with n; subsequences of type i and a §-noisy with respect

to CDC adversary with g queries.

0<EK—=Y)<1—((1—gHmHmong _ry&)™)7 < 1. (12)
(12) is asymptotically equivalent to
E(K = Y) < q(ny+na+ (2(d+ 1) — (d+1)!) n3 +ny) § (13)

(12) can be weakened to

E(K = Y) < q ((n + N2+ na) + 2n3(d + 1)) &7, (14)
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Let

Theorem : Lower Bound on the Number of Queries

A(g, d) _ (In((l _ gd+1)n1+nz+n4 (1 _ Td(g))ns))fl

= ((n1 + Ny + n4) |Og(1 — ngrl) + ns3 |Og(1 — Td(g)))_l

~ ((nl +n2 +na+n3(2(d+ 1)d+1 —(d+ 1)!)) gdﬂ)—l'

(15)
(16)
(17)

Number of queries to achieve Ps ,(K|Y) = Ps,, G(K|Y) = G or A(K;Y) = A'is at least :

18
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Qsr =2 )\(gv d) In ((1 - ]P)s,o)_l)\SRo) )
dge > )\(ﬁ, d) In ((G — 1)71)\GE) ,
qwi = A(&,d)In (A 1) .
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Theorem : Indirect Security Proof

Circuit ' decomposed into || regions with (/;) wires. Any set of at most t (probed) wires

in each region of the circuit is independent with the secret key. Let A be a §-noisy

adversary with respect to CDC with g queries.

19

Il Il

B(K — ¥) < fail(t, (1),8,9) 2 1 - [T (1 - 0t /,-,é))q <a 0s(t, 11, 8).
i=1

CRYPTO 2024

i=1
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| Optimal Masking Order?
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Figure — Bound for a Quadratic Gadget
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] Lemma : Practical Evaluation

Y = f(X) + Z where Z is a radially symmetric decreasing with survival function S. Then

§(X = Y) =25 (S“pxe’f ) - Infxex f(x)> . (20)
If f(X) = 27:1 a,-X,-,
é(XﬁY):25<Ha2”1>. (21)
If Z ~0oN(0,1),
Ex>v)=1-20 (12t} e Bl | 5,3 (22)
20 V21 o '
w1
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Lemma : Comparison with Other Leakage Measures

29x Atvi

BX:Y)

2 1vi

exp(L(X—=Y))—1

| X]-1

<EX —=Y)L

ARE(X;Y) < RE(X;Y)

WBX:Y) .
WAX;Y) < x (Q(fﬁ,gyi) ’

(X = 1)(exp (L(X = Y)) = 1)

(23)

where H is Shannon entropy, H, is the collision entropy, Aryy = 1 — exp(—H2(X)) and
. -1
YXx £ (Xlggpx(X)) AF X ~ U(I’) then X = |I.| and )\TVI =1- ﬁ

23
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Definition (Kullback-Leibler Divergence and Total Variation Distance)

Let P, Q be two probability distributions with respective pdf or pmf p, g defined over .
The Kullback-Leibler (KL) divergence between P and Q is

D (Pl0) 2 ¥ plog? (24)
x q
and the total variation distance (TV) between P and Q is
1 1
Drv(P[Q) = 53 Ip—al = 5lp —alh. (25)
X

TELEIE"?T:I
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] Proof |

Let

d
X%HGH*)G*) HpYilGi —Y. (26)
i=0

By optimal reduction theorem,

(Gi = [Pyi6| = Yi) = (Gi = |ECg' | = G} = [Pyq; | = Yi))  where & =§(G; = Y)).
(27)
d d
G — —|T[EC: |- Y =] Pris; | Y- (28)
i=0 i=0
By DPI,
EX > Y)<EGY)<EG—=Y).
m AT
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By definition,

If 3i s.t. y/ = L then p(glyp, - - -

Otherwise,

26

CRYPTO 2024

Proof Il

g(G — YI) - Eyé

{

sup
gef(ax)

p(9lys, - - -
P(9lys, - - -

..... Y, [ sup

Yy) = p(9),

gEF(X) (1 p(9) >] '

Yg) =1
Yy) =0

ifg=yo+...+yy
ifg#£yy+...+Yy

(30)

(32)
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So that,

Proof Il

sup
gef(xX)

<1_p(

As a consequence,

27

8(G—=Y)=Ey v [ﬂylg;uo,...,y(;;ad} =P(Yy# Lo,...,Yg# La) = Hgi-

CRYPTO 2024

alyo-
p(

/
~Vd)> = sup (1, R—
9) p(}/o +

1 >_1
et Yy) '

d

i=0

(33)
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| Comparison Leakage Metrics

I(X;Y) AXY) | LX—=Y) | BX;Y) | RE(X;Y) | ARE(X;Y) | §(X =)
X|log | X
T | i | WI-1 (X]=12 | 2001 -1) | oo [ 2(1X-1) | 1
log[X| | 1— 1tk | loglX| \/1—ﬁ -1 |x|-1 1
H nl?age?lz % r:/l%s V 27?2n% 2" -1 \/2%(, \/2%(,
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