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Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.

1 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.

1 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.

1 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.

1 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.

1 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.

1 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.

1 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.

1 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Context
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Adversary’s Model

Let K be the secret. Adversary obtains side information (Y1, . . . , Yl) about sensitive
values (X1, . . . ,Xl) through φi = (Xi → Yi), i = 1, . . . , l. φ = (φ1, . . . , φl) is restricted to
limit the adversary’s abilities :

t-threshold probing : t identity channels and opaque channels otherwise ;

E-random probing : E-erasure channels ;

δ-noisy : δ-noisy channels with respect to D i.e. D(X; Y) ⩽ δ where X is uniformly
distributed and Y is the output of the side-channel X→ Y ;

(σ, f)-additive : channels X→ Y ≜ f(X) + σN.

Let rank(K|Y) be the rank of the correct key in the ranking produced by the adversary
upon observation Y. The performance of the attack is usually assessed using :

1. Success rate of order o, (SRo) : Ps,o(K|Y) ≜ P(rank(K|Y) ⩽ o)

2. Guessing entropy (GE) : G(K|Y) ≜ E{rank(K|Y)}
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Multiple Leakage Measures

Mutual Information : I(X; Y) = DKL(pXY∥pXpY) = Σ
∫

pXY(x, y) log
pX,Y(x,y)

pX(x)pY(y)
.

Total Variation Information : ∆(X; Y) = DTV(pXY∥pXpY) =
1
2∥pXY − pXpY∥1.

Maximal Leakage : L(X→ Y) = log Σ
∫

y supx pY|X(y|x).
Euclidean Norm bias : β(X; Y) = EY∥pX|Y(·|Y)− pX∥2.
Relative Error : RE(X; Y) = supx,y

∣∣∣pX|Y(x|y)
pX(x)

− 1
∣∣∣ .

Average Relative Error : ARE(X; Y) = EY

[
supx

∣∣∣pX|Y(x|Y)
pX(x)

− 1
∣∣∣
]
.

Complementary Doeblin Coefficient :

E(X→ Y) = 1−∑∫

y
inf
x

pY|X(y|x) = EY

[
sup

x

(
1−

pX|Y(x|Y)
pX(x)

)]
.
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Wolfgang Doeblin (Vincent Döblin)

Here
died at the age of 25
on June 21, 1940

Vincent Döblin
mathematical genius

The discontinuous
case of probability

chains (1937)

Wolfgang Döblin,
ca. 1935
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Erasure Channel

Definition (Erasure Channel)

The channel
X→ EC⊥

E → Y (1)

is said to be an erasure channel with erasure probability E ∈ [0,1] and special erasure
symbol ⊥ if on input x, EC⊥

E outputs x with probability

E = 1− E (2)

and the special erasure symbol ⊥ otherwise (with probability E). That is

{
pY|X(⊥|x) = E

pY|X(x|x) = E
(∀x ̸= ⊥). (3)
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Optimal Reduction from Noisy Leakage to Random

Probing

Theorem (Optimal Reduction)

Any channel X→ PY|X → Y is a stochastically degraded erasure channel :

X→ EC⊥
E → X′ → PY|X′ → Y (4)

with maximum erasure probability given by the Doeblin Coefficient

E(X→ Y) =
∑∫

y
inf

x∈X
pY|X(y|x). (5)
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Proof : Achievability

1. Consider a channel X→ PY|X → Y with a given Doeblin coeffcient

E =
∑∫

y
inf

x∈X
pY|X(y|x).

2. 



pY|X′(y|⊥) = E−1 inf
x∈X

pY|X(y|x)

pY|X′(y|x) = E
−1

(
pY|X(y|x)− inf

x∈X
pY|X(y|x)

)

is such that
(

X→ PY|X → Y
)
=

(
X→ ECE → X′ → PY|X′ → Y

)
.
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Proof : Converse

1. Assume that there exists E ∈ [0,1] such that

(
X→ PY|X → Y

)
=

(
X→ ECE → X′ → PY|X′ → Y

)
.

2. Then for any pair x, y :

pY|X(y|x) = EpY|X′(y|x) + EpY|X′(y|⊥) ⩾ EpY|X′(y|⊥).

3. Since it is true for all x :
inf
x

pY|X(y|x) ⩾ EPY|X(y|⊥).

4. Since Σ
∫

y∈Y PY|X(y|⊥) = 1 :
∑∫

y∈Y
inf

x∈X
pY|X(y|x) ⩾ E.

.
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Example with BSC and Z-channel
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Figure – Illustration of the Theorem
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Many Good Properties !

1. Strengthened-DPI For any X→ Y → Z, CDC satisfies the following
strengthened-DPI

E(X→ Z) ⩽ E(X→ Y)E(Y → Z) (6)

2. Adaptive Single Letterization

E(K → Y1, . . . , Yq) ⩽ 1− (1− E)q ⩽ qE (7)

3. Fano’s Inequality The adversary’s advantage is bounded as follows :

0 ⩽ Ps,o(K|Y)− Ps,o(K) ⩽ E(K → Y)λSRo λSRo = (1− Ps,o(K)),
0 ⩽ G(K)− G(K|Y) ⩽ E(K → Y)λGE λGE = (G(K)− 1),
0 ⩽ ∆(K; Y) ⩽ E(K → Y)λTVI λTVI = (1− exp(−H2(K))),

(8)
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Subsequence Decomposition

For typical block ciphers like the AES, featuring substitution boxes, Prouff and Rivain
(EuroCrypt’13) decompose the computations in four different types of subsequences :

Type 1 (zi ← g(xi))i where g is a linear function (of the block cipher)

Type 2 (xi ← g(yi))i where g is an affine function (of Sbox evaluation)

Type 3 (vi,j ← aibj)i,j (First step of non-linear secure multiplication)

Type 4 (ti,j ← ti,j−1 + vi,j)i,j (Last step of non-linear secure multiplication)
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Explicit Algorithm in AES (from MS’24 article)
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Mrs. Gerber’s Lemma for CDC, Type 1 & 2 Subsequences

Let G = (Gi)
d
i=0 be a d-th order encoding of G = g(X) where g is a given function. Each

share leaks independently through the side-channels (Gi → Yi)
d
i=0.

E(X→ Y) ⩽
∏

i

E(Gi → Yi).

Intuition : A shared sensitive value is probed if and only all of its shares are probed.
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Type 3 subsequences

Definition (Rook Domination Polynomial)

Let (Ei,j)0⩽i,j⩽d be a collection of independent events with respective probabilities
((Ei,j)0⩽i,j⩽d). Let

Υ((Ei,j)0⩽i,j⩽d) ≜ P
(
(∩d

i=0 ∪d
j=0 Ei,j) ∪ (∩d

j=0 ∪d
i=0 Ei,j)

)
. (9)

For short Υd(E) ≜ Υ((Ei,j)0⩽i,j⩽d) when for all i, j we have Ei,j = E.

Lemma (Type 3 Subsequences)

Consider the channels ((Gi,Hj)→ Yi,j)0⩽i,j⩽d and let Y ≜ (Yi,j)0⩽i,j⩽d. Then one has

E(X→ Y) ⩽ Υ((E((Gi,Hj)→ Yi,j))0⩽i,j⩽d). (10)
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Type 4 subsequences

Let (Vi,j) be an encoding in (d + 1)2 shares of f(X) where f is a given function. Let{
Ti,0 = Vi,0

Ti,j = Ti,j−1 ⊕ Vi,j.
In particular (Ti,d)

d
i=0 is a d-th order encoding of f(X).

Lemma (Type 4 Subsequences)

(Vi,0, . . . ,Vi,d) is a d-th order sharing of Ti,d. Consider ((Ti,j−1,Vi,j)→ Yi,j)0⩽i,j⩽d and let
Y = (Yi,j)0⩽i,j⩽d then,

E(X→ Y) ⩽
d∏

i=0

E((Ti,d−1,Vi,d)→ Yi,d). (11)

16 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Theorem : Direct Security Proof

Consider an implementation with ni subsequences of type i and a E-noisy with respect
to CDC adversary with q queries.

0 ⩽ E(K → Y) ⩽ 1−
((

1− E
d+1)n1+n2+n4

(
1−Υd(E)

)n3
)q

⩽ 1. (12)

(12) is asymptotically equivalent to

E(K → Y) ⩽ q
(
n1 + n2 +

(
2(d + 1)d+1 − (d + 1)!

)
n3 + n4

)
E

d+1
. (13)

(12) can be weakened to

E(K → Y) ⩽ q
(
(n1 + n2 + n4) + 2n3(d + 1)d+1

)
E

d+1
. (14)
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Theorem : Lower Bound on the Number of Queries

Let

λ(E,d) =
(
ln
((

1− E
d+1)n1+n2+n4

(
1−Υd(E)

)n3
))−1

(15)

=
(
(n1 + n2 + n4) log

(
1− E

d+1)
+ n3 log

(
1−Υd(E)

))−1
(16)

≈
((

n1 + n2 + n4 + n3(2(d + 1)d+1 − (d + 1)!)
)
E

d+1)−1
. (17)

Number of queries to achieve Ps,o(K|Y) = Ps,o, G(K|Y) = G or ∆(K; Y) = ∆ is at least :

qsr ⩾ λ(E,d) ln
(
(1− Ps,o)

−1λSRo

)
,

qge ⩾ λ(E,d) ln
(
(G− 1)−1λGE

)
,

qtvi ⩾ λ(E,d) ln
(
∆−1λTVI

)
.

(18)
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Theorem : Indirect Security Proof

Circuit Γ decomposed into |Γ| regions with (li) wires. Any set of at most t (probed) wires
in each region of the circuit is independent with the secret key. Let A be a E-noisy
adversary with respect to CDC with q queries.

E(K → Y) ⩽ fail(t, (li),E,q) ≜ 1−
|Γ|∏

i=1

(
1− QB(t, li,E)

)q
⩽ q

|Γ|∑

i=1

QB(t, li,E). (19)
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Optimal Masking Order?

0 20 40 60 80 100

10−15

10−11

10−7

10−3

d

fa
il
(d
,E

)
=

Q
B
(d
,3
d
2
,E

)

log10 δ =-2.75
log10 δ =-2.5
log10 δ =-2.25
log10 δ =-2
log10 δ =-1.75
log10 δ =-1.5
log10 δ =-1.25
log10 δ =-1

Figure – Bound for a Quadratic Gadget
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Lemma : Practical Evaluation

Y = f(X) + Z where Z is a radially symmetric decreasing with survival function S. Then

E(X→ Y) = 2S

(
supx∈X f(x)− infx∈X f(x)

2

)
. (20)

If f(X) =
∑n

i=1 aiXi,

E(X→ Y) = 2S

(∥a∥1
2

)
. (21)

If Z ∼ σN(0,1),

E(X→ Y) = 1− 2Q

(∥a∥1
2σ

)
σ→∞
=
∥a∥1√

2π

1

σ
+ O

(
σ−3

)
. (22)
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Lemma : Comparison with Other Leakage Measures

I(X;Y)
log |X| ⩽

I(X;Y)
H(X)

ARE(X;Y)
2γXλTVI

β(X;Y)
2λTVI





⩽ ∆(X;Y)
λTVI

exp(L(X→Y))−1
|X|−1





⩽ E(X→ Y) ⩽





ARE(X; Y) ⩽ RE(X; Y)

γXβ(X; Y)

γX∆(X; Y) ⩽ γX

(
I(X;Y)
2 log e

) 1
2

(|X| − 1)(exp (L(X→ Y))− 1)

(23)

where H is Shannon entropy, H2 is the collision entropy, λTVI = 1− exp(−H2(X)) and
γX ≜

(
inf

x∈X
pX(x)

)−1
. If X ∼ U(X) then γX = |X| and λTVI = 1− 1

|X| .
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Definition (Kullback-Leibler Divergence and Total Variation Distance)

Let P,Q be two probability distributions with respective pdf or pmf p,q defined over X.
The Kullback–Leibler (KL) divergence between P and Q is

DKL(P∥Q) ≜
∑∫

X

p log
p

q
(24)

and the total variation distance (TV) between P and Q is

DTV(P∥Q) =
1

2

∑∫

X

|p− q| = 1

2
∥p− q∥1. (25)
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Proof I

Let

X→ f → G→ Maskd → G→
d∏

i=0

pYi|Gi
→ Y. (26)

By optimal reduction theorem,

(
Gi → PYi|Gi

→ Yi

)
=

(
Gi → EC⊥i

Ei
→ G′

i → PYi|G′
i
→ Yi

)
where Ei = E(Gi → Yi).

(27)

G→ Maskd →
d∏

i=0

EC⊥i
Ei
→ Y′ →

d∏

i=0

pYi|Gi
→ Y. (28)

By DPI,

E(X→ Y) ⩽ E(G→ Y) ⩽ E(G→ Y′). (29)
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Proof II

By definition,

E(G→ Y′) = EY′
0,...,Y

′
d

[
sup

g∈f(X)

(
1− p(g|Y′

0, . . . , Y
′
d)

p(g)

)]
. (30)

If ∃i s.t. y′
i = ⊥i then p(g|y′

0, . . . , y
′
d) = p(g),

sup
g∈f(X)

(
1− p(g|y′

0, . . . , y
′
d)

p(g)

)
= 0. (31)

Otherwise, {
p(g|y′

0, . . . , y
′
d) = 1 if g = y′

0 + . . .+ y′
d

p(g|y′
0, . . . , y

′
d) = 0 if g ̸= y′

0 + . . .+ y′
d

(32)
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Proof III

So that,

sup
g∈f(X)

(
1− p(g|y′

0, . . . , y
′
d)

p(g)

)
= sup

(
1,1− 1

p(y′
0 + . . .+ y′

d)

)
= 1. (33)

As a consequence,

E(G→ Y′) = EY′
0,...,Y

′
d

[
1Y′

0 ̸=⊥0,...,Y′
d ̸=⊥d

]
= P

(
Y′

0 ̸= ⊥0, . . . , Y
′
d ̸= ⊥d

)
=

d∏

i=0

Ei. (34)
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Comparison Leakage Metrics

I(X; Y) ∆(X; Y) L(X→ Y) β(X; Y) RE(X; Y) ARE(X; Y) E(X→ Y)

T |X| log |X|√
2 log eI(X;Y)

|X| − 1 (|X| − 1)2 2(|X| − 1) +∞ 2(|X| − 1) 1

M log |X| 1− 1
|X| log |X|

√
1− 1

|X| |X| − 1 |X| − 1 1

H n log e
8

1
σ2

√
n

2πσ
n log e√

2πσ

√
n

2π2n
1
σ 2n − 1 n√

2πσ
n√
2πσ
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