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Context

ISW’03 Masking and security proof in the t-threshold probing model

PR’13 Noisy leakage model (Euclidean norm bias) ; subsequence decomposition

DDF’14 Reduction from noisy leakage (total variation information) to the random
probing model ; reduction from random probing to t-threshold probing model

DFS’15 Bound in terms of MI with DDF’14 leveraging Pinsker’s inequality

PGMP’19 (Average) relative error : direct proof (PR’13) ; indirect proof (DDF’14)

BCG+’23 Use of Mrs. Gerber’s lemma to prove security of encoding using MI

MS’23 Direct proof (PR’13) for MI extending BCG+’23 to computations

Our work : Complementary Doeblin Coefficient : optimal reduction from noisy
leakage to random probing model ; direct proof (PR’13) and indirect proof (DDF’14)
+ points several flaws in previous derivations from PR’13, DDF’14, DFS’15,
PGMP’19 and MS’23.
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Context
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Adversary’s Model

Let K be the secret. Adversary obtains side information (Y1, . . . , Yl) about sensitive
values (X1, . . . ,Xl) through φi = (Xi → Yi), i = 1, . . . , l. φ = (φ1, . . . , φl) is restricted to
limit the adversary’s abilities :

t-threshold probing : t identity channels and opaque channels otherwise ;

E-random probing : E-erasure channels ;

δ-noisy : δ-noisy channels with respect to D i.e. D(X; Y) ⩽ δ where X is uniformly
distributed and Y is the output of the side-channel X→ Y ;

(σ, f)-additive : channels X→ Y ≜ f(X) + σN.

Let rank(K|Y) be the rank of the correct key in the ranking produced by the adversary
upon observation Y. The performance of the attack is usually assessed using :

1. Success rate of order o, (SRo) : Ps,o(K|Y) ≜ P(rank(K|Y) ⩽ o)

2. Guessing entropy (GE) : G(K|Y) ≜ E{rank(K|Y)}
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Multiple Leakage Measures

Mutual Information : I(X; Y) = DKL(pXY∥pXpY) = Σ
∫

pXY(x, y) log
pX,Y(x,y)

pX(x)pY(y)
.

Total Variation Information : ∆(X; Y) = DTV(pXY∥pXpY) =
1
2∥pXY − pXpY∥1.

Maximal Leakage : L(X→ Y) = log Σ
∫

y supx pY|X(y|x).
Euclidean Norm bias : β(X; Y) = EY∥pX|Y(·|Y)− pX∥2.
Relative Error : RE(X; Y) = supx,y

∣∣∣pX|Y(x|y)
pX(x)

− 1
∣∣∣ .

Average Relative Error : ARE(X; Y) = EY

[
supx

∣∣∣pX|Y(x|Y)
pX(x)

− 1
∣∣∣
]
.

Complementary Doeblin Coefficient :

E(X→ Y) = 1−∑∫

y
inf
x

pY|X(y|x) = EY

[
sup

x

(
1−

pX|Y(x|Y)
pX(x)

)]
.

4 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Wolfgang Doeblin (Vincent Döblin)

Here
died at the age of 25
on June 21, 1940

Vincent Döblin
mathematical genius

The discontinuous
case of probability

chains (1937)

Wolfgang Döblin,
ca. 1935
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Erasure Channel

Definition (Erasure Channel)

The channel
X→ EC⊥

E → Y (1)

is said to be an erasure channel with erasure probability E ∈ [0,1] and special erasure
symbol ⊥ if on input x, EC⊥

E outputs x with probability

E = 1− E (2)

and the special erasure symbol ⊥ otherwise (with probability E). That is

{
pY|X(⊥|x) = E

pY|X(x|x) = E
(∀x ̸= ⊥). (3)
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Optimal Reduction from Noisy Leakage to Random

Probing

Theorem (Optimal Reduction)

Any channel X→ PY|X → Y is a stochastically degraded erasure channel :

X→ EC⊥
E → X′ → PY|X′ → Y (4)

with maximum erasure probability given by the Doeblin Coefficient

E(X→ Y) =
∑∫

y
inf

x∈X
pY|X(y|x). (5)
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Proof : Achievability

1. Consider a channel X→ PY|X → Y with a given Doeblin coeffcient

E =
∑∫

y
inf

x∈X
pY|X(y|x).

2. 



pY|X′(y|⊥) = E−1 inf
x∈X

pY|X(y|x)

pY|X′(y|x) = E
−1

(
pY|X(y|x)− inf

x∈X
pY|X(y|x)

)

is such that
(

X→ PY|X → Y
)
=

(
X→ ECE → X′ → PY|X′ → Y

)
.

8 CRYPTO 2024 Formal Security Proofs via Doeblin Coefficients



Proof : Converse

1. Assume that there exists E ∈ [0,1] such that

(
X→ PY|X → Y

)
=

(
X→ ECE → X′ → PY|X′ → Y

)
.

2. Then for any pair x, y :

pY|X(y|x) = EpY|X′(y|x) + EpY|X′(y|⊥) ⩾ EpY|X′(y|⊥).

3. Since it is true for all x :
inf
x

pY|X(y|x) ⩾ EPY|X(y|⊥).

4. Since Σ
∫

y∈Y PY|X(y|⊥) = 1 :
∑∫

y∈Y
inf

x∈X
pY|X(y|x) ⩾ E.

.
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Example with BSC and Z-channel
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Figure – Illustration of the Theorem
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Many Good Properties !

1. Strengthened-DPI For any X→ Y → Z, CDC satisfies the following
strengthened-DPI

E(X→ Z) ⩽ E(X→ Y)E(Y → Z) (6)

2. Adaptive Single Letterization

E(K → Y1, . . . , Yq) ⩽ 1− (1− E)q ⩽ qE (7)

3. Fano’s Inequality The adversary’s advantage is bounded as follows :

0 ⩽ Ps,o(K|Y)− Ps,o(K) ⩽ E(K → Y)λSRo λSRo = (1− Ps,o(K)),
0 ⩽ G(K)− G(K|Y) ⩽ E(K → Y)λGE λGE = (G(K)− 1),
0 ⩽ ∆(K; Y) ⩽ E(K → Y)λTVI λTVI = (1− exp(−H2(K))),

(8)
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Subsequence Decomposition

For typical block ciphers like the AES, featuring substitution boxes, Prouff and Rivain
(EuroCrypt’13) decompose the computations in four different types of subsequences :

Type 1 (zi ← g(xi))i where g is a linear function (of the block cipher)

Type 2 (xi ← g(yi))i where g is an affine function (of Sbox evaluation)

Type 3 (vi,j ← aibj)i,j (First step of non-linear secure multiplication)

Type 4 (ti,j ← ti,j−1 + vi,j)i,j (Last step of non-linear secure multiplication)
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Explicit Algorithm in AES (from MS’24 article)
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Mrs. Gerber’s Lemma for CDC, Type 1 & 2 Subsequences

Let G = (Gi)
d
i=0 be a d-th order encoding of G = g(X) where g is a given function. Each

share leaks independently through the side-channels (Gi → Yi)
d
i=0.

E(X→ Y) ⩽
∏

i

E(Gi → Yi).

Intuition : A shared sensitive value is probed if and only all of its shares are probed.
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Type 3 subsequences

Definition (Rook Domination Polynomial)

Let (Ei,j)0⩽i,j⩽d be a collection of independent events with respective probabilities
((Ei,j)0⩽i,j⩽d). Let

Υ((Ei,j)0⩽i,j⩽d) ≜ P
(
(∩d

i=0 ∪d
j=0 Ei,j) ∪ (∩d

j=0 ∪d
i=0 Ei,j)

)
. (9)

For short Υd(E) ≜ Υ((Ei,j)0⩽i,j⩽d) when for all i, j we have Ei,j = E.

Lemma (Type 3 Subsequences)

Consider the channels ((Gi,Hj)→ Yi,j)0⩽i,j⩽d and let Y ≜ (Yi,j)0⩽i,j⩽d. Then one has

E(X→ Y) ⩽ Υ((E((Gi,Hj)→ Yi,j))0⩽i,j⩽d). (10)
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Type 4 subsequences

Let (Vi,j) be an encoding in (d + 1)2 shares of f(X) where f is a given function. Let{
Ti,0 = Vi,0

Ti,j = Ti,j−1 ⊕ Vi,j.
In particular (Ti,d)

d
i=0 is a d-th order encoding of f(X).

Lemma (Type 4 Subsequences)

(Vi,0, . . . ,Vi,d) is a d-th order sharing of Ti,d. Consider ((Ti,j−1,Vi,j)→ Yi,j)0⩽i,j⩽d and let
Y = (Yi,j)0⩽i,j⩽d then,

E(X→ Y) ⩽
d∏

i=0

E((Ti,d−1,Vi,d)→ Yi,d). (11)
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Theorem : Direct Security Proof

Consider an implementation with ni subsequences of type i and a E-noisy with respect
to CDC adversary with q queries.

0 ⩽ E(K → Y) ⩽ 1−
((

1− E
d+1)n1+n2+n4

(
1−Υd(E)

)n3
)q

⩽ 1. (12)

(12) is asymptotically equivalent to

E(K → Y) ⩽ q
(
n1 + n2 +

(
2(d + 1)d+1 − (d + 1)!

)
n3 + n4

)
E

d+1
. (13)

(12) can be weakened to

E(K → Y) ⩽ q
(
(n1 + n2 + n4) + 2n3(d + 1)d+1

)
E

d+1
. (14)
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Theorem : Lower Bound on the Number of Queries

Let

λ(E,d) =
(
ln
((

1− E
d+1)n1+n2+n4

(
1−Υd(E)

)n3
))−1

(15)

=
(
(n1 + n2 + n4) log

(
1− E

d+1)
+ n3 log

(
1−Υd(E)

))−1
(16)

≈
((

n1 + n2 + n4 + n3(2(d + 1)d+1 − (d + 1)!)
)
E

d+1)−1
. (17)

Number of queries to achieve Ps,o(K|Y) = Ps,o, G(K|Y) = G or ∆(K; Y) = ∆ is at least :

qsr ⩾ λ(E,d) ln
(
(1− Ps,o)

−1λSRo

)
,

qge ⩾ λ(E,d) ln
(
(G− 1)−1λGE

)
,

qtvi ⩾ λ(E,d) ln
(
∆−1λTVI

)
.

(18)
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Theorem : Indirect Security Proof

Circuit Γ decomposed into |Γ| regions with (li) wires. Any set of at most t (probed) wires
in each region of the circuit is independent with the secret key. Let A be a E-noisy
adversary with respect to CDC with q queries.

E(K → Y) ⩽ fail(t, (li),E,q) ≜ 1−
|Γ|∏

i=1

(
1− QB(t, li,E)

)q
⩽ q

|Γ|∑

i=1

QB(t, li,E). (19)
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Optimal Masking Order?
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Lemma : Practical Evaluation

Y = f(X) + Z where Z is a radially symmetric decreasing with survival function S. Then

E(X→ Y) = 2S

(
supx∈X f(x)− infx∈X f(x)

2

)
. (20)

If f(X) =
∑n

i=1 aiXi,

E(X→ Y) = 2S

(∥a∥1
2

)
. (21)

If Z ∼ σN(0,1),

E(X→ Y) = 1− 2Q

(∥a∥1
2σ

)
σ→∞
=
∥a∥1√

2π

1

σ
+ O

(
σ−3

)
. (22)

22 CRYPTO 2024 Thank you! Questions?



Lemma : Comparison with Other Leakage Measures

I(X;Y)
log |X| ⩽

I(X;Y)
H(X)

ARE(X;Y)
2γXλTVI

β(X;Y)
2λTVI





⩽ ∆(X;Y)
λTVI

exp(L(X→Y))−1
|X|−1





⩽ E(X→ Y) ⩽





ARE(X; Y) ⩽ RE(X; Y)

γXβ(X; Y)

γX∆(X; Y) ⩽ γX

(
I(X;Y)
2 log e

) 1
2

(|X| − 1)(exp (L(X→ Y))− 1)

(23)

where H is Shannon entropy, H2 is the collision entropy, λTVI = 1− exp(−H2(X)) and
γX ≜

(
inf

x∈X
pX(x)

)−1
. If X ∼ U(X) then γX = |X| and λTVI = 1− 1

|X| .
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Definition (Kullback-Leibler Divergence and Total Variation Distance)

Let P,Q be two probability distributions with respective pdf or pmf p,q defined over X.
The Kullback–Leibler (KL) divergence between P and Q is

DKL(P∥Q) ≜
∑∫

X

p log
p

q
(24)

and the total variation distance (TV) between P and Q is

DTV(P∥Q) =
1

2

∑∫

X

|p− q| = 1

2
∥p− q∥1. (25)
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Proof I

Let

X→ f → G→ Maskd → G→
d∏

i=0

pYi|Gi
→ Y. (26)

By optimal reduction theorem,

(
Gi → PYi|Gi

→ Yi

)
=

(
Gi → EC⊥i

Ei
→ G′

i → PYi|G′
i
→ Yi

)
where Ei = E(Gi → Yi).

(27)

G→ Maskd →
d∏

i=0

EC⊥i
Ei
→ Y′ →

d∏

i=0

pYi|Gi
→ Y. (28)

By DPI,

E(X→ Y) ⩽ E(G→ Y) ⩽ E(G→ Y′). (29)
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Proof II

By definition,

E(G→ Y′) = EY′
0,...,Y

′
d

[
sup

g∈f(X)

(
1− p(g|Y′

0, . . . , Y
′
d)

p(g)

)]
. (30)

If ∃i s.t. y′
i = ⊥i then p(g|y′

0, . . . , y
′
d) = p(g),

sup
g∈f(X)

(
1− p(g|y′

0, . . . , y
′
d)

p(g)

)
= 0. (31)

Otherwise, {
p(g|y′

0, . . . , y
′
d) = 1 if g = y′

0 + . . .+ y′
d

p(g|y′
0, . . . , y

′
d) = 0 if g ̸= y′

0 + . . .+ y′
d

(32)
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Proof III

So that,

sup
g∈f(X)

(
1− p(g|y′

0, . . . , y
′
d)

p(g)

)
= sup

(
1,1− 1

p(y′
0 + . . .+ y′

d)

)
= 1. (33)

As a consequence,

E(G→ Y′) = EY′
0,...,Y

′
d

[
1Y′

0 ̸=⊥0,...,Y′
d ̸=⊥d

]
= P

(
Y′

0 ̸= ⊥0, . . . , Y
′
d ̸= ⊥d

)
=

d∏

i=0

Ei. (34)
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Comparison Leakage Metrics

I(X; Y) ∆(X; Y) L(X→ Y) β(X; Y) RE(X; Y) ARE(X; Y) E(X→ Y)

T |X| log |X|√
2 log eI(X;Y)

|X| − 1 (|X| − 1)2 2(|X| − 1) +∞ 2(|X| − 1) 1

M log |X| 1− 1
|X| log |X|

√
1− 1

|X| |X| − 1 |X| − 1 1

H n log e
8

1
σ2

√
n

2πσ
n log e√

2πσ

√
n

2π2n
1
σ 2n − 1 n√

2πσ
n√
2πσ
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