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     (Well studied in literature) 
[Wag02,Pet15, LLW19, BDV20, DKK21, etc..] 

• It has been central in studying the complexity  of important problems in theoretical 
computer science [AW14, Pat10, GO95, BHP01, SEO03, KPP16].
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Planted k-SUM instance

Decision problem Search problem

Find the planted solution Does the instance have a planting (or) not 
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• It is good to diversify the 
hardness assumptions 
used in cryptography

You don’t put all your eggs in the same basket!
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If k is a super constant i.e, ω(1) then this is super-poly time

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21]. 


Meet-in-the-middle : n⌈ k
2 ⌉



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Our Results

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21]. 




Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted  
and  
non-planted  
equivalence

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21]. 


Our Results



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted  
and  
non-planted  
equivalence

Planted k-SUM  
Distr.

Non-planted k-SUM 
Distr.≈stat

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21]. 


Our Results



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted  
and  
non-planted  
equivalence

Planted k-SUM  
Distr.

Non-planted k-SUM 
Distr.≈stat

⟹ Algorithm for planted-kSUM solves non-planted k-SUM

Conjecture : At Δ = 1 best runtime of k-SUM algorithm is n⌈ k
2 ⌉−o(1) [Pet15, LLW19, DKK21]. 


Our Results



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted  
and  
non-planted  
equivalence

Planted k-SUM  
Distr.

Non-planted k-SUM 
Distr.≈stat

⟹ Algorithm for planted-kSUM solves non-planted k-SUM

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted  
and  
non-planted  
equivalence

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Conditional lower bound



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted  
and  
non-planted  
equivalence

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Conditional lower bound

Hardness Amplification



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Planted  
and  
non-planted  
equivalence

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results

Conditional lower bound

Search to Decision reduction of planted k-SUM problem

Hardness Amplification



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Search to Decision reduction of planted k-SUM problem

Planted  
and  
non-planted  
equivalence

Conditional lower bound

PKE from LPN - -hard + Hardness of k-XOR2mc

Hardness Amplification

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results



Dense regime

1 Δ1
𝗉𝗈𝗅𝗒 log 𝗇

1
2

1
n0.5+ϵ

Search to Decision reduction of planted k-SUM problem

Planted  
and  
non-planted  
equivalence

Conditional lower bound

Faster algorithm 
 for a variant of 

 k-SUM

PKE from LPN - -hard + Hardness of k-XOR2mc

Hardness Amplification

Conjecture : At Δ = 1 best runtime of (planted) k-SUM algorithm is n⌈ k
2 ⌉−o(1)

Our Results



Planted k-SUM - cryptography - overview



Planted k-SUM - cryptography - overview

PKE : Public Key Encryption

A certain hardness of LPN

Not known to

PKE



Not known to

PKE

Planted k-SUM - cryptography - overview

PKE : Public Key Encryption

A certain hardness of LPN

Variant of k-SUM at certain density

Not known to

PKE



A certain hardness of LPN

Variant of k-SUM at certain density

Planted k-SUM - cryptography - overview

PKE

PKE : Public Key Encryption

Not known to

PKE

Not known to

PKE



Planted k-SUM - cryptography - preliminaries



LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries



LPN (Learning Parity with Noise)

( A s ⊕ e ) ≈comp u

Planted k-SUM - cryptography - preliminaries



LPN (Learning Parity with Noise)

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

Planted k-SUM - cryptography - preliminaries



LPN (Learning Parity with Noise)

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

Planted k-SUM - cryptography - preliminaries



LPN (Learning Parity with Noise)

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1

Planted k-SUM - cryptography - preliminaries



LPN (Learning Parity with Noise)

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Planted k-SUM - cryptography - preliminaries



LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1



LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

Error Rate η

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Hardness



LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

Error Rate η

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Hardness

Constant

PPT

One-way Functions 
[Blu94]



LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

Error Rate η

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Hardness

Constant

PPT

One-way Functions 
[Blu94]

Constant

2m0.51

PKE [YZ16] 
CRHF[YZWGL19]



LPN (Learning Parity with Noise)

Planted k-SUM - cryptography - preliminaries

Error Rate η

( A s ⊕ e ) ≈comp u

A $ {0,1}n×m

s $ {0,1}m×1

e $ (𝖡𝖾𝗋η)n×1 u $ {0,1}n×1

Hardness

Constant

PPT

One-way Functions 
[Blu94]

Constant

2m0.51

PKE [YZ16] 
CRHF[YZWGL19]

1/ m

PPT

PKE [Ale03, DMN12, KMP14]



k-XOR - Variant of k-SUM

a1 a2 a3 a4 a5 a6

Planted k-XOR instance

Planted k-SUM - cryptography - preliminaries



k-XOR - Variant of k-SUM

a1 a2 a3 a4 a5 a6

Planted k-XOR instance

But each element is a m-dimensional binary vector 

ai ∈ {0,1}m

Planted k-SUM - cryptography - preliminaries



A certain hardness of LPN

η = 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍

2mc : c ∈ (0,0.5)

PKE

k-XOR at certain density

Δ =
1

poly log(n)

Planted k-SUM - cryptography - preliminaries
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Public Key Encryption

Correctness : 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) m

𝖲𝖾𝗍𝗎𝗉(1λ) (𝗌𝗄, 𝗉𝗄)

secret key
public key

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) msg/fail
𝖤𝗇𝖼(𝗉𝗄, msg) 𝖼𝗍

cipher text

(𝗉𝗄)
(𝗌𝗄)

(𝖼𝗍)

Trusted authority

Encryptor Decryptor
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Capturing the security of PKE

challenger adversary

𝗉𝗄

m0, m1

𝖼𝗍

b′ 

𝖲𝖾𝗍𝗎𝗉(1λ) (𝗌𝗄, 𝗉𝗄)

b $ {0,1}

𝖤𝗇𝖼(𝗉𝗄, mb) 𝖼𝗍

Adversary wins if b = b’



Conditional lower bound intuition - one approach

X

Instance
Δ = 1

Convert X’

Instance
Δ′ 

Assume Δ′ < 1

Such that solution is preserved in some form

. . . . .a1 a2 a3 an−2 an−1 an

X′ ⊂ X

|X′ | = nΔ′ 

With high probability the solution gets copied too! Yay!



Planted  and Non planted equivalence intuition

Planted  
Distribution

Non-planted 
Distribution

Intermediate 
Distribution

ℓFind an optimal parameter value         for a given value of  n, k  

Planted  
Distribution

(Sample from planted distr.)XIf  # solutions <= ℓYes

No

X
Output

Non-planted 
Distribution

SampleX’

TVD
Renyi. Divergence 


