
k-SUM in the sparse regime

Shweta Agrawal, Sagnik Saha, Nikolaj Ignatieff Schwartzbach, Akhil Vanukuri, Prashant Nalini Vasudevan

k-SUM in the sparse regime

The (average-case) k-SUM problem

The (average-case) k-SUM problem

.a1 a2 a3 an−2 an−1 an
ℤqai

$

’n’ elements sampled uniformly from ℤq

The (average-case) k-SUM problem

.a1 a2 a3 an−2 an−1 an
ℤqai

$

’n’ elements sampled uniformly from ℤq

∑

0 mod q

Find ‘k’ out of them

The (average-case) k-SUM problem

.a1 a2 a3 an−2 an−1 an
ℤqai

$

’n’ elements sampled uniformly from ℤq

∑

0 mod q

Find ‘k’ out of them

k is ‘small’

The (average-case) k-SUM problem
.a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them

∑
i∈S

ai = 0 mod q where |S | = k

The (average-case) k-SUM problem

∑
i∈S

ai = 0 mod q where |S | = k

Expected no.of solutions =
(n

k)
∑
i=1

1
q

=
(n

k)
q

.a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them

The (average-case) k-SUM problem

∑
i∈S

ai = 0 mod q where |S | = k

Expected no.of solutions =
(n

k)
∑
i=1

1
q

=
(n

k)
q

.a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them

Density, Δ =
log (n

k)
logq

≈
k log n
log q

The (average-case) k-SUM problem

Δ

The (average-case) k-SUM problem

Δ
 1≥

Dense regime

The (average-case) k-SUM problem

Δ
 1≥

Dense regime
 (Well studied in literature)
[Wag02,Pet15, LLW19, BDV20, DKK21, etc..]

The (average-case) k-SUM problem

Δ
 1≥

Dense regime
 (Well studied in literature)
[Wag02,Pet15, LLW19, BDV20, DKK21, etc..]

• It has been central in studying the complexity of important problems in theoretical
computer science [AW14, Pat10, GO95, BHP01, SEO03, KPP16].

The (average-case) k-SUM problem

Δ
 1≥

Dense regime
 (Well studied in literature)
[Wag02,Pet15, LLW19, BDV20, DKK21, etc..]

< 1

Sparse regime
(Not much is known)

• Planted k-SUM problem• Planted k-SUM problem - example: n = 6 , k = 3

• Planted k-SUM problem

a1 a2 a3 a4 a5 a6

• Planted k-SUM problem - example: n = 6 , k = 3

• Planted k-SUM problem - example: n = 6 , k = 3

a1 a2 a3 a4 a5 a6

Pick k = 3 elements uniformly

• Planted k-SUM problem - example: n = 6 , k = 3

a1 a2 a3 a4 a5 a6

Pick k = 3 elements uniformly

Replace the smallest indexed element with sum of others

a1 = − (a2 + a5) mod q

a1 a2 a3 a4 a5 a6

• Planted k-SUM problem - example: n = 6 , k = 3

a1 a2 a3 a4 a5 a6

Pick k = 3 elements uniformly

Replace the smallest indexed element with sum of others

a1 = − (a2 + a5) mod q

a1 a2 a3 a4 a5 a6

Planted k-SUM instance

a1 a2 a3 a4 a5 a6

Planted k-SUM instance

a1 a2 a3 a4 a5 a6

Planted k-SUM instance

Search problem

Find the planted solution

a1 a2 a3 a4 a5 a6

Planted k-SUM instance

Decision problem Search problem

Find the planted solution Does the instance have a planting (or) not

Complexity

Planted k-SUM

Complexity

Cryptography

Planted k-SUM

Complexity

Cryptography

Planted k-SUM

• It is good to diversify the
hardness assumptions
used in cryptography

Complexity

Cryptography

Planted k-SUM

• It is good to diversify the
hardness assumptions
used in cryptography

You don’t put all your eggs in the same basket!

Complexity

Algorithms

Cryptography

Planted k-SUM

Planted k-SUM - conjecture

.a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them

Brute force : (n
k) Meet-in-the-middle : n⌈ k

2 ⌉

Planted k-SUM - conjecture

.a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them

Brute force : (n
k) Meet-in-the-middle : n⌈ k

2 ⌉

If k is a super constant i.e, ω(1) then this is super-poly time

Planted k-SUM - conjecture

.a1 a2 a3 an−2 an−1 an

ℤqai
$

∑

0 mod q

Find ‘k’ out of them

Brute force : (n
k)

If k is a super constant i.e, ω(1) then this is super-poly time

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21].

Meet-in-the-middle : n⌈ k
2 ⌉

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Our Results

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21].

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted
and
non-planted
equivalence

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21].

Our Results

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted
and
non-planted
equivalence

Planted k-SUM
Distr.

Non-planted k-SUM
Distr.≈stat

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21].

Our Results

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted
and
non-planted
equivalence

Planted k-SUM
Distr.

Non-planted k-SUM
Distr.≈stat

⟹ Algorithm for planted-kSUM solves non-planted k-SUM

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21].

Our Results

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted
and
non-planted
equivalence

Planted k-SUM
Distr.

Non-planted k-SUM
Distr.≈stat

⟹ Algorithm for planted-kSUM solves non-planted k-SUM

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted
and
non-planted
equivalence

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Conditional lower bound

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted
and
non-planted
equivalence

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Conditional lower bound

Hardness Amplification

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted
and
non-planted
equivalence

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Conditional lower bound

Search to Decision reduction of planted k-SUM problem

Hardness Amplification

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Search to Decision reduction of planted k-SUM problem

Planted
and
non-planted
equivalence

Conditional lower bound

PKE from LPN - -hard + Hardness of k-XOR2mc

Hardness Amplification

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Search to Decision reduction of planted k-SUM problem

Planted
and
non-planted
equivalence

Conditional lower bound

Faster algorithm
 for a variant of

 k-SUM

PKE from LPN - -hard + Hardness of k-XOR2mc

Hardness Amplification

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Planted k-SUM - cryptography - overview

Planted k-SUM - cryptography - overview

PKE : Public Key Encryption

A certain hardness of LPN

Not known to

PKE

Not known to

PKE

Planted k-SUM - cryptography - overview

PKE : Public Key Encryption

A certain hardness of LPN

Variant of k-SUM at certain density

Not known to

PKE

A certain hardness of LPN

Variant of k-SUM at certain density

Planted k-SUM - cryptography - overview

PKE

PKE : Public Key Encryption

Not known to

PKE

Not known to

PKE

Planted k-SUM - cryptography - preliminaries

LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

LPN (Learning Parity with Noise)

(A s ⊕ e) ≈comp u

Planted k-SUM - cryptography - preliminaries

LPN (Learning Parity with Noise)

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

Planted k-SUM - cryptography - preliminaries

LPN (Learning Parity with Noise)

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

Planted k-SUM - cryptography - preliminaries

LPN (Learning Parity with Noise)

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1

Planted k-SUM - cryptography - preliminaries

LPN (Learning Parity with Noise)

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Planted k-SUM - cryptography - preliminaries

LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

Error Rate η

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Hardness

LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

Error Rate η

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Hardness

Constant

PPT

One-way Functions
[Blu94]

LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

Error Rate η

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Hardness

Constant

PPT

One-way Functions
[Blu94]

Constant

2m0.51

PKE [YZ16]
CRHF[YZWGL19]

LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

Error Rate η

(A s ⊕ e) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Hardness

Constant

PPT

One-way Functions
[Blu94]

Constant

2m0.51

PKE [YZ16]
CRHF[YZWGL19]

1/ m

PPT

PKE [Ale03, DMN12, KMP14]

k-XOR - Variant of k-SUM

a1 a2 a3 a4 a5 a6

Planted k-XOR instance

Planted k-SUM - cryptography - preliminaries

k-XOR - Variant of k-SUM

a1 a2 a3 a4 a5 a6

Planted k-XOR instance

But each element is a m-dimensional binary vector

ai ∈ {0,1}m

Planted k-SUM - cryptography - preliminaries

A certain hardness of LPN

η = 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍

2mc : c ∈ (0,0.5)

PKE

k-XOR at certain density

Δ =
1

poly log(n)

Planted k-SUM - cryptography - preliminaries

PKE

(All matrix and vector elements are in {0,1})

PKE

Public key :

A

n
m

(All matrix and vector elements are in {0,1})

PKE

Public key :

A

n
m

Secret key :

t

#1’s = k

m
n

(All matrix and vector elements are in {0,1})

PKE

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Encryption :

A

n
ms

Ber. error

Encode(msg)

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

A

n
ms

Ber. error

Encode(msg)

PKE Security

A

n
ms

Ber. error

Encode(msg)

PKE Security

≈c

Random

n
ms

Ber. error

Encode(msg)

A

n
ms

Ber. error

Encode(msg)

PKE Security

≈c

Random

n
ms

Ber. error

Encode(msg)

Hardness of -XORk

A

n
ms

Ber. error

Encode(msg)

PKE Security

≈c

Random

n
ms

Ber. error

Encode(msg)

 Δ =
k log n

m

Hardness of -XORk

A

n
ms

Ber. error

Encode(msg)

PKE Security

≈c

Random

n
ms

Ber. error

Encode(msg)

 Δ =
k log n

m
=

1
(log n)α

Hardness of -XORk

A

n
ms

Ber. error

Encode(msg)

PKE Security

≈c

Random

n
ms

Ber. error

Encode(msg)

 Δ =
k log n

m
=

1
(log n)α

Hardness of -XORk

≈c
Encode(msg)

Random

A

n
ms

Ber. error

Encode(msg)

PKE Security

≈c

Random

n
ms

Ber. error

Encode(msg)

 Δ =
k log n

m
=

1
(log n)α

Hardness of -XORk

≈c
Encode(msg)

Random

Hardness of LPN

Encryption : Decryption :

A

n
msT

Ber. error

Encode(msg)

Public key :

A

n
m

Secret key :

t

n

#1’s = k

Such that :

A 0 m

n
m

Ber. error

Encode(msg)

n
ntT

(All matrix and vector elements are in {0,1})

PKE

ntT
ntT()s

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

Decryption :

n
Ber. error

Encode(msg)

ntT

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

m =
k log n

Δ

Decryption :

n
Ber. error

Encode(msg)

ntT

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

m =
k log n

Δ

m ≤
(log n)2

Δ

Decryption :

n
Ber. error

Encode(msg)

ntT

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

m =
k log n

Δ

m ≤
(log n)2

Δ

Decryption :

n
Ber. error

Encode(msg)

ntT

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

Without k-XOR :

m =
k log n

Δ

m ≤
(log n)2

Δ

m ≤ (log n)2

Δ ≥ 1
Planted ≈stat non-Planted

Decryption :

n
Ber. error

Encode(msg)

ntT

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

Without k-XOR :

m =
k log n

Δ

m ≤
(log n)2

Δ

m ≤ (log n)2

⟹ 2m0.51
Hardness assumed

Δ ≥ 1
Planted ≈stat non-Planted

Decryption :

n
Ber. error

Encode(msg)

ntT

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

Without k-XOR : With k-XOR :

m =
k log n

Δ

m ≤
(log n)2

Δ

m ≤ (log n)2

⟹ 2m0.51
Hardness assumed

Δ ≥ 1
Planted ≈stat non-Planted

Decryption :

n
Ber. error

Encode(msg)

ntT

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

Without k-XOR : With k-XOR :

m =
k log n

Δ

m ≤
(log n)2

Δ

m ≤ (log n)2

⟹ 2m0.51
Hardness assumed

Δ =
1

(log n)α

Δ ≥ 1
Planted ≈stat non-Planted

Decryption :

n
Ber. error

Encode(msg)

ntT

Δ < 1
Planted ≈comp non-Planted

m ≤ (log n)2+α

Public key :

A

n
m

Secret key :

t

#1’s = k

Such that :

A 0 m

n
m

n
ntT

(All matrix and vector elements are in {0,1})

PKE

Decryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulationDecryption is possible only if k <= log(n) given Ber. error is constant- more #1’s, more error accumulation

Without k-XOR : With k-XOR :

m =
k log n

Δ

m ≤
(log n)2

Δ

m ≤ (log n)2

⟹ 2m0.51
Hardness assumed

Δ =
1

(log n)α

Δ ≥ 1
Planted ≈stat non-Planted

Decryption :

n
Ber. error

Encode(msg)

ntT

Δ < 1
Planted ≈comp non-Planted

m ≤ (log n)2+α

⟹ 2mc
Hardness assumed

: c ∈ (0,0.5)

Summary of results mentioned
Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Search to Decision reduction of planted k-SUM problem

Planted
and
non-planted
equivalence

Conditional lower bound

Faster algorithm
 for a variant of

 k-SUM

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1)

PKE from LPN - -hard + Hardness + k-XOR2mc

Hardness Amplification

[Pet15, LLW19, DKK21].

Questions ?

Thank you !

Extra slides - PKE

Public Key Encryption

Correctness : 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) m

𝖲𝖾𝗍𝗎𝗉(1λ) (𝗌𝗄, 𝗉𝗄)

secret key
public key

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) msg/fail
𝖤𝗇𝖼(𝗉𝗄, msg) 𝖼𝗍

cipher text

(𝗉𝗄)
(𝗌𝗄)

(𝖼𝗍)

Trusted authority

Encryptor Decryptor

Extra slides - PKE

Capturing the security of PKE

challenger adversary

𝗉𝗄

m0, m1

𝖼𝗍

b′

𝖲𝖾𝗍𝗎𝗉(1λ) (𝗌𝗄, 𝗉𝗄)

b $ {0,1}

𝖤𝗇𝖼(𝗉𝗄, mb) 𝖼𝗍

Adversary wins if b = b’

Conditional lower bound intuition - one approach

X

Instance
Δ = 1

Convert X’

Instance
Δ′

Assume Δ′ < 1

Such that solution is preserved in some form

.a1 a2 a3 an−2 an−1 an

X′ ⊂ X

|X′ | = nΔ′

With high probability the solution gets copied too! Yay!

Planted and Non planted equivalence intuition

Planted
Distribution

Non-planted
Distribution

Intermediate
Distribution

ℓFind an optimal parameter value for a given value of n, k

Planted
Distribution

(Sample from planted distr.)XIf # solutions <= ℓYes

No

X
Output

Non-planted
Distribution

SampleX’

TVD
Renyi. Divergence

