
k-SUM in the sparse regime

Shweta Agrawal,   Sagnik Saha,   Nikolaj Ignatieff Schwartzbach,   Akhil Vanukuri,   Prashant Nalini Vasudevan



k-SUM in the sparse regime



The (average-case) k-SUM problem



The (average-case) k-SUM problem

. . . . .a1 a2 a3 an−2 an−1 an
ℤqai

$

’n’ elements sampled uniformly from ℤq



The (average-case) k-SUM problem

. . . . .a1 a2 a3 an−2 an−1 an
ℤqai

$

’n’ elements sampled uniformly from ℤq

∑

0 mod q

Find ‘k’ out of them



The (average-case) k-SUM problem

. . . . .a1 a2 a3 an−2 an−1 an
ℤqai

$

’n’ elements sampled uniformly from ℤq

∑

0 mod q

Find ‘k’ out of them

k is ‘small’



The (average-case) k-SUM problem
. . . . .a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them

∑
i∈S

ai = 0 mod q where |S | = k



The (average-case) k-SUM problem

∑
i∈S

ai = 0 mod q where |S | = k

Expected no.of solutions = 
(n

k)
∑
i=1

1
q

=
(n

k)
q

. . . . .a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them



The (average-case) k-SUM problem

∑
i∈S

ai = 0 mod q where |S | = k

Expected no.of solutions = 
(n

k)
∑
i=1

1
q

=
(n

k)
q

. . . . .a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them

Density, Δ =
log (n

k)
logq

≈
k log n
log q



The (average-case) k-SUM problem

Δ



The (average-case) k-SUM problem

Δ
 1≥

Dense regime 
      



The (average-case) k-SUM problem

Δ
 1≥

Dense regime 
     (Well studied in literature) 
[Wag02,Pet15, LLW19, BDV20, DKK21, etc..] 



The (average-case) k-SUM problem

Δ
 1≥
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     (Well studied in literature) 
[Wag02,Pet15, LLW19, BDV20, DKK21, etc..] 

• It has been central in studying the complexity  of important problems in theoretical 
computer science [AW14, Pat10, GO95, BHP01, SEO03, KPP16].
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Planted k-SUM instance

Decision problem Search problem

Find the planted solution Does the instance have a planting (or) not 
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• It is good to diversify the 
hardness assumptions 
used in cryptography

You don’t put all your eggs in the same basket!
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k-XOR - Variant of k-SUM

a1 a2 a3 a4 a5 a6

Planted k-XOR instance

But each element is a m-dimensional binary vector 

ai ∈ {0,1}m

Planted k-SUM - cryptography - preliminaries



A certain hardness of LPN

η = 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍

2mc : c ∈ (0,0.5)

PKE

k-XOR at certain density

Δ =
1

poly log(n)

Planted k-SUM - cryptography - preliminaries
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Public Key Encryption

Correctness : 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) m

𝖲𝖾𝗍𝗎𝗉(1λ) (𝗌𝗄, 𝗉𝗄)

secret key
public key

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) msg/fail
𝖤𝗇𝖼(𝗉𝗄, msg) 𝖼𝗍

cipher text

(𝗉𝗄)
(𝗌𝗄)

(𝖼𝗍)

Trusted authority

Encryptor Decryptor



Extra slides - PKE

Capturing the security of PKE

challenger adversary

𝗉𝗄

m0, m1

𝖼𝗍

b′￼

𝖲𝖾𝗍𝗎𝗉(1λ) (𝗌𝗄, 𝗉𝗄)

b $ {0,1}

𝖤𝗇𝖼(𝗉𝗄, mb) 𝖼𝗍

Adversary wins if b = b’



Conditional lower bound intuition - one approach

X

Instance
Δ = 1

Convert X’

Instance
Δ′￼

Assume Δ′￼< 1

Such that solution is preserved in some form

. . . . .a1 a2 a3 an−2 an−1 an

X′￼ ⊂ X

|X′￼| = nΔ′￼

With high probability the solution gets copied too! Yay!



Planted  and Non planted equivalence intuition

Planted  
Distribution

Non-planted 
Distribution

Intermediate 
Distribution

ℓFind an optimal parameter value         for a given value of  n, k  

Planted  
Distribution

(Sample from planted distr.)XIf  # solutions <= ℓYes

No

X
Output

Non-planted 
Distribution

SampleX’

TVD
Renyi. Divergence 


