# k-SUM in the sparse regime

Shweta Agrawal, Sagnik Saha, Nikolaj Ignatieff Schwartzbach, <u>Akhil Vanukuri</u>, Prashant Nalini Vasudevan

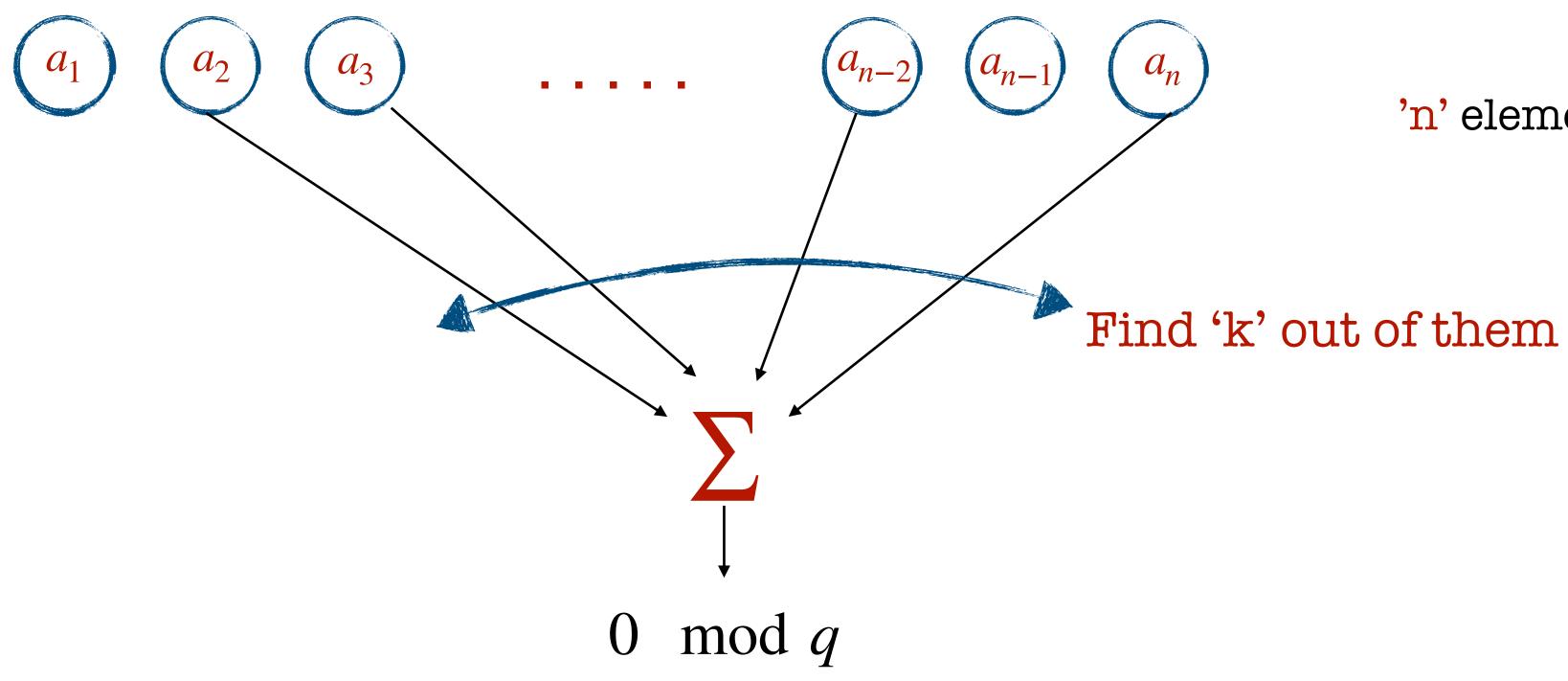
# k-SUM in the sparse regime



 $a_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ 

'n' elements sampled uniformly from  $\mathbb{Z}_q$ 

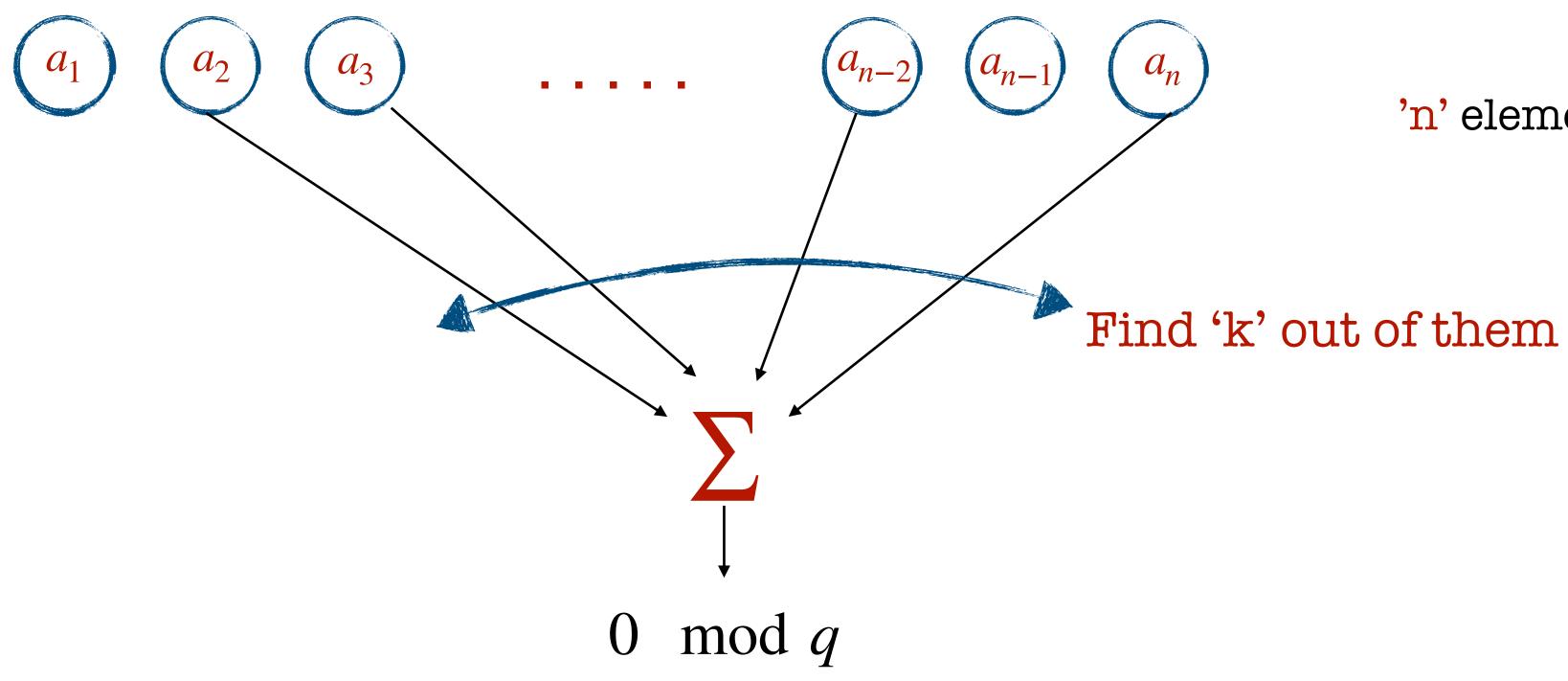










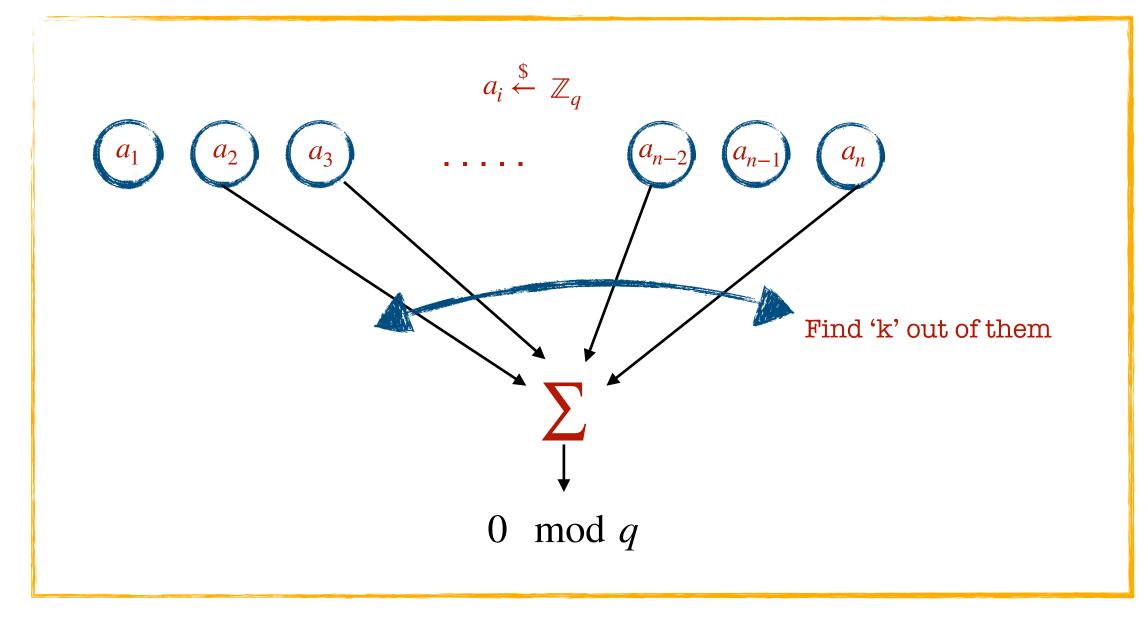


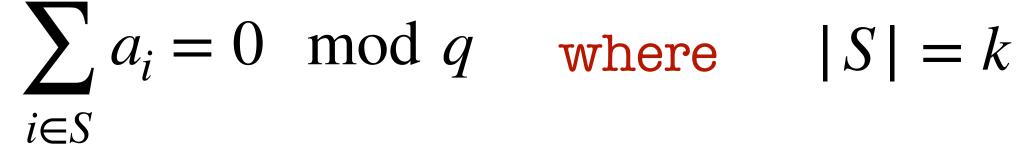




k is 'small'

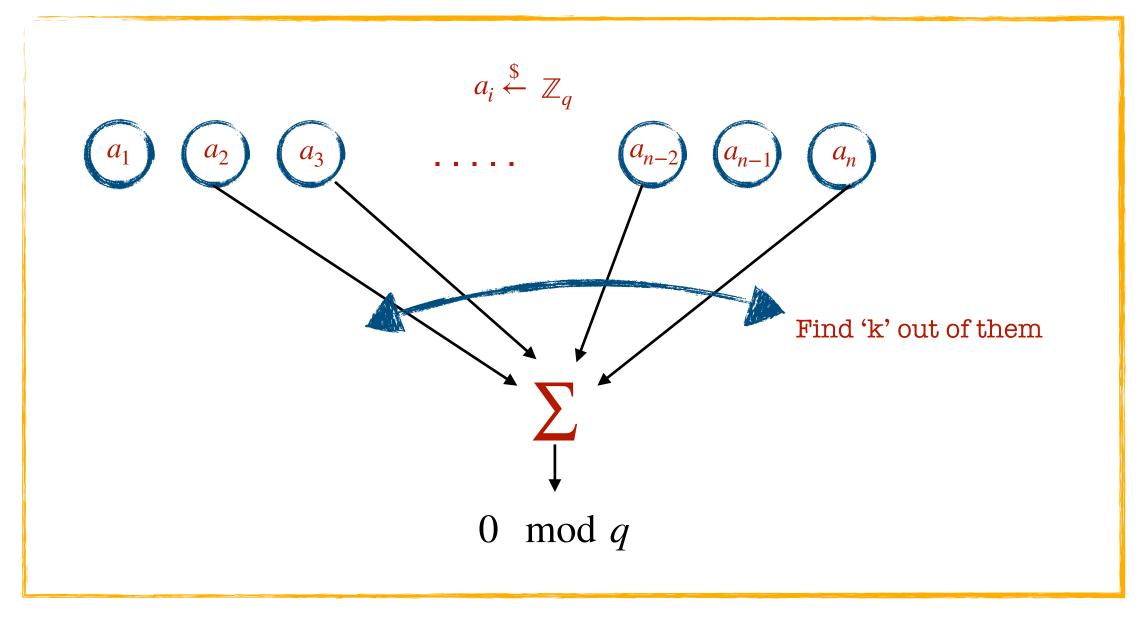


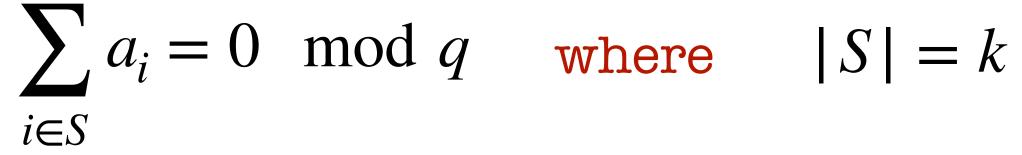






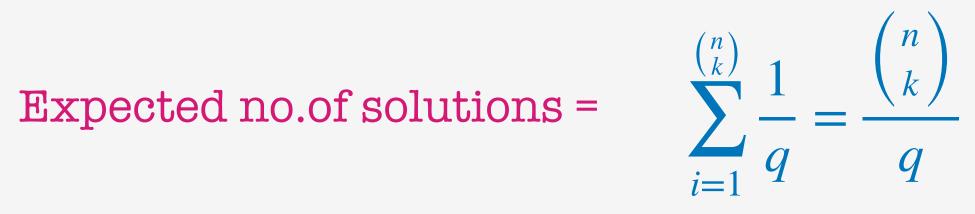
Expected no.of solutions =  $\sum_{i=1}^{\binom{n}{k}} \frac{1}{q} = \frac{\binom{n}{k}}{q}$ 

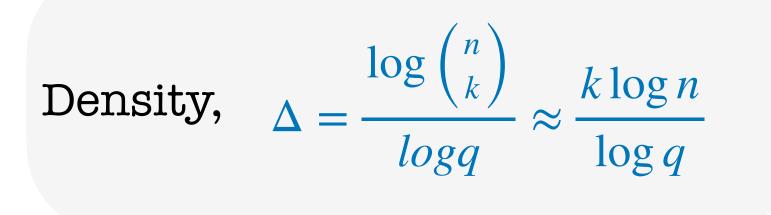


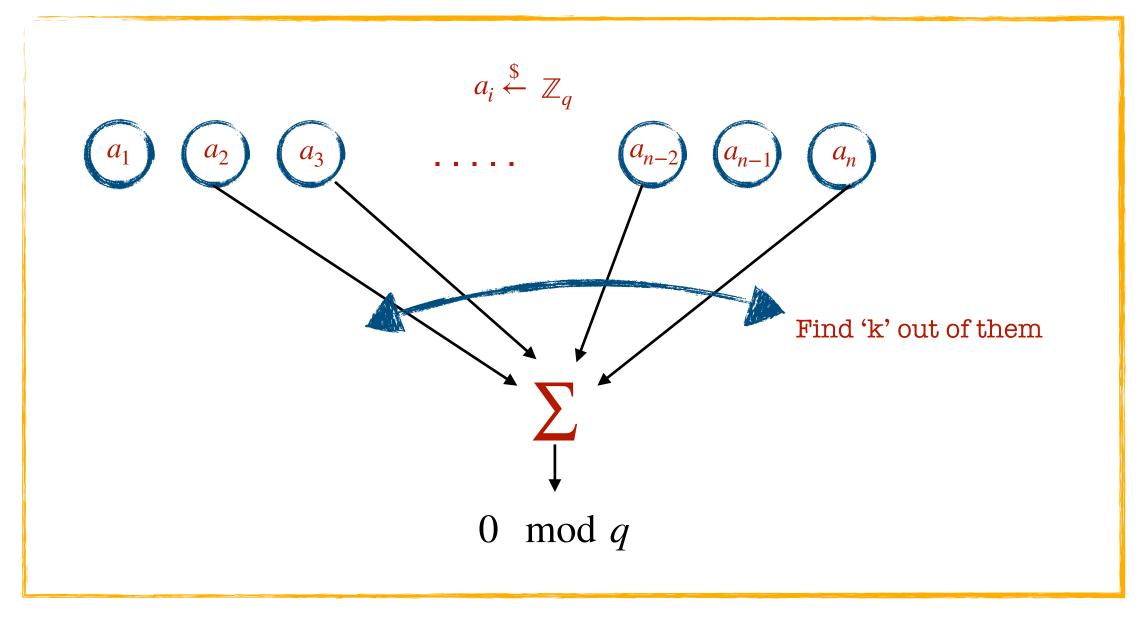


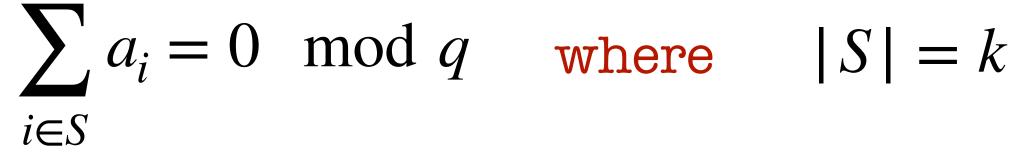






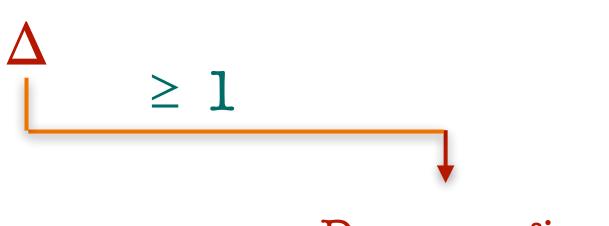










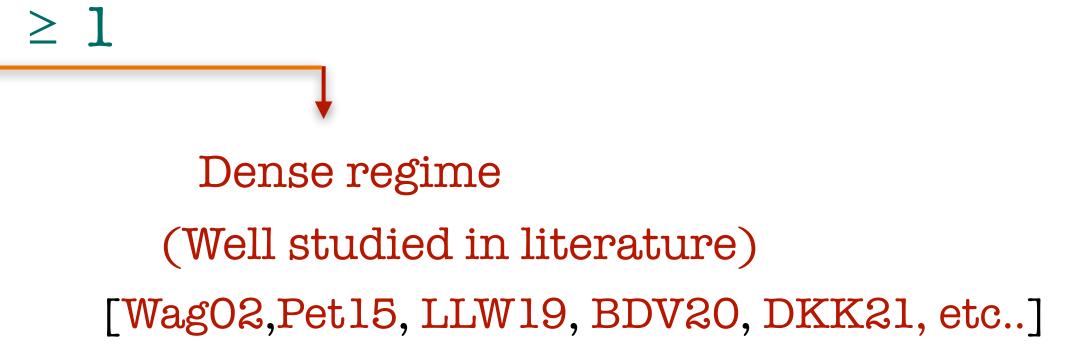


Dense regime

 $\Delta \ge 1$ Dense regime

(Well studied in literature) [Wag02,Pet15, LLW19, BDV20, DKK21, etc..]

• It has been central in studying the complexity of important problems in theoretical computer science [AW14, Pat10, G095, BHP01, SE003, KPP16].



< 1
</pre>
Sparse regime

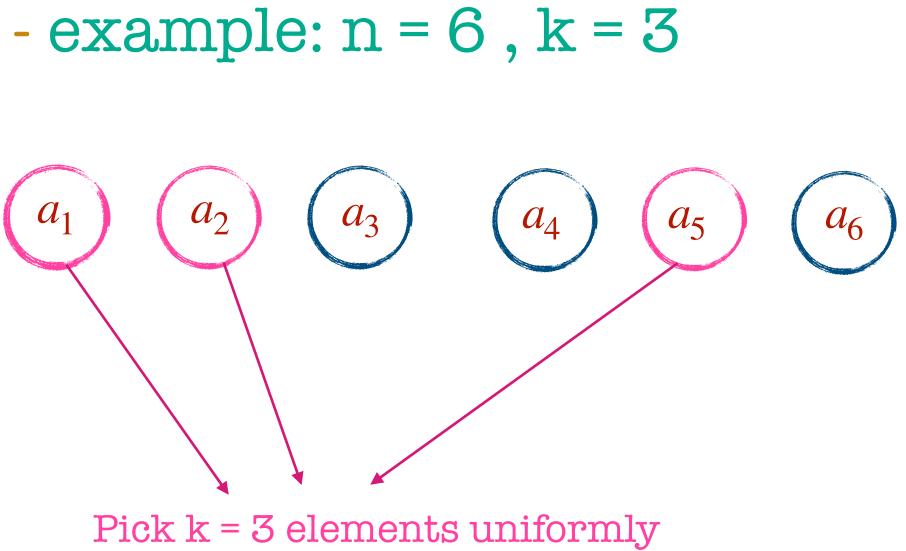
(Not much is known)

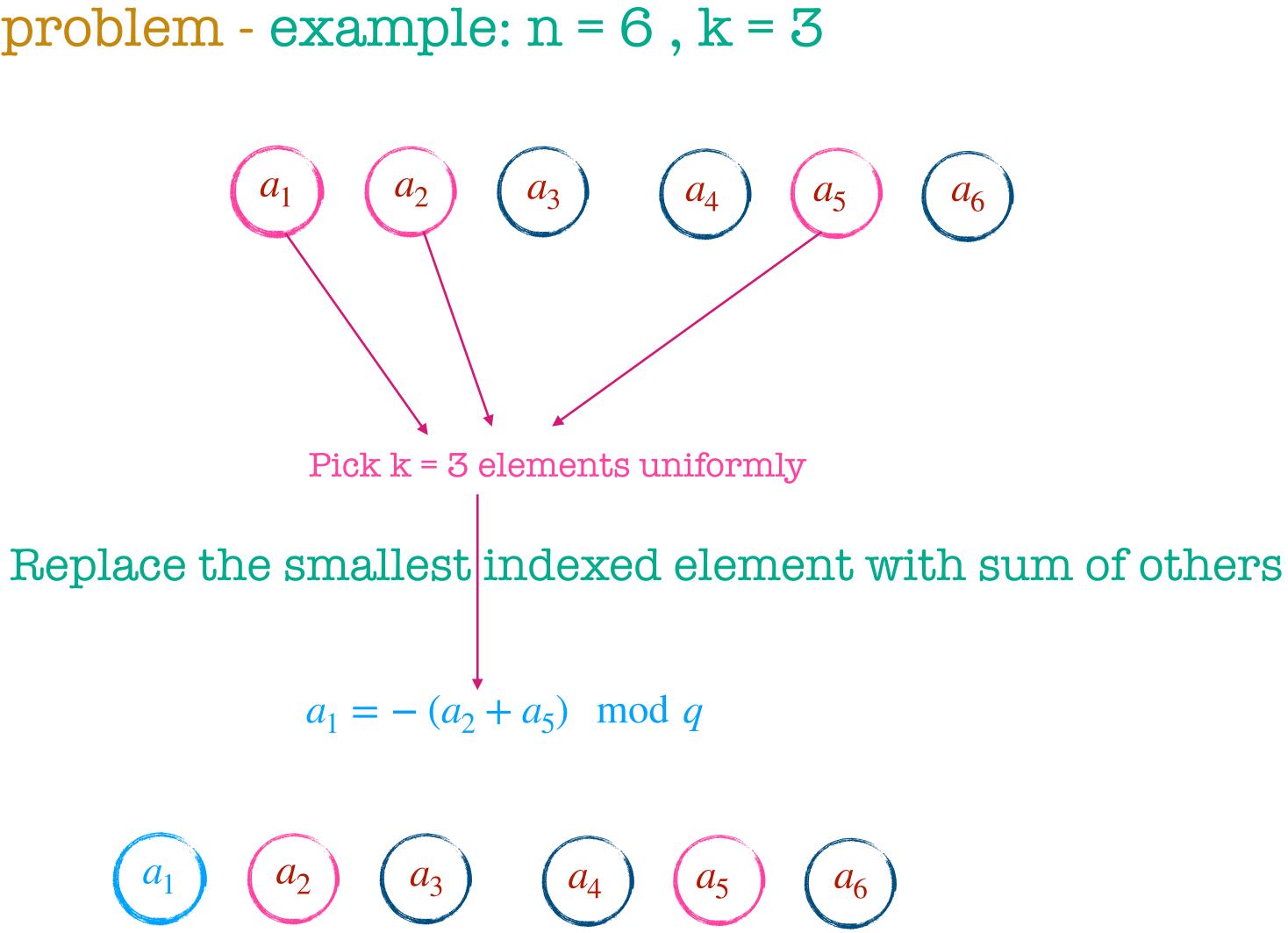
 $\Delta \ge 1$ 

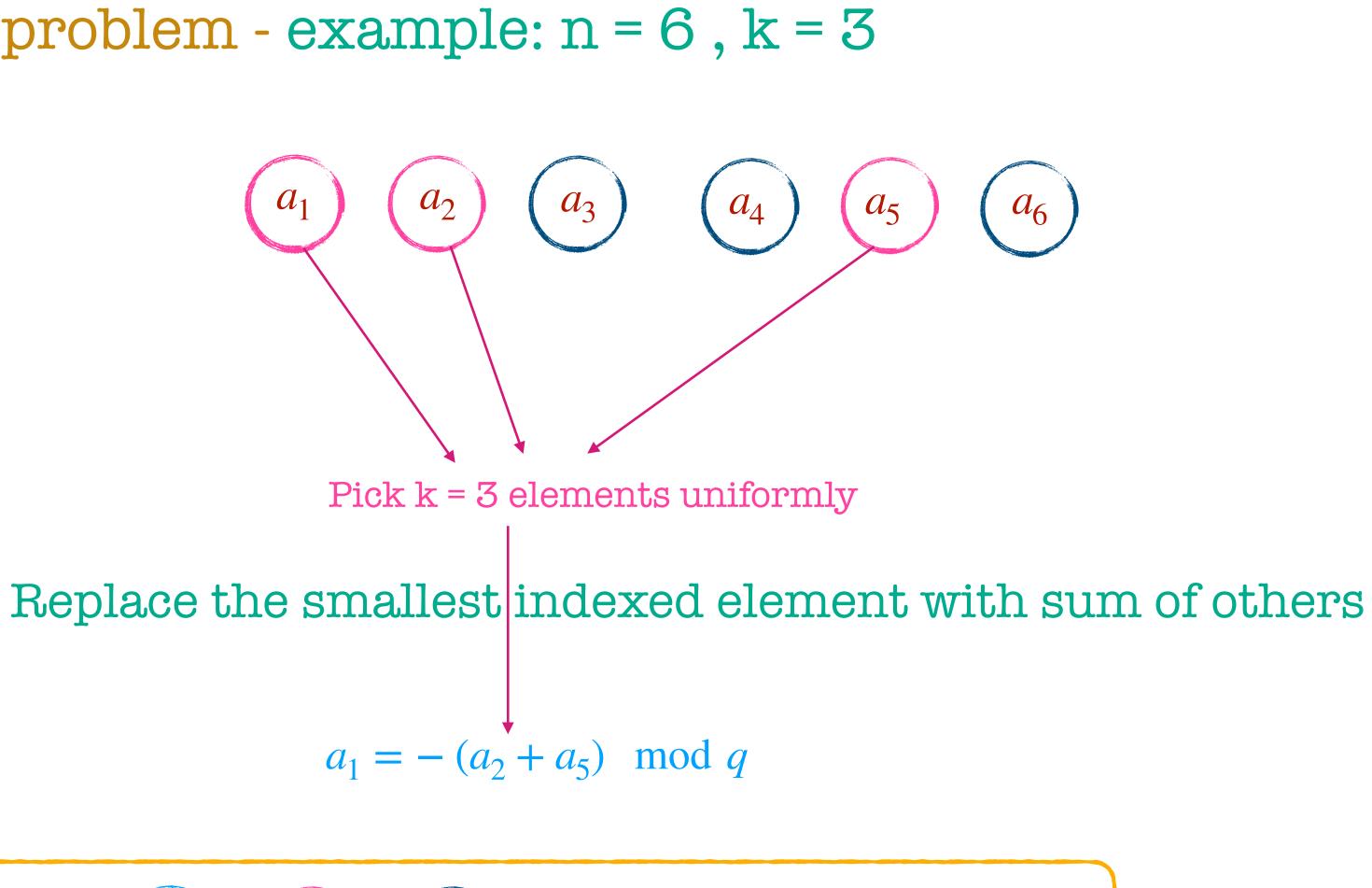
Dense regime (Well studied in literature) [Wag02,Pet15, LLW19, BDV20, DKK21, etc..]



# $\begin{pmatrix} a_2 \end{pmatrix} \begin{pmatrix} a_3 \end{pmatrix} \begin{pmatrix} a_4 \end{pmatrix} \begin{pmatrix} a_5 \end{pmatrix}$ $\left(a_{6}\right)$

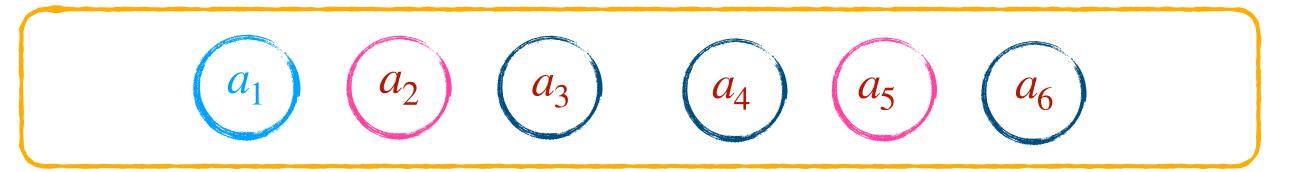




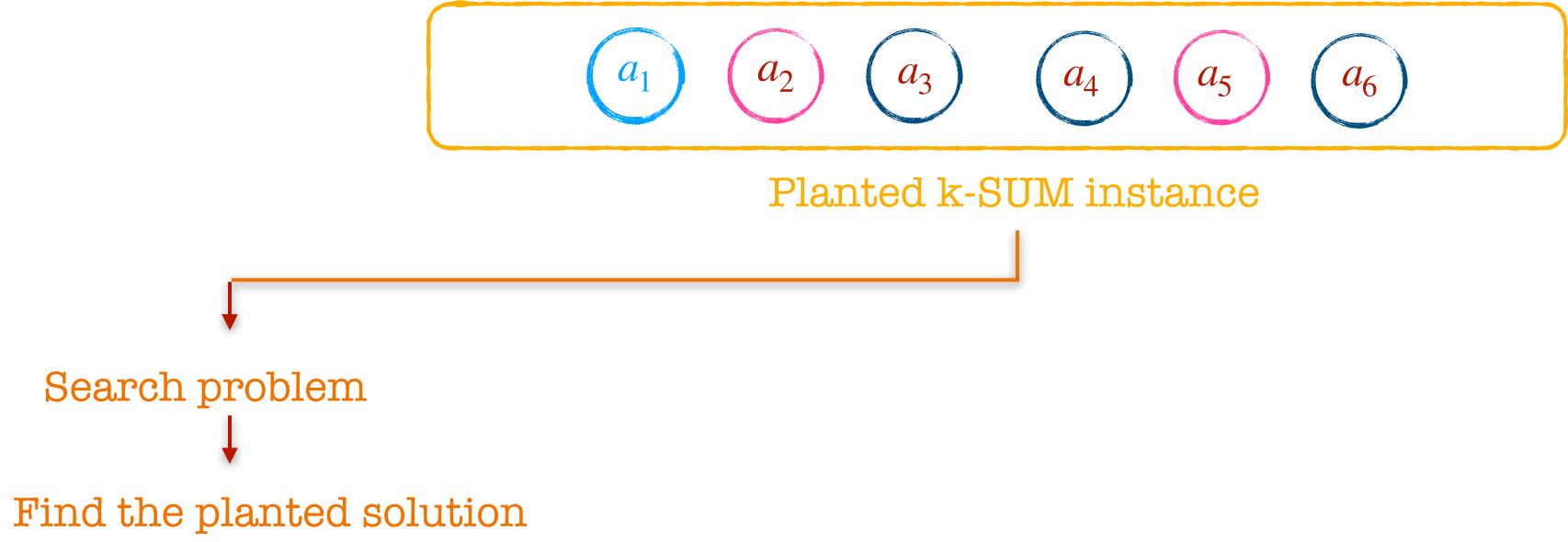


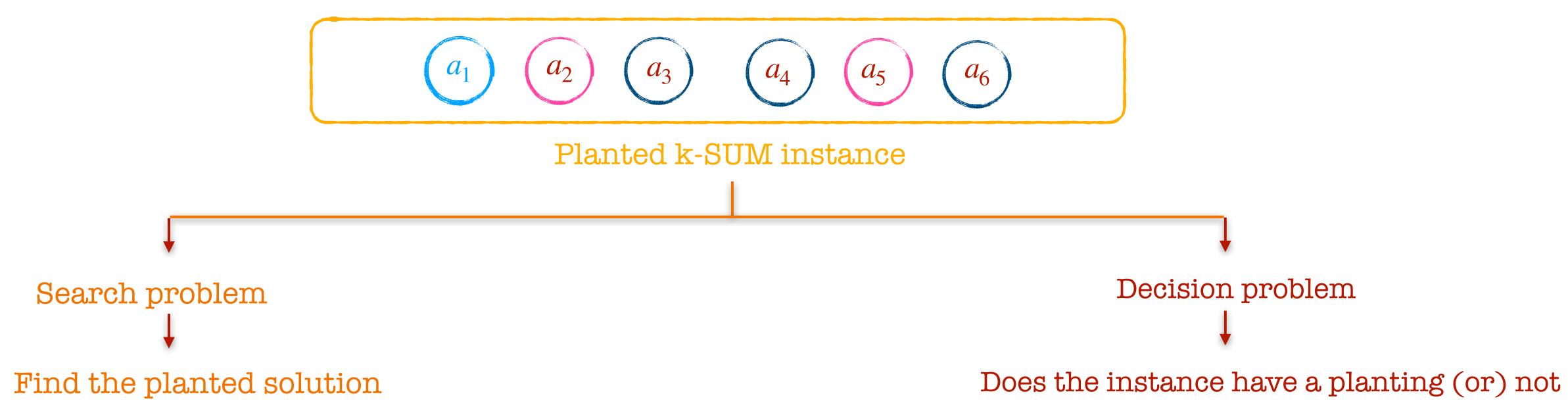


Planted k-SUM instance



#### Planted k-SUM instance







### Complexity

#### Complexity

Cryptography

#### Complexity

• It is good to diversify the hardness assumptions used in cryptography



#### Complexity

• It is good to diversify the hardness assumptions used in cryptography

You don't put all your eggs in the same basket!





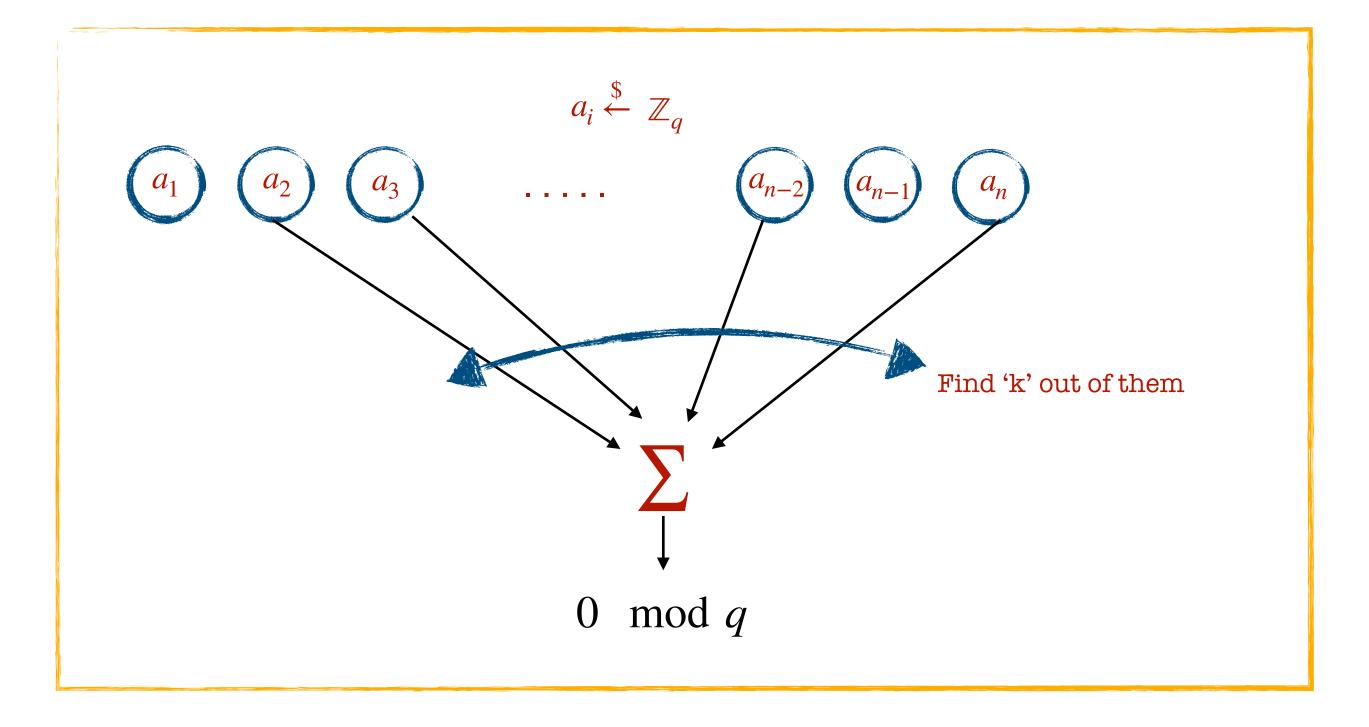


#### Complexity



#### Algorithms

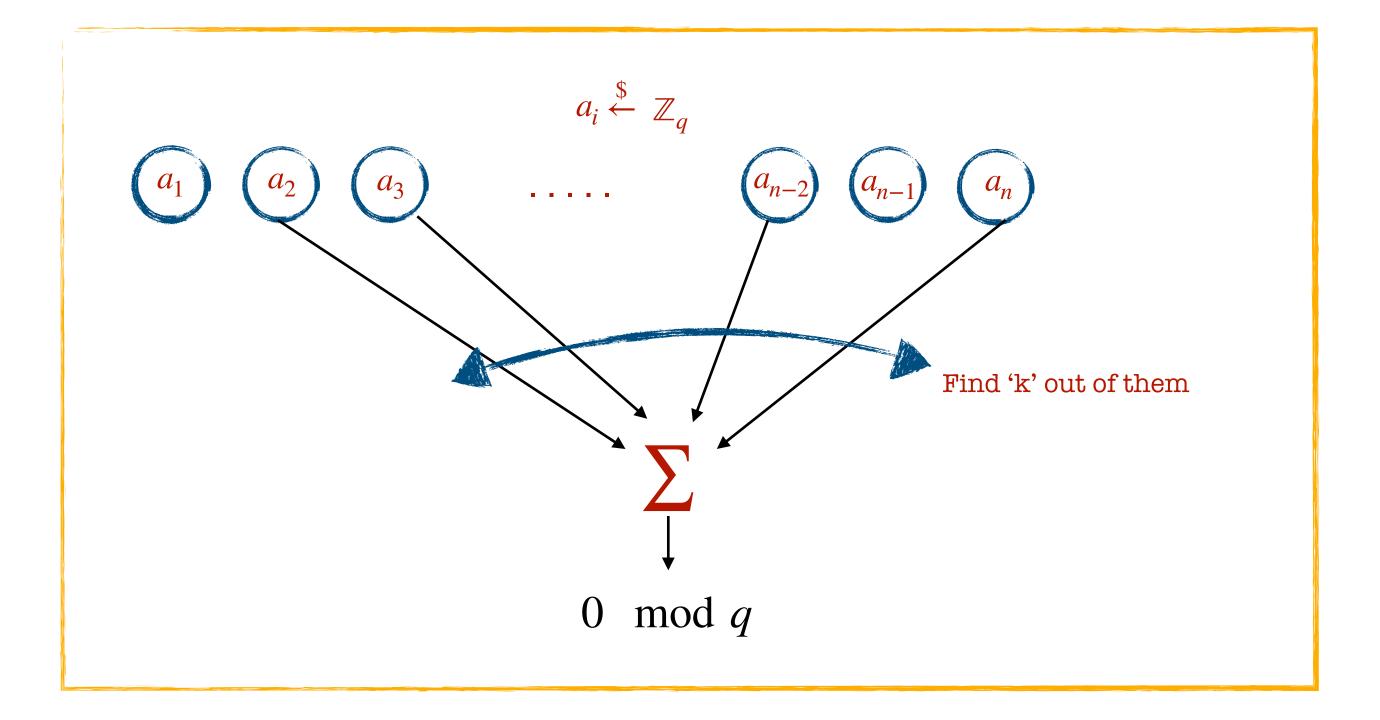
# Planted k-SUM - conjecture





Meet-in-the-middle:  $n^{\left\lceil \frac{k}{2} \right\rceil}$ 

# Planted k-SUM - conjecture



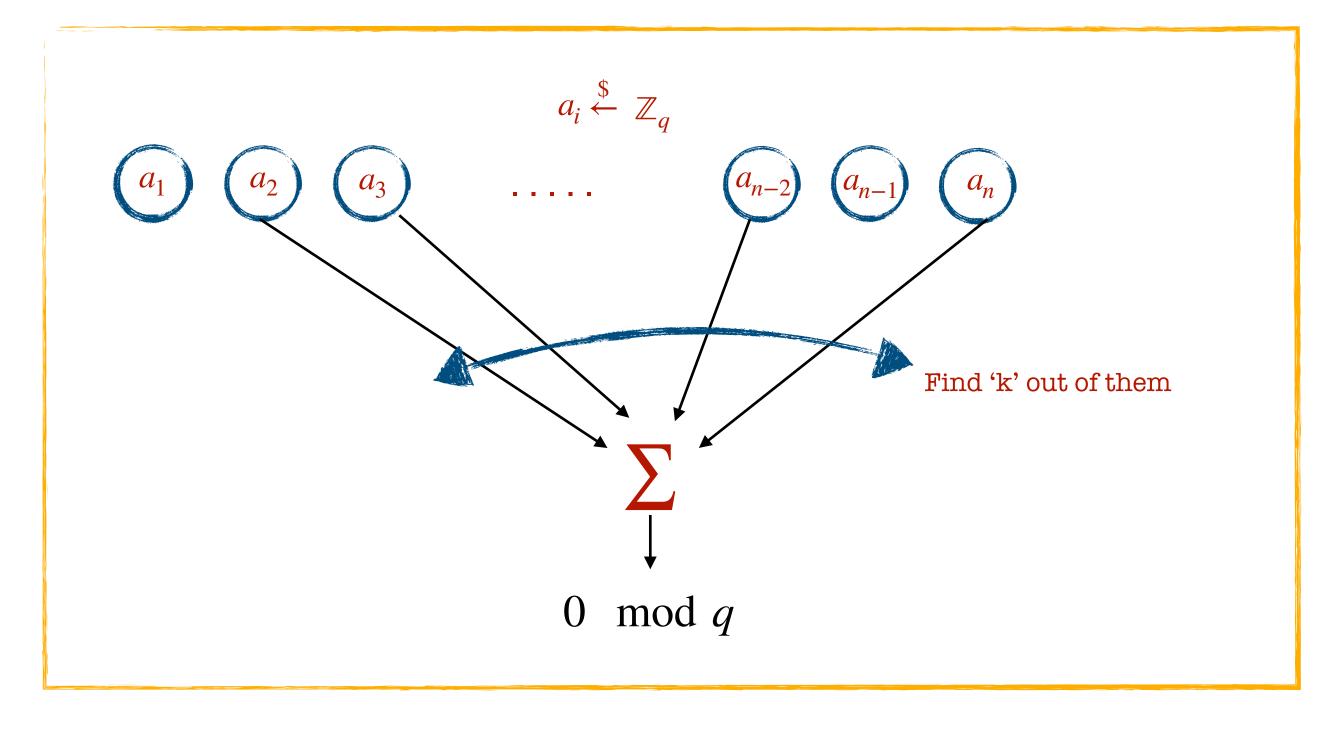
Brute force : 
$$\binom{n}{k}$$

If k is a super constant i.e,  $\omega(1)$ 

Meet-in-the-middle:  $n^{\left\lceil \frac{k}{2} \right\rceil}$ 

 $\omega(1)$  then this is super-poly time

# Planted k-SUM - conjecture



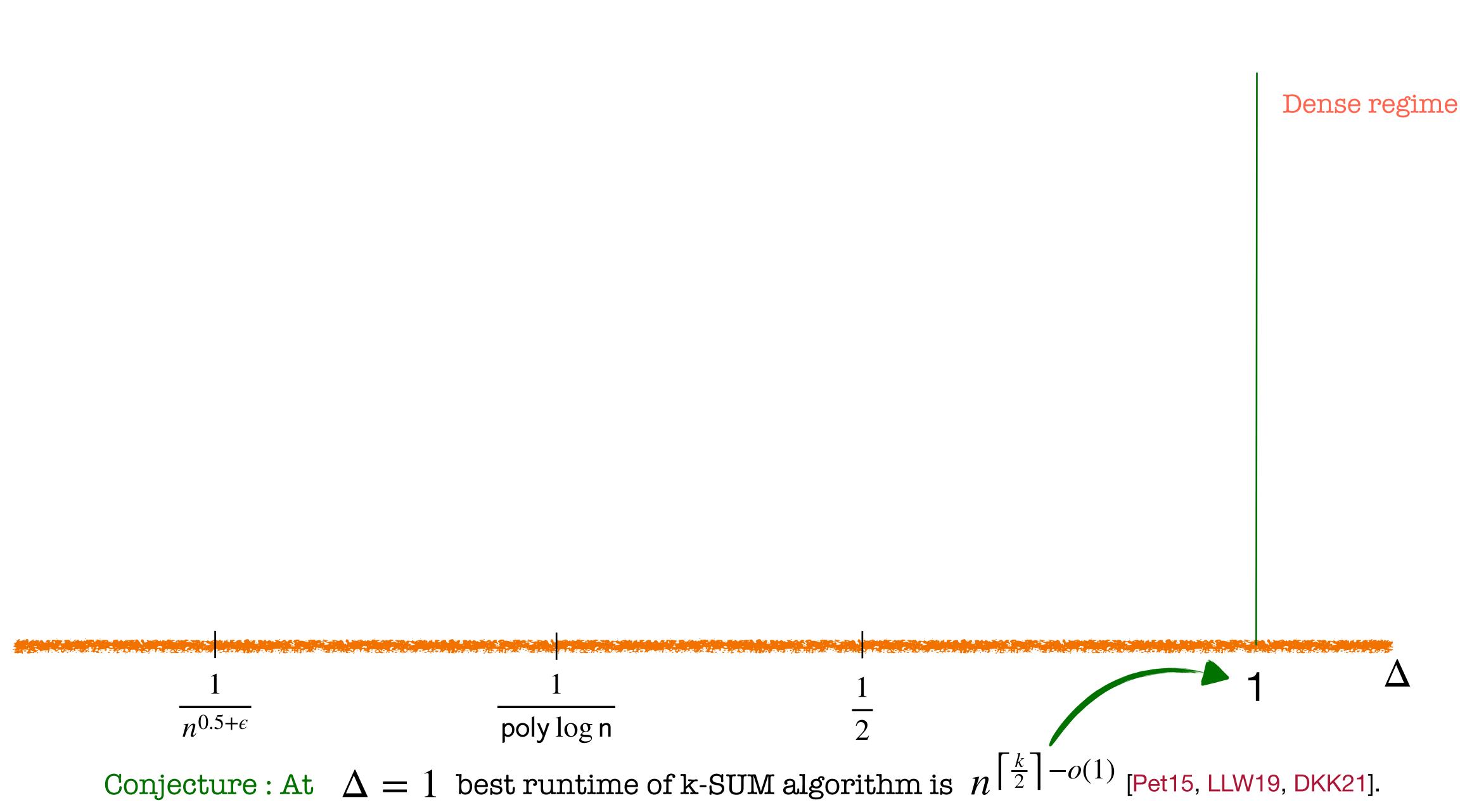
Brute force : 
$$\binom{n}{k}$$

If k is a super constant i.e,  $\omega(1)$ 

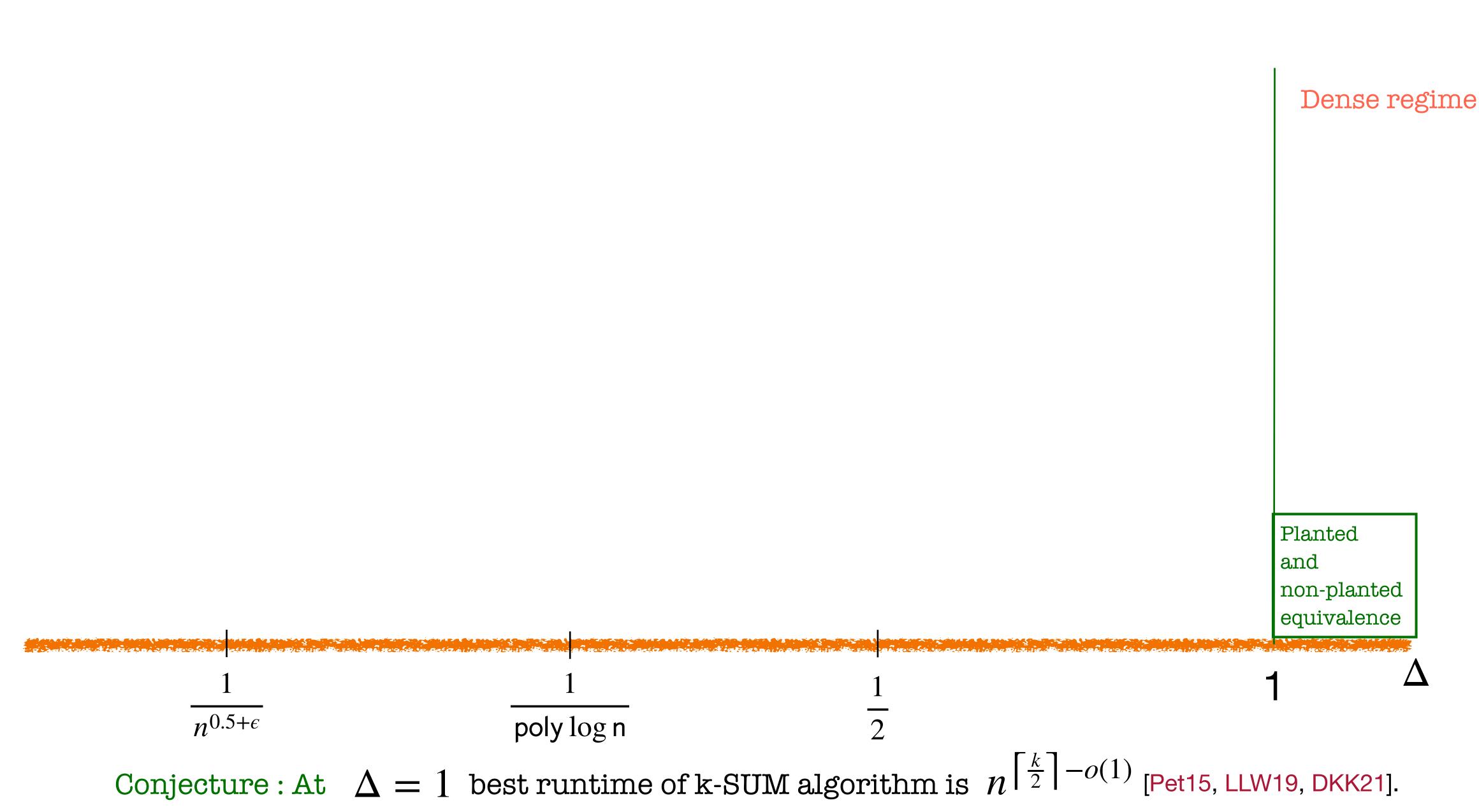
Meet-in-the-middle:  $n^{\left\lfloor \frac{k}{2} \right\rfloor}$ 

then this is super-poly time

Conjecture : At  $\Delta = 1$  best runtime of k-SUM algorithm is  $n^{\left\lceil \frac{k}{2} \right\rceil - o(1)}$  [Pet15, LLW19, DKK21].



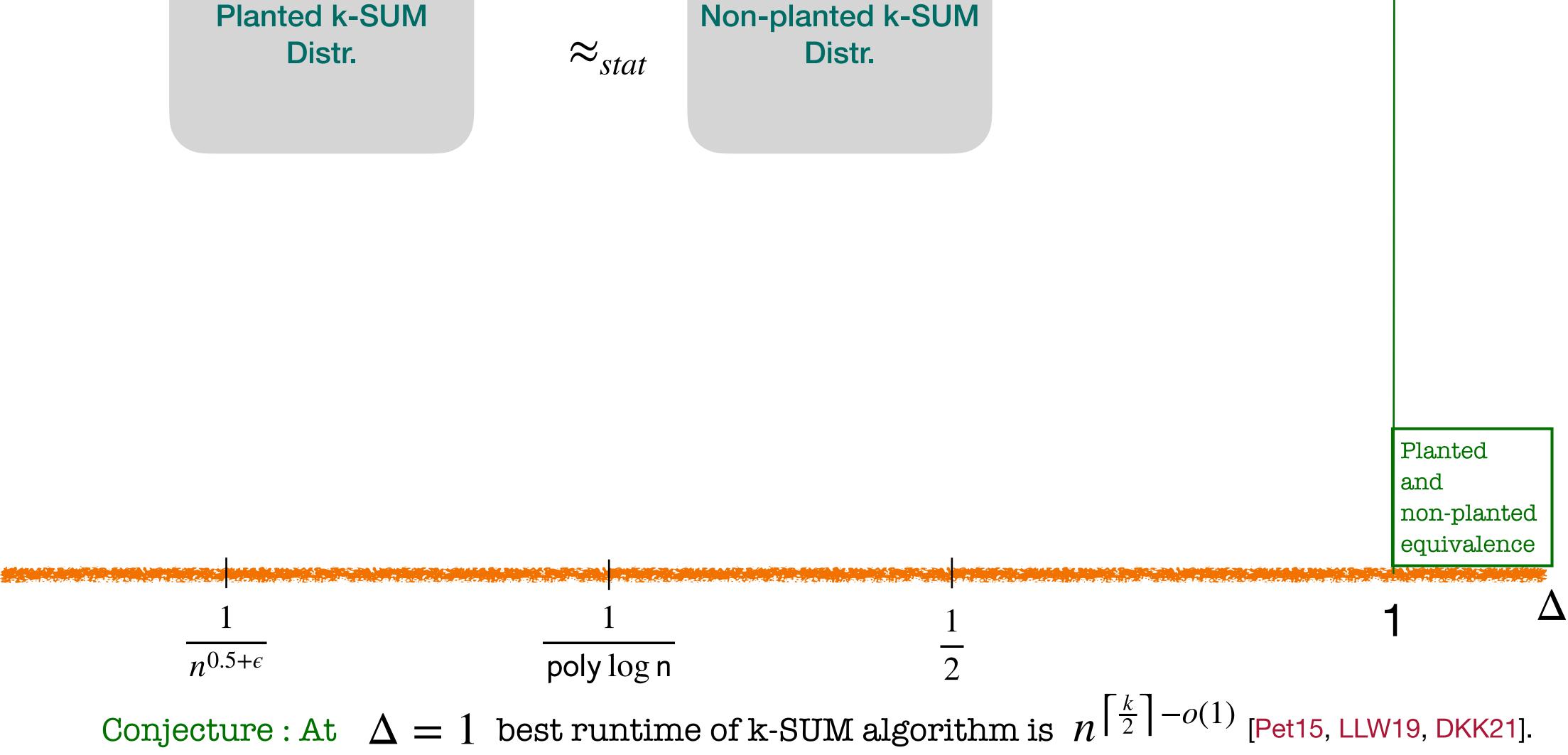












#### Dense regime

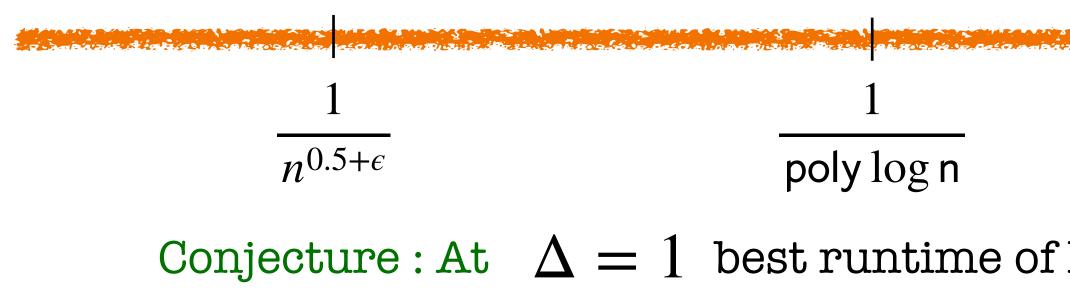


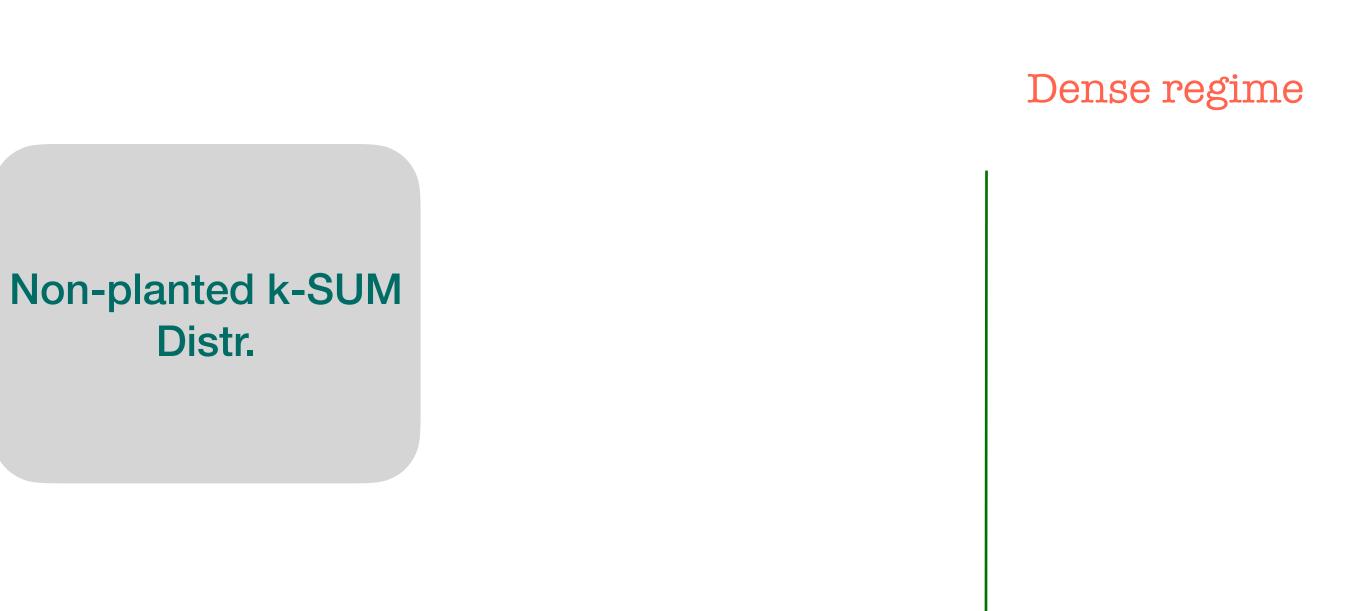






Algorithm for planted-kSUM solves non-planted k-SUM







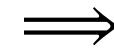
2

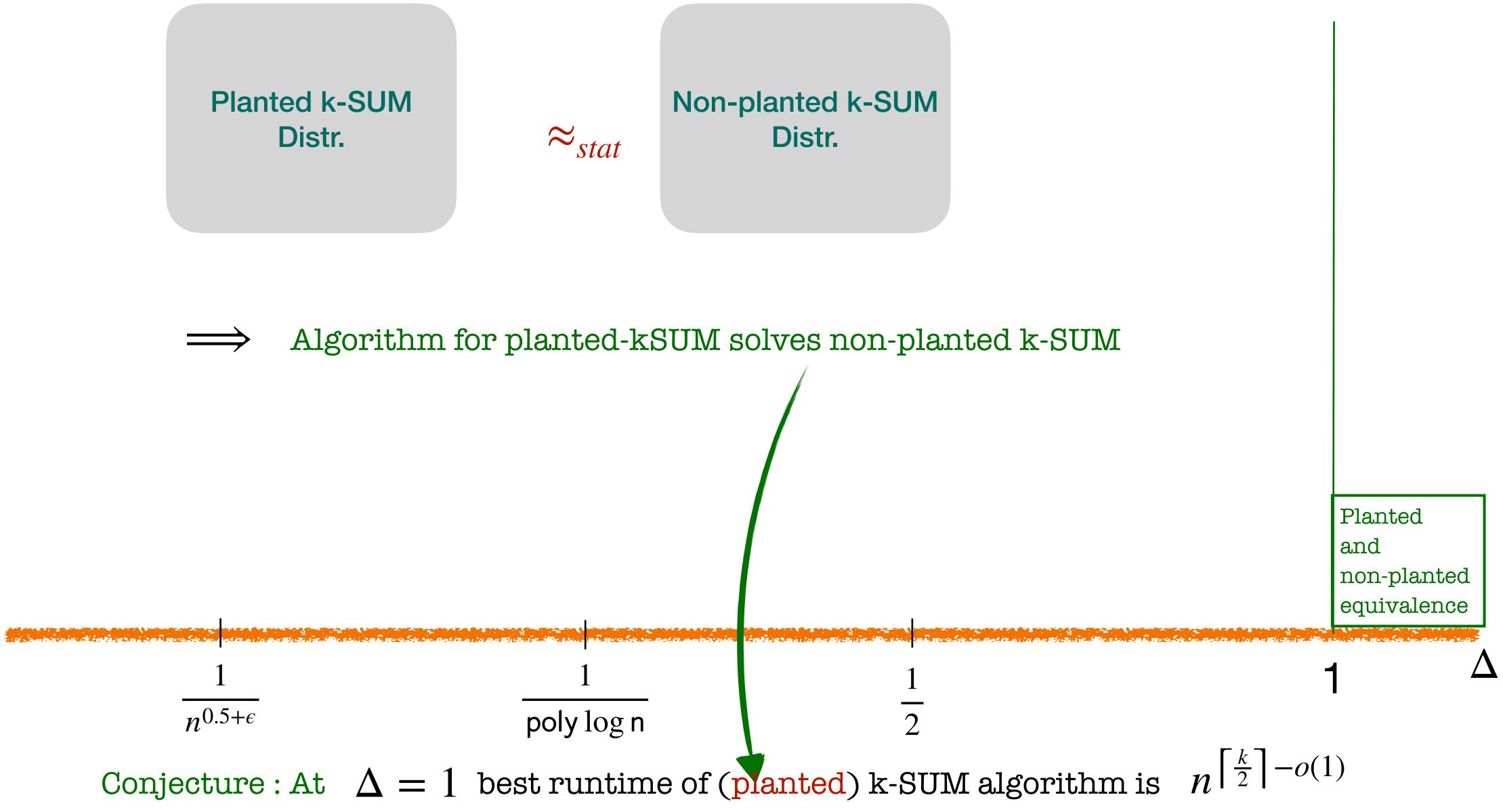


Conjecture : At  $\Delta = 1$  best runtime of k-SUM algorithm is  $n^{\left\lceil \frac{k}{2} \right\rceil - o(1)}$  [Pet15, LLW19, DKK21].



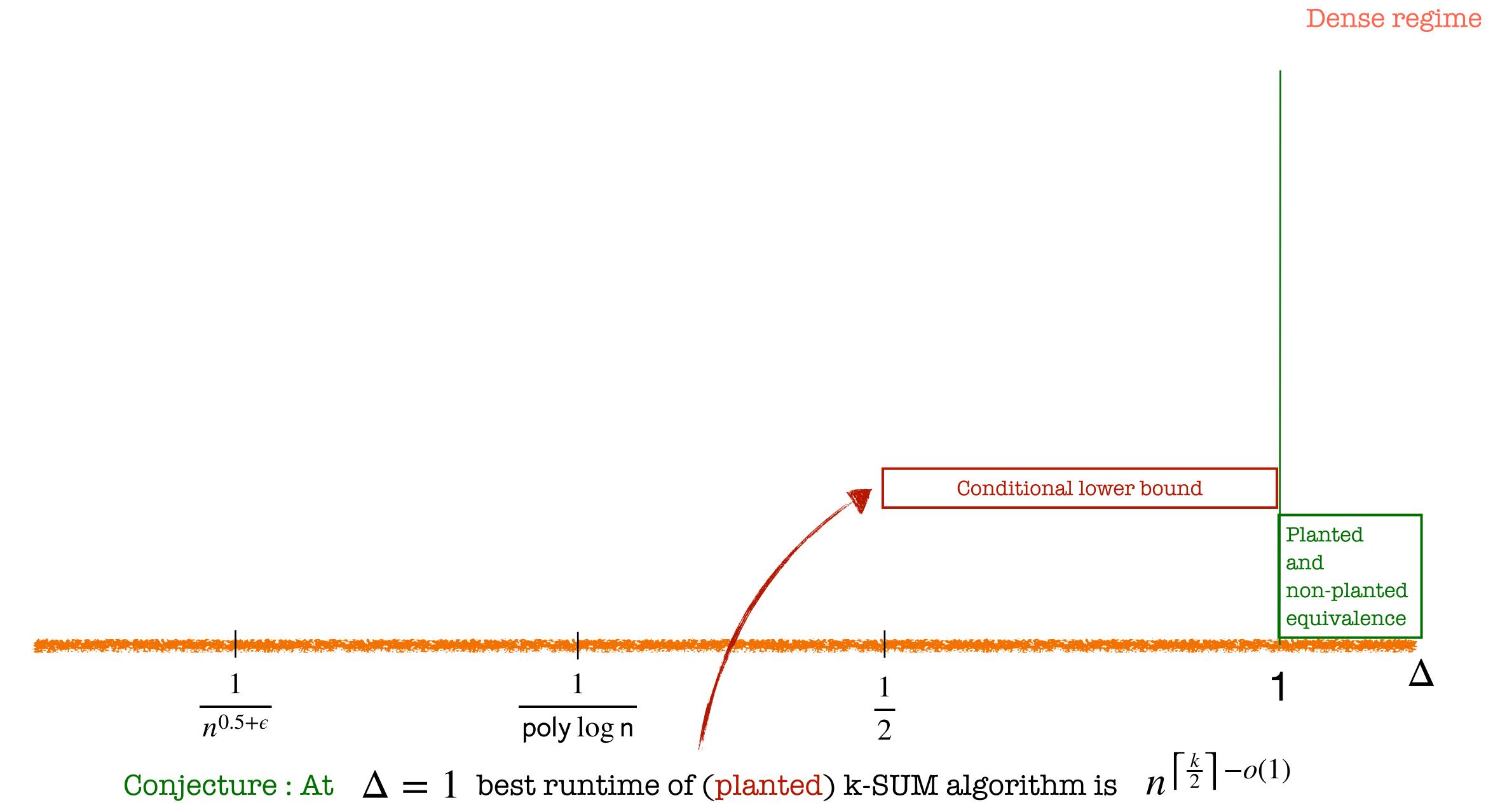




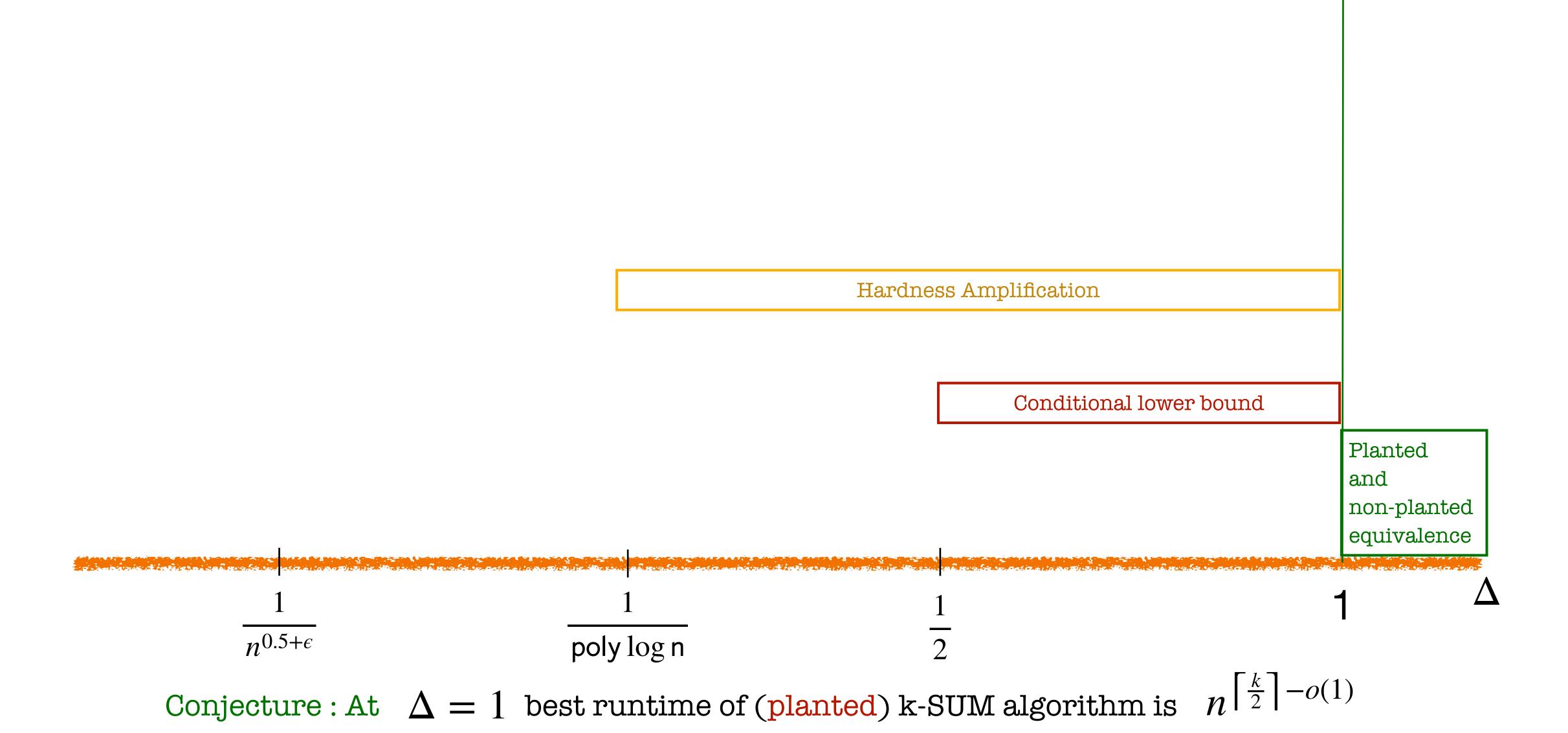






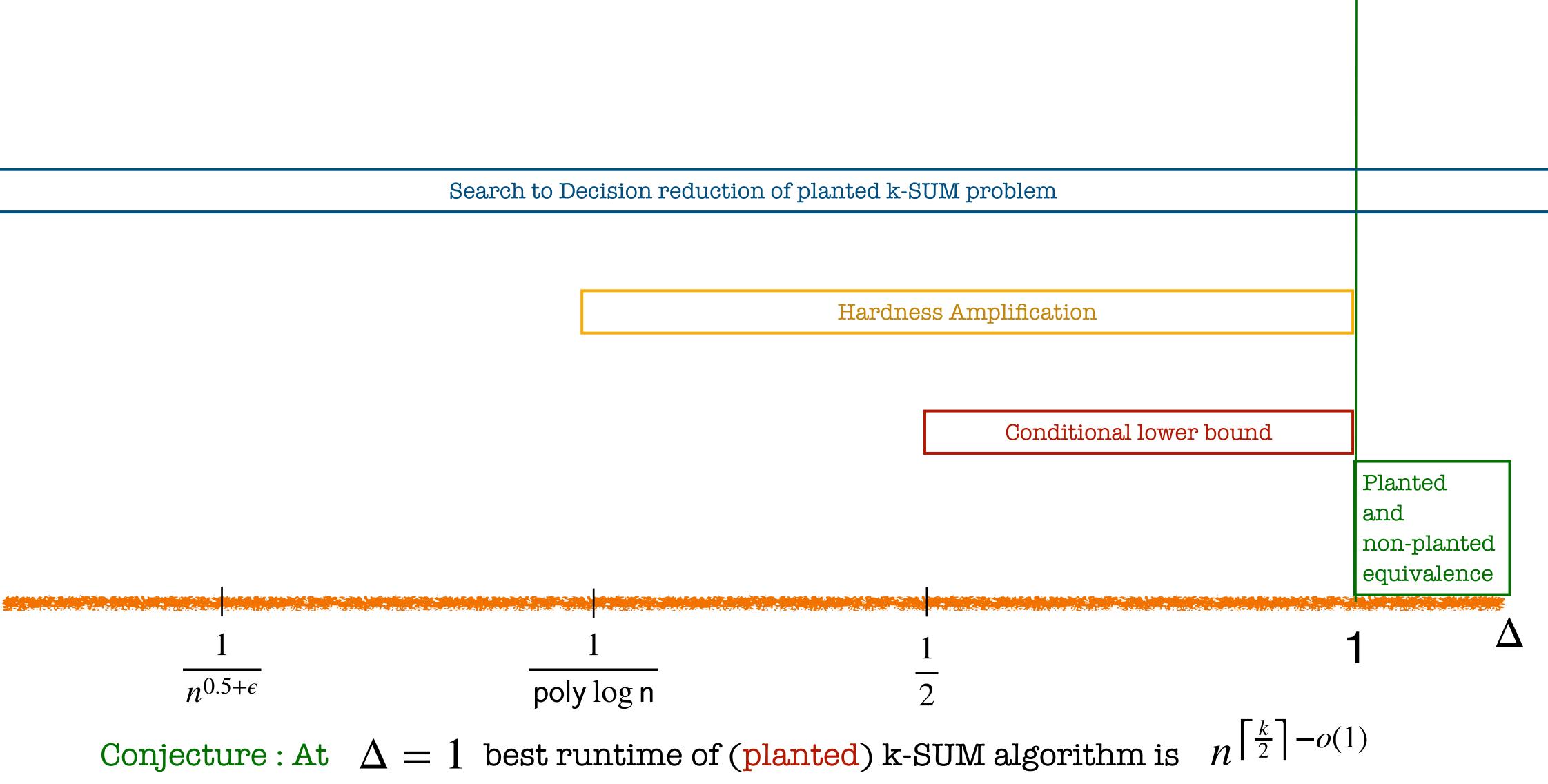






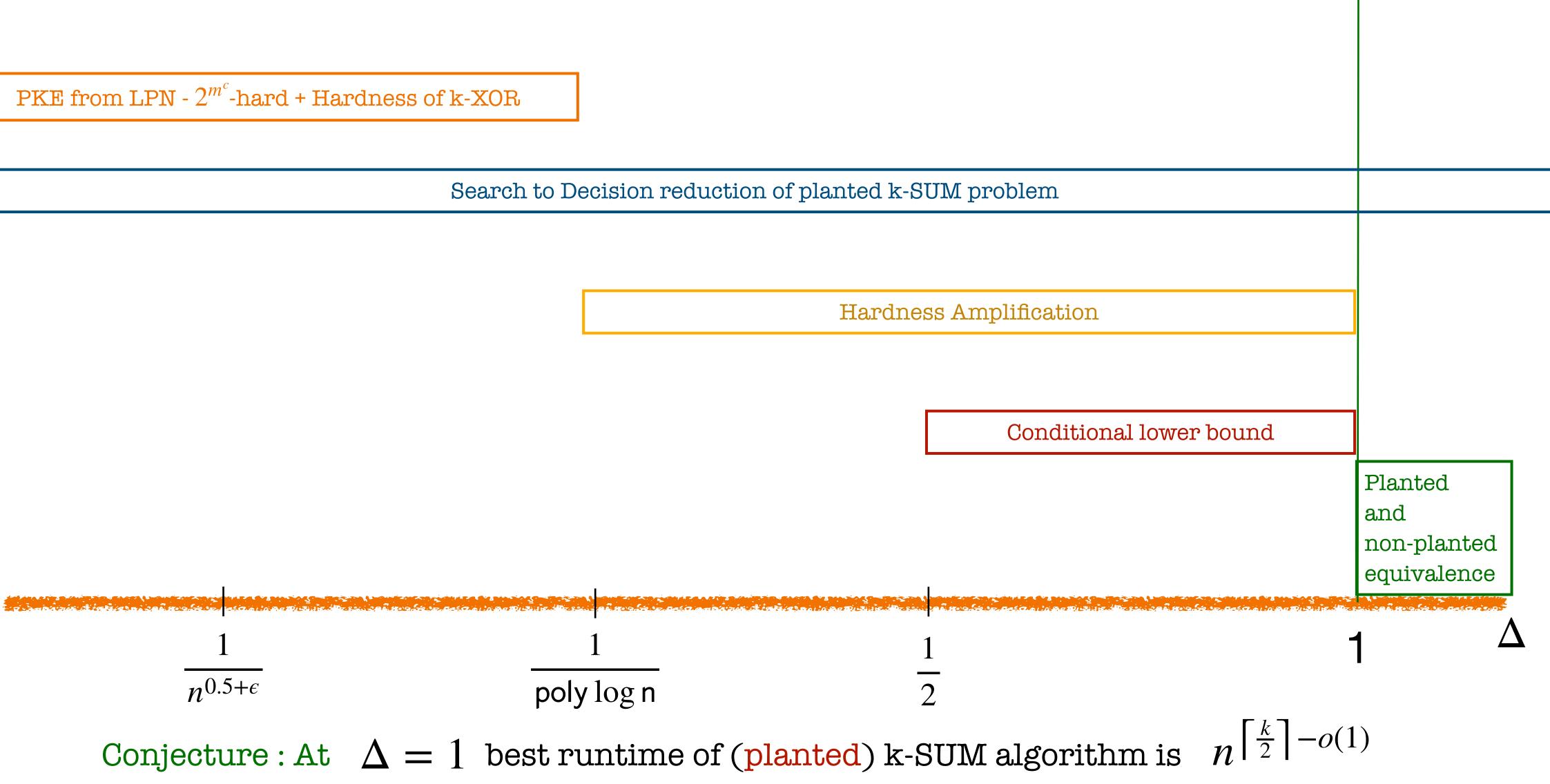








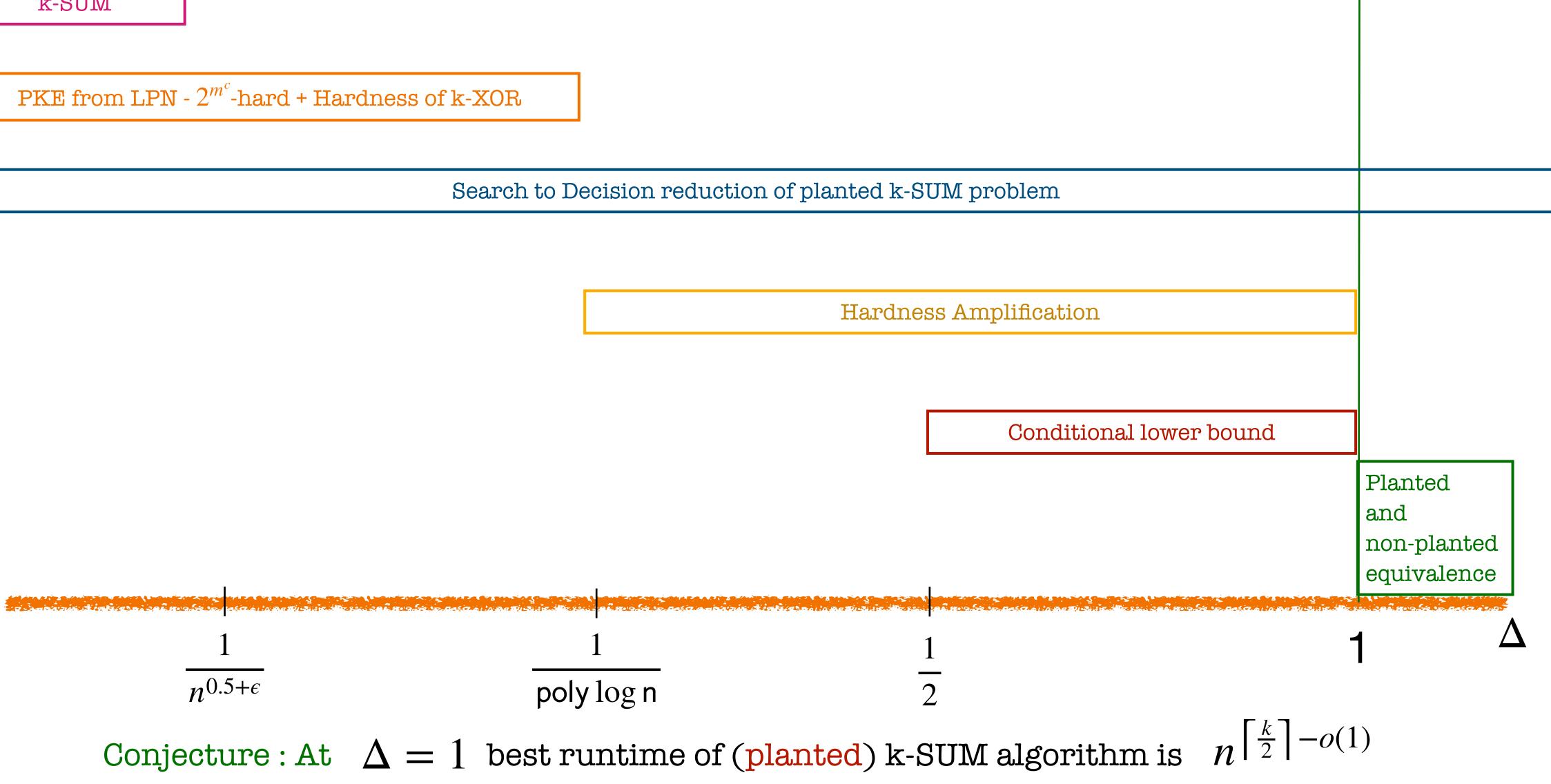








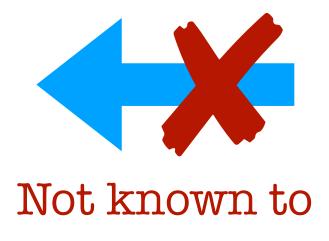
Faster algorithm for a variant of k-SUM







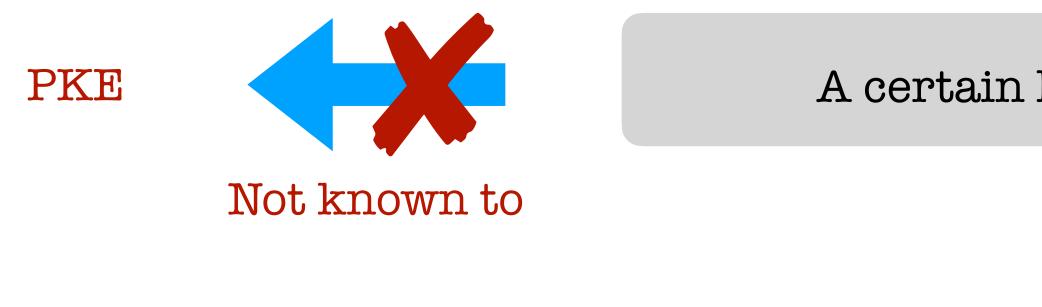




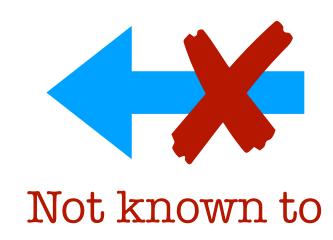
A certain hardness of LPN

PKE : Public Key Encryption







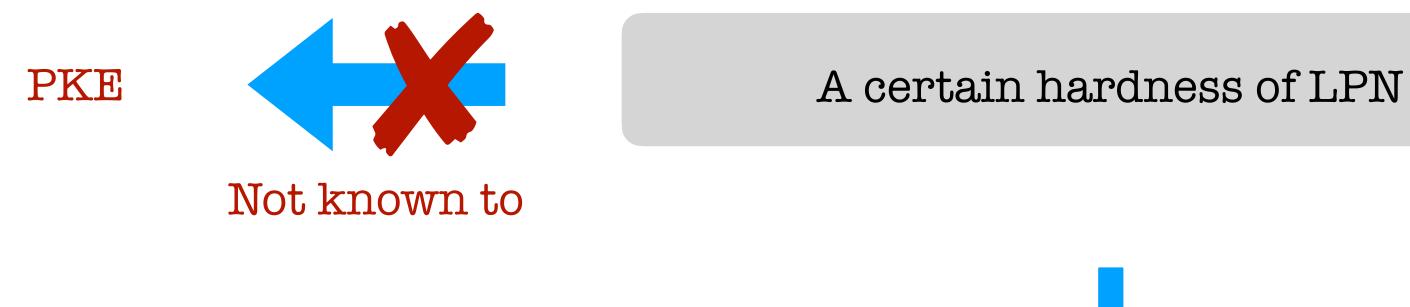


Variant of k-SUM at certain density

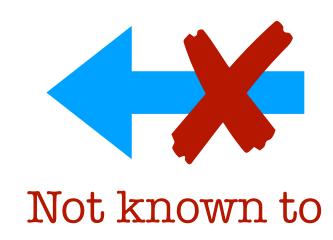
PKE : Public Key Encryption



A certain hardness of LPN







Variant of k-SUM at certain density

PKE : Public Key Encryption

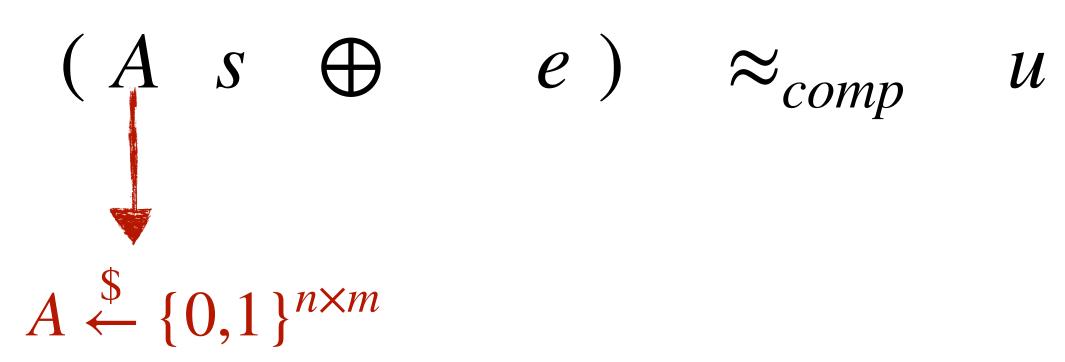


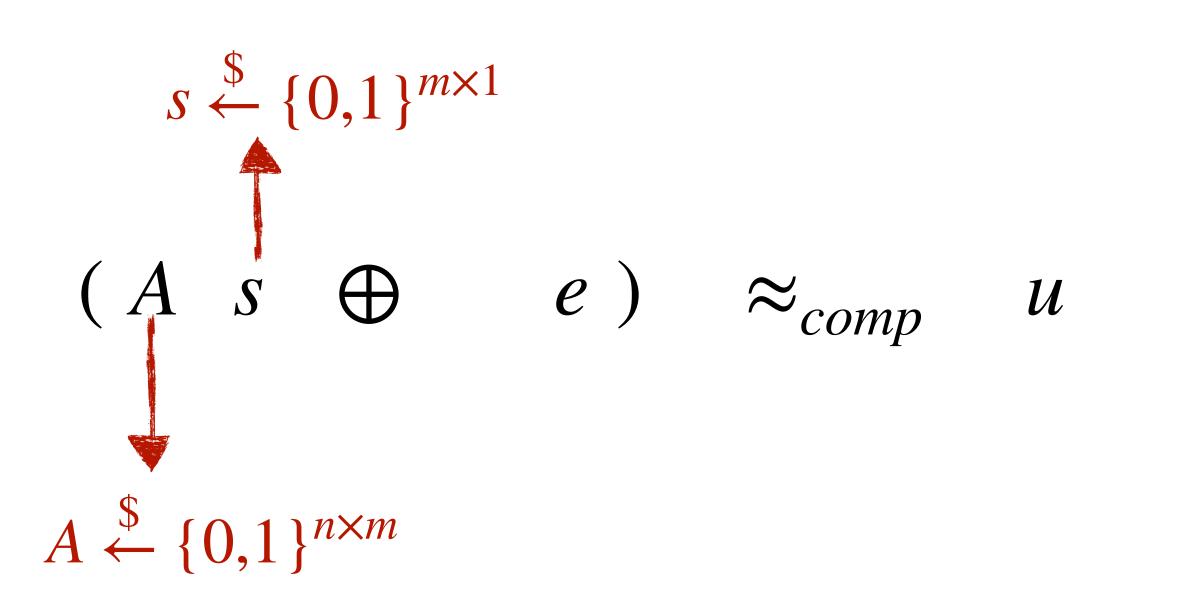


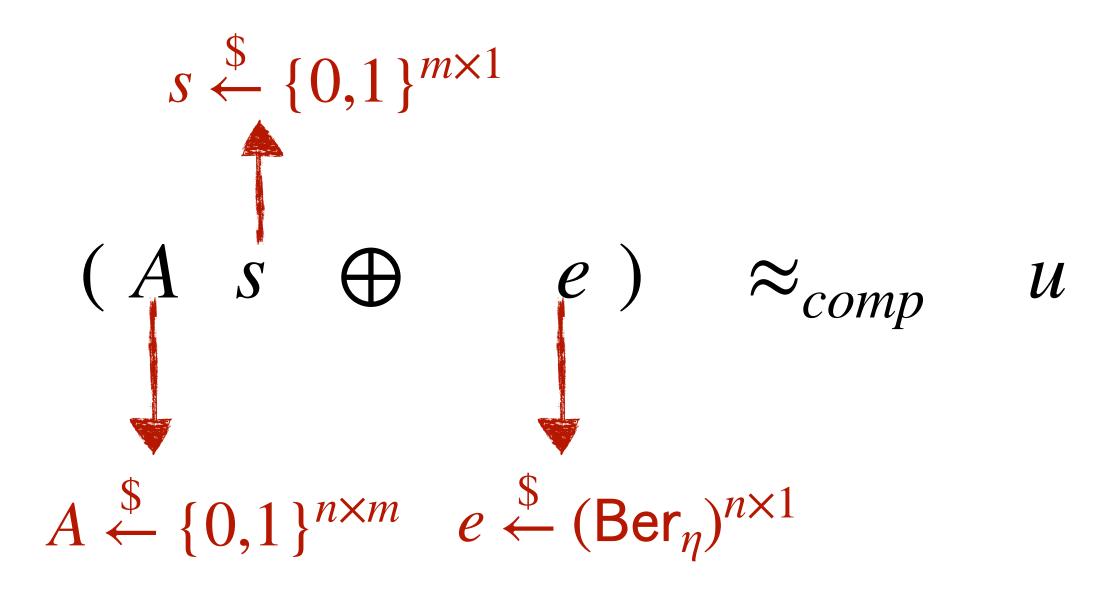


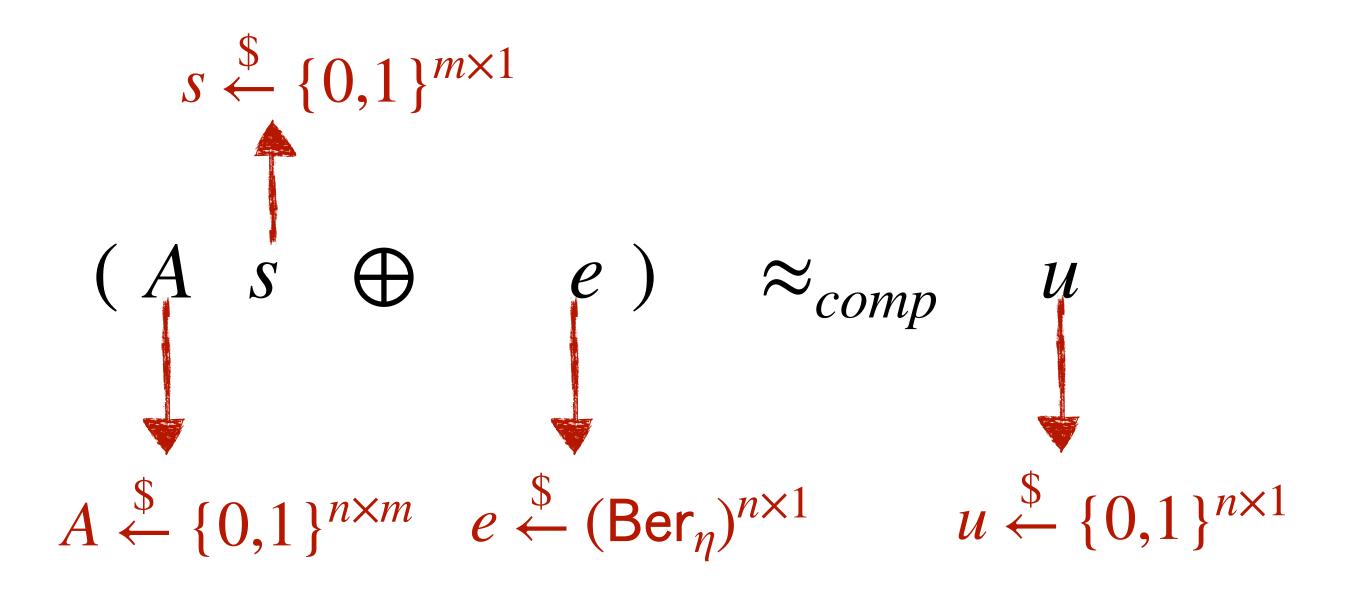
LPN (Learning Parity with Noise)

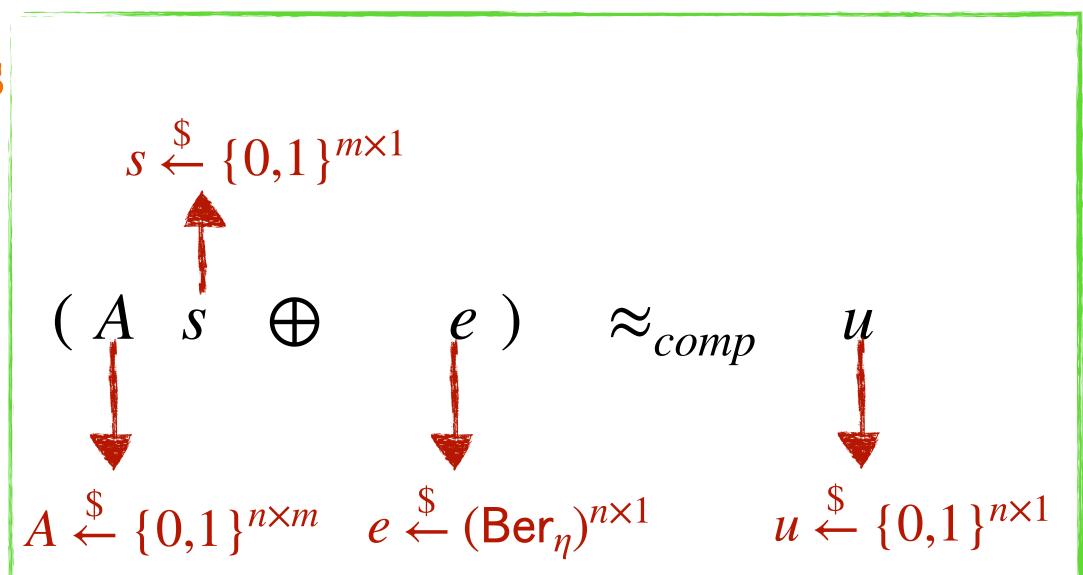
# $(A \ s \oplus e) \approx_{comp} u$







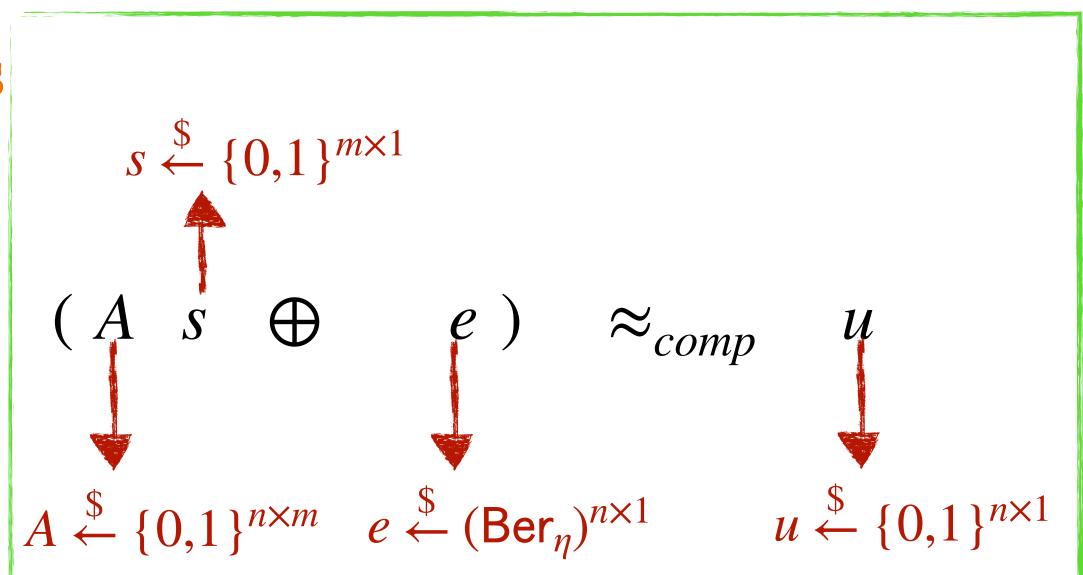


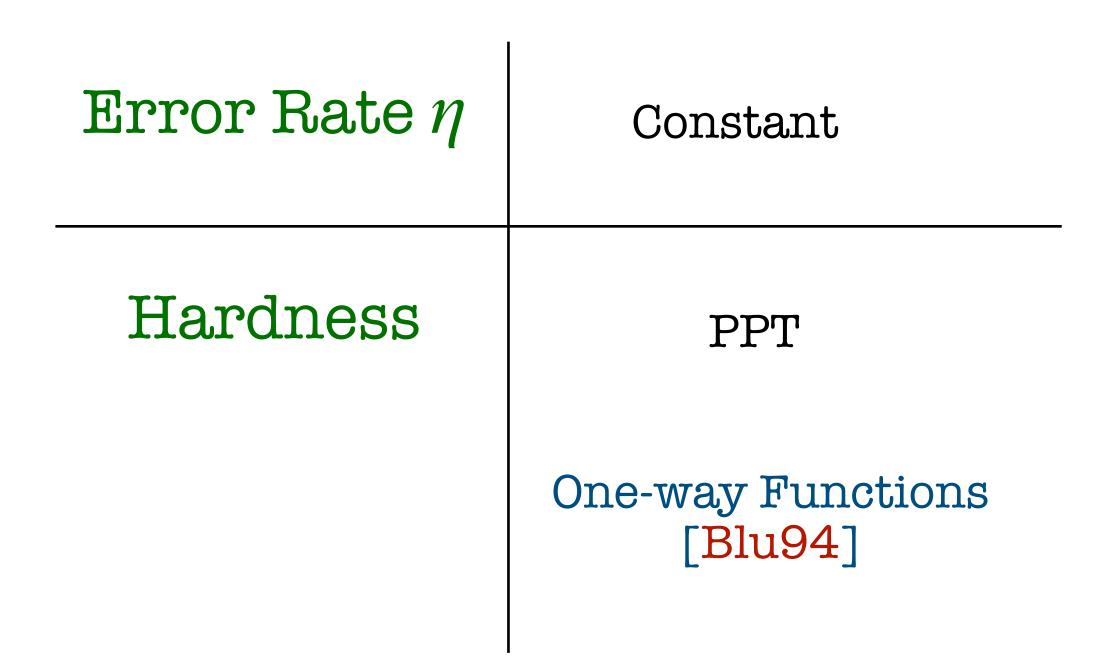


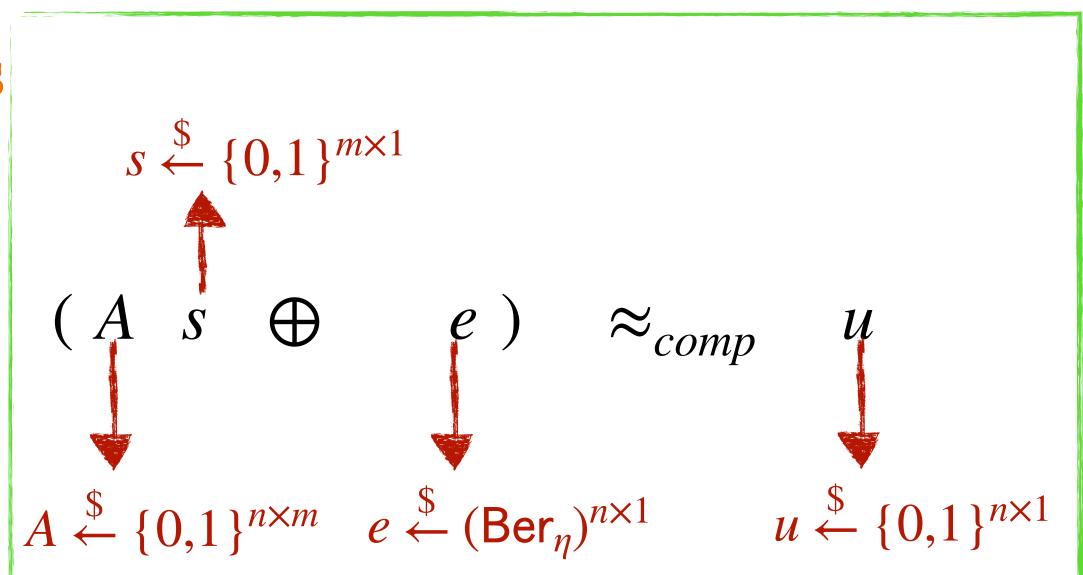
LPN (Learning Parity with Noise)

Error Rate  $\eta$ 

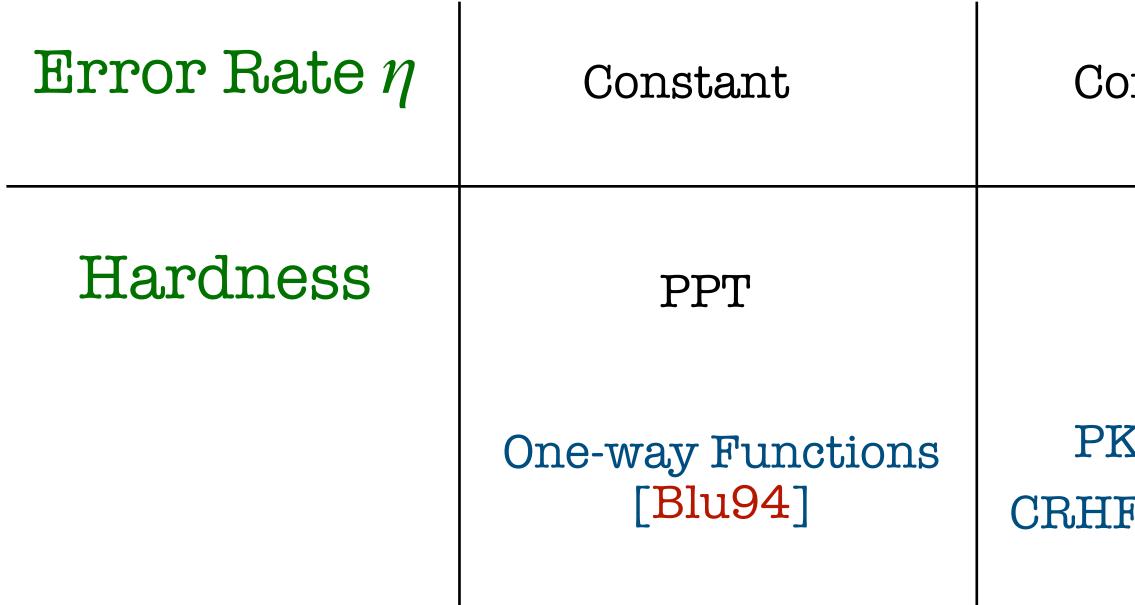
Hardness







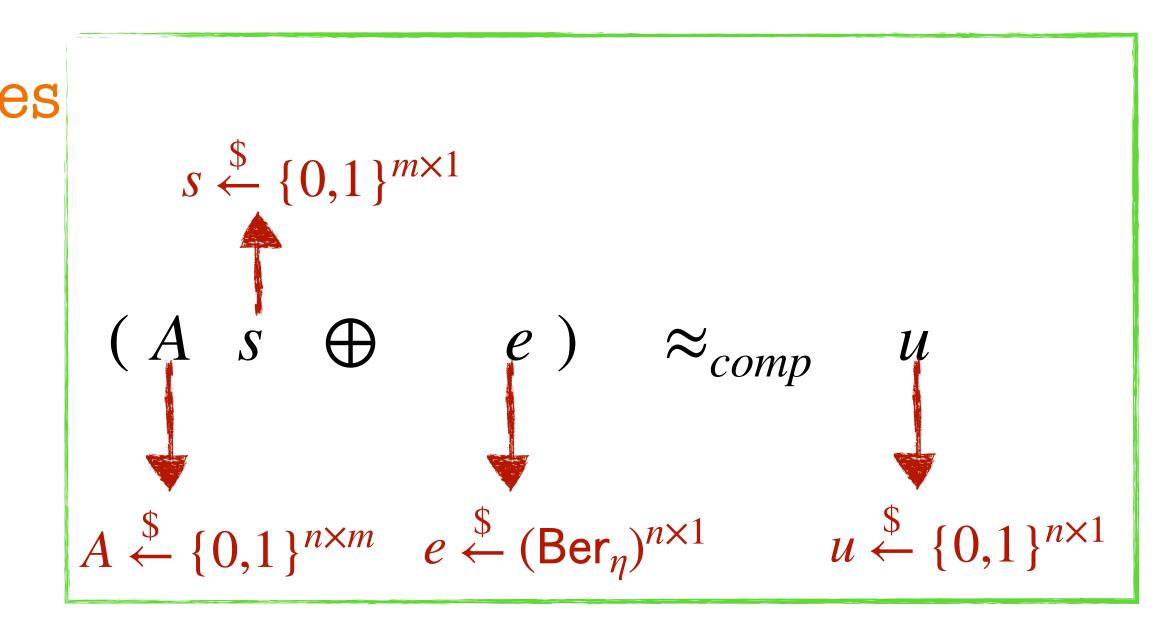
LPN (Learning Parity with Noise)

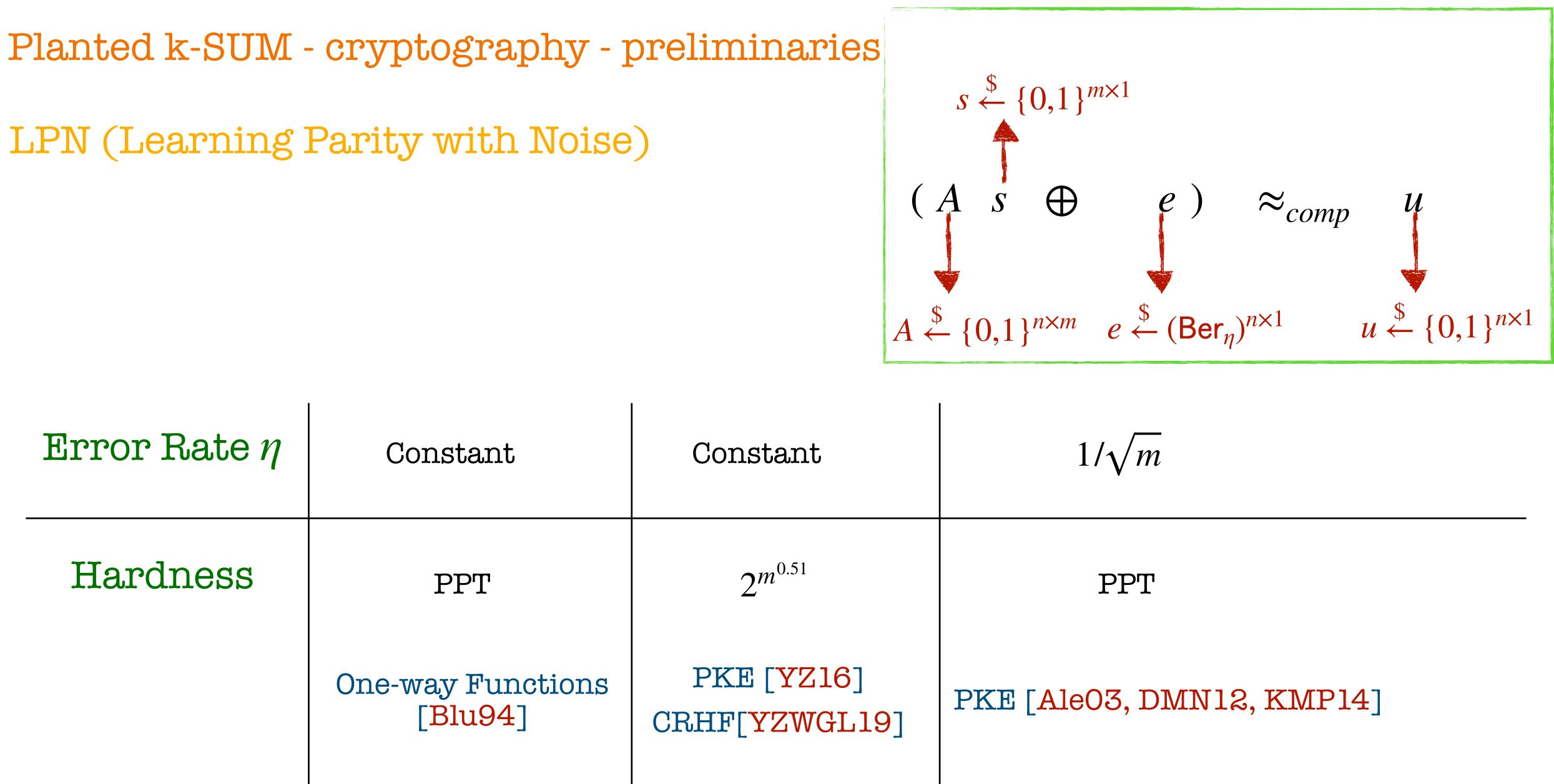


## PKE [YZ16] CRHF[YZWGL19]

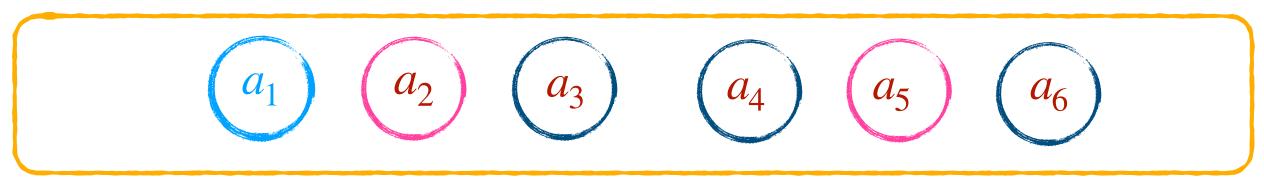
 $2^{m^{0.51}}$ 

### Constant





k-XOR - Variant of k-SUM



Planted k-XOR instance

k-XOR - Variant of k-SUM



Planted k-XOR instance

## But each element is a m-dimensional binary vector

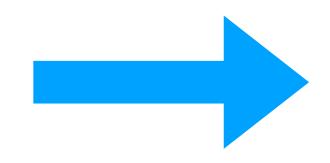
 $a_i \in \{0,1\}^m$ 

A certain hardness of LPN

 $\eta = \text{constant}$  $2^{m^c}$ :  $c \in (0, 0.5)$ 

k-XOR at certain density

$$\Delta = \frac{1}{poly\log(n)}$$



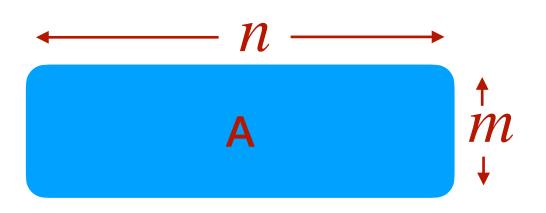




(All matrix and vector elements are in  $\{0,1\}$ )

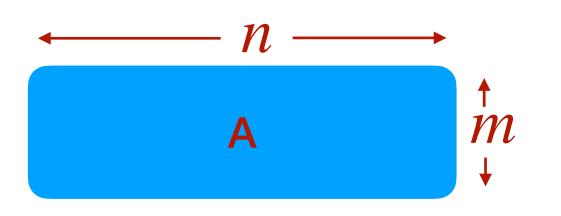
(All matrix and vector elements are in  $\{0,1\}$ )

Public key :

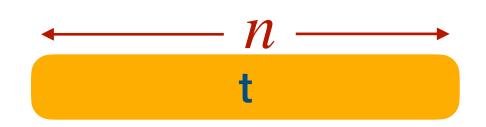


(All matrix and vector elements are in  $\{0,1\}$ )

Public key :



Secret key :

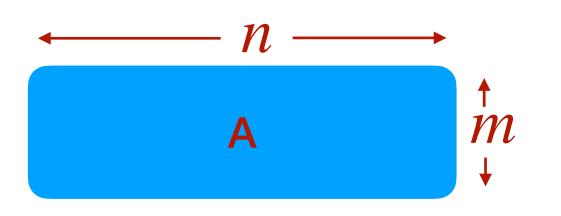


#1's = k

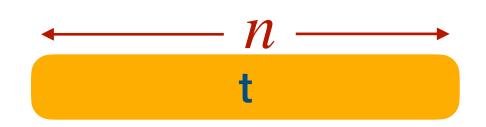


(All matrix and vector elements are in  $\{0,1\}$ )

Public key :

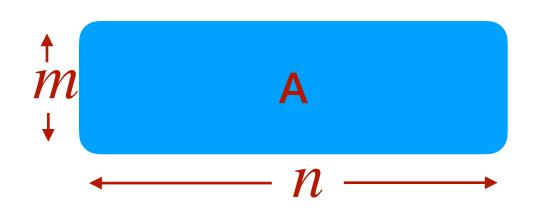


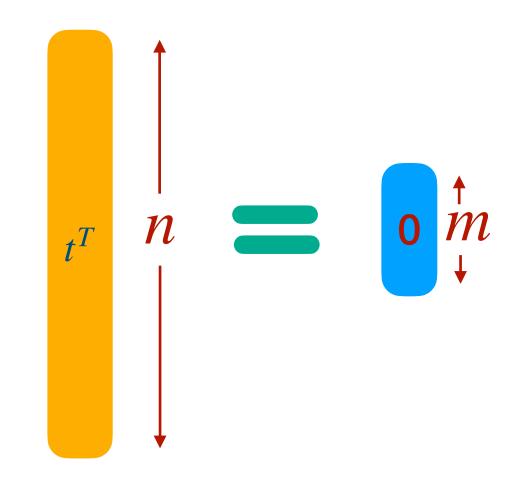
Secret key :



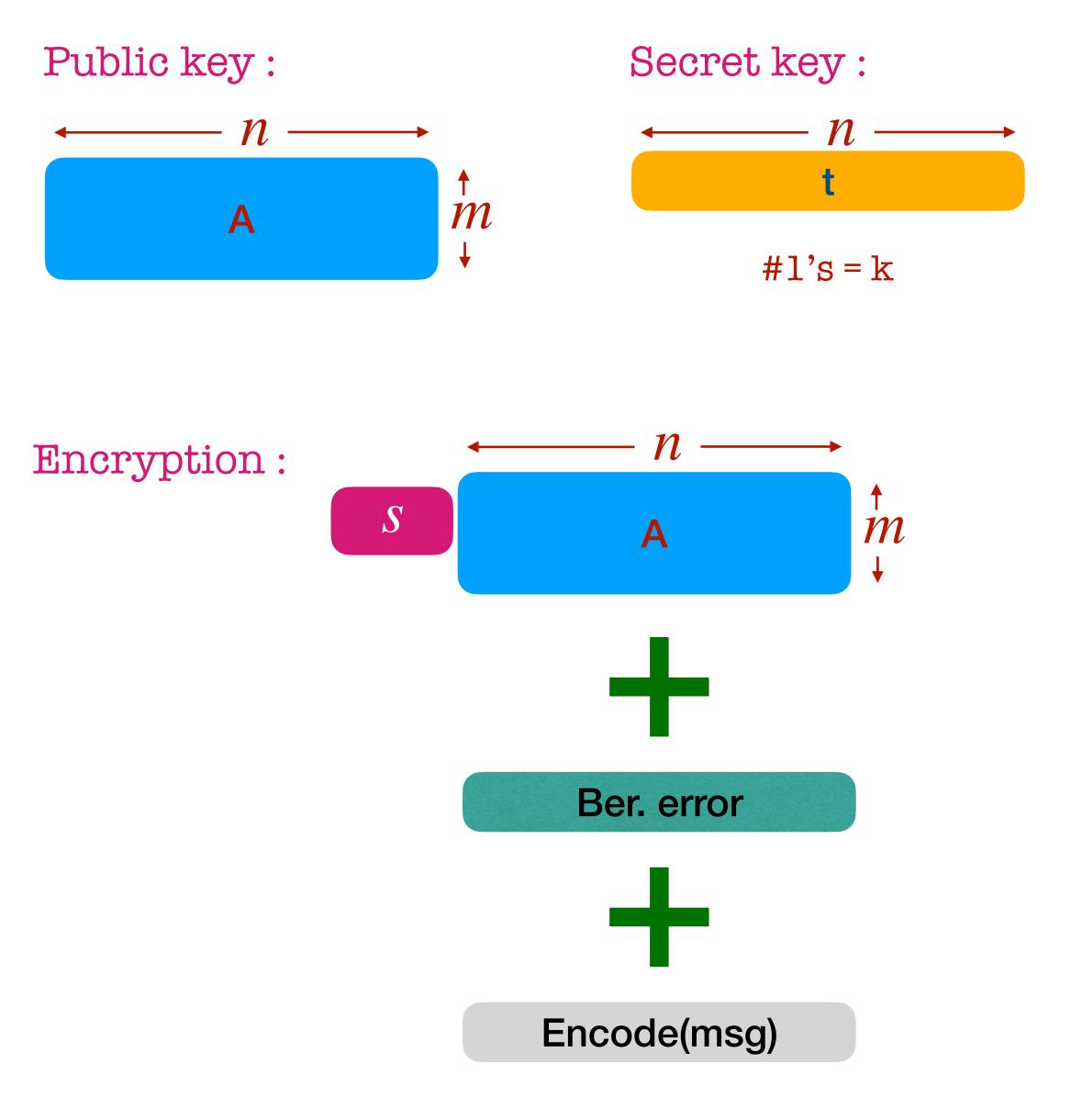
#1's = k

### Such that :

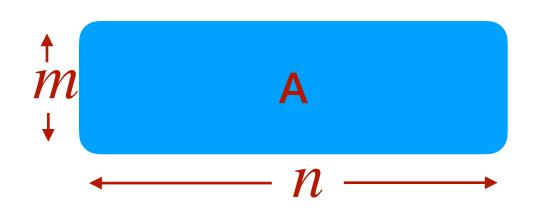


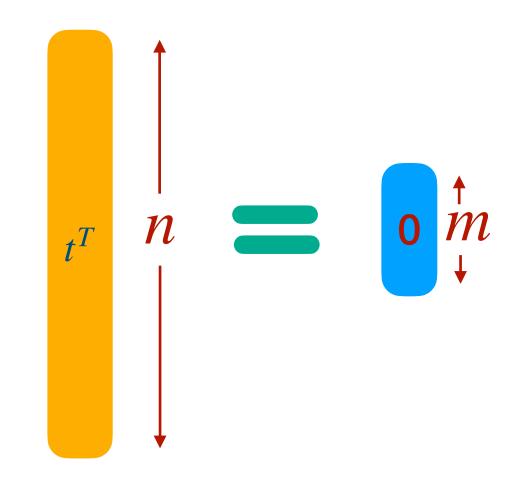


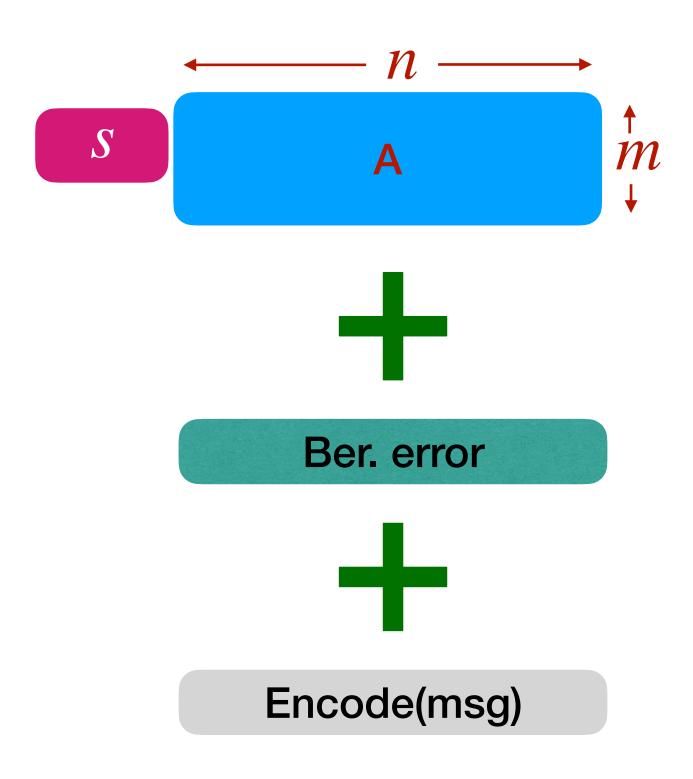
(All matrix and vector elements are in  $\{0,1\}$ )

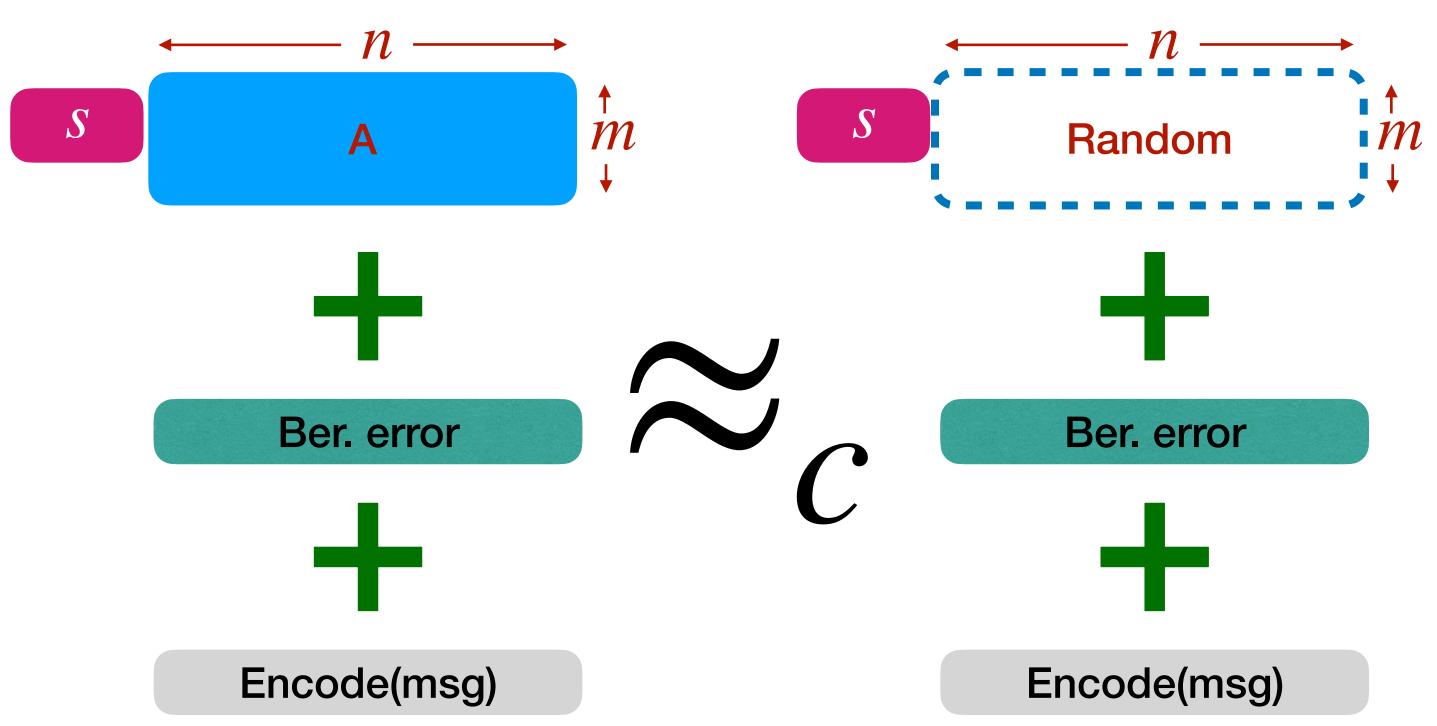


### Such that :

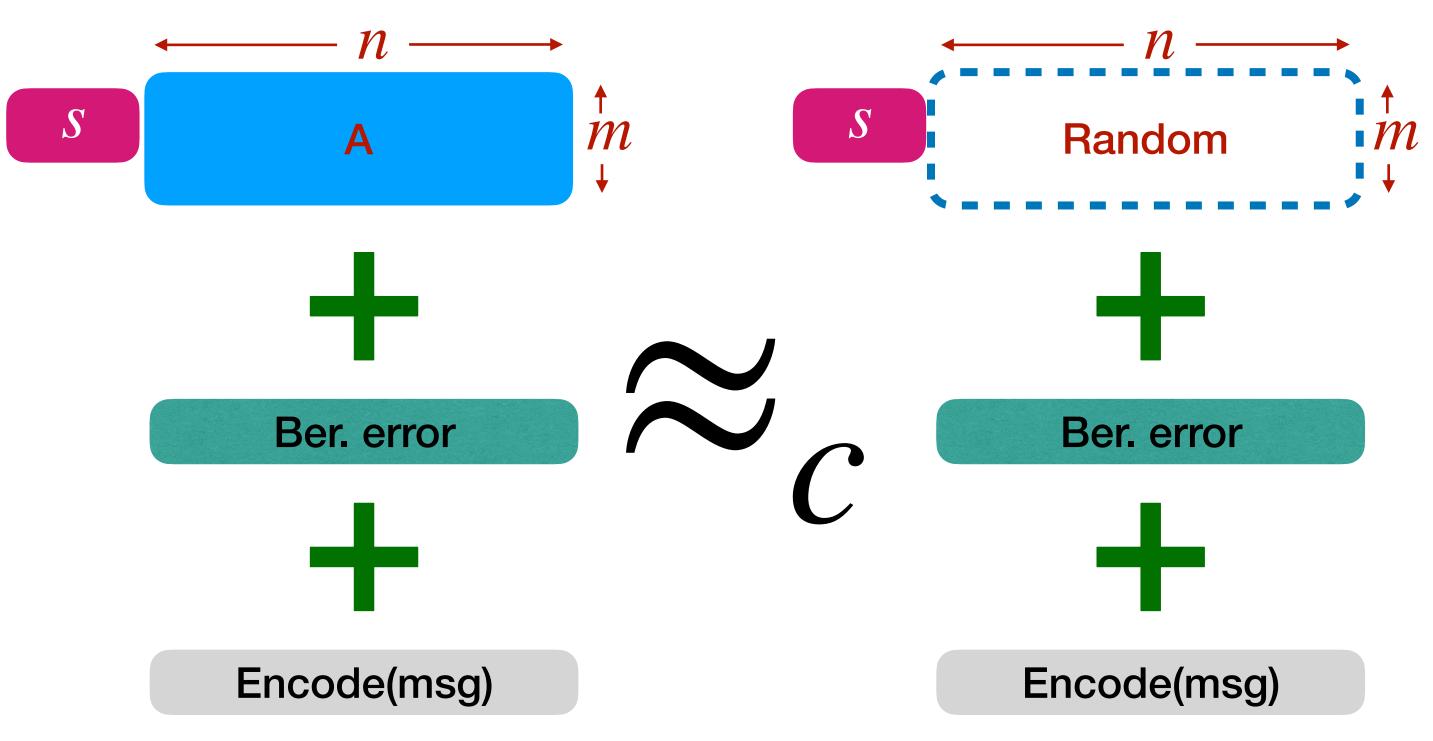






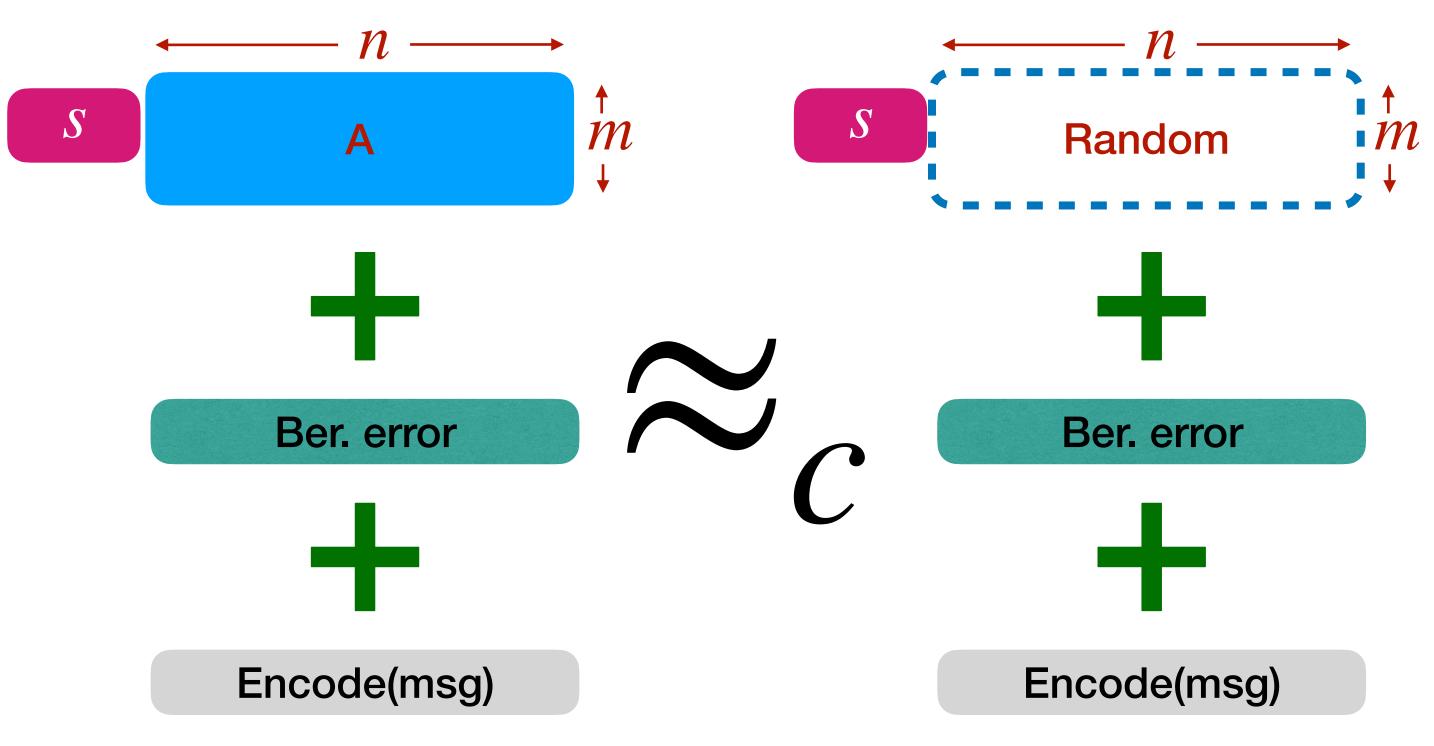


## Hardness of *k*-XOR



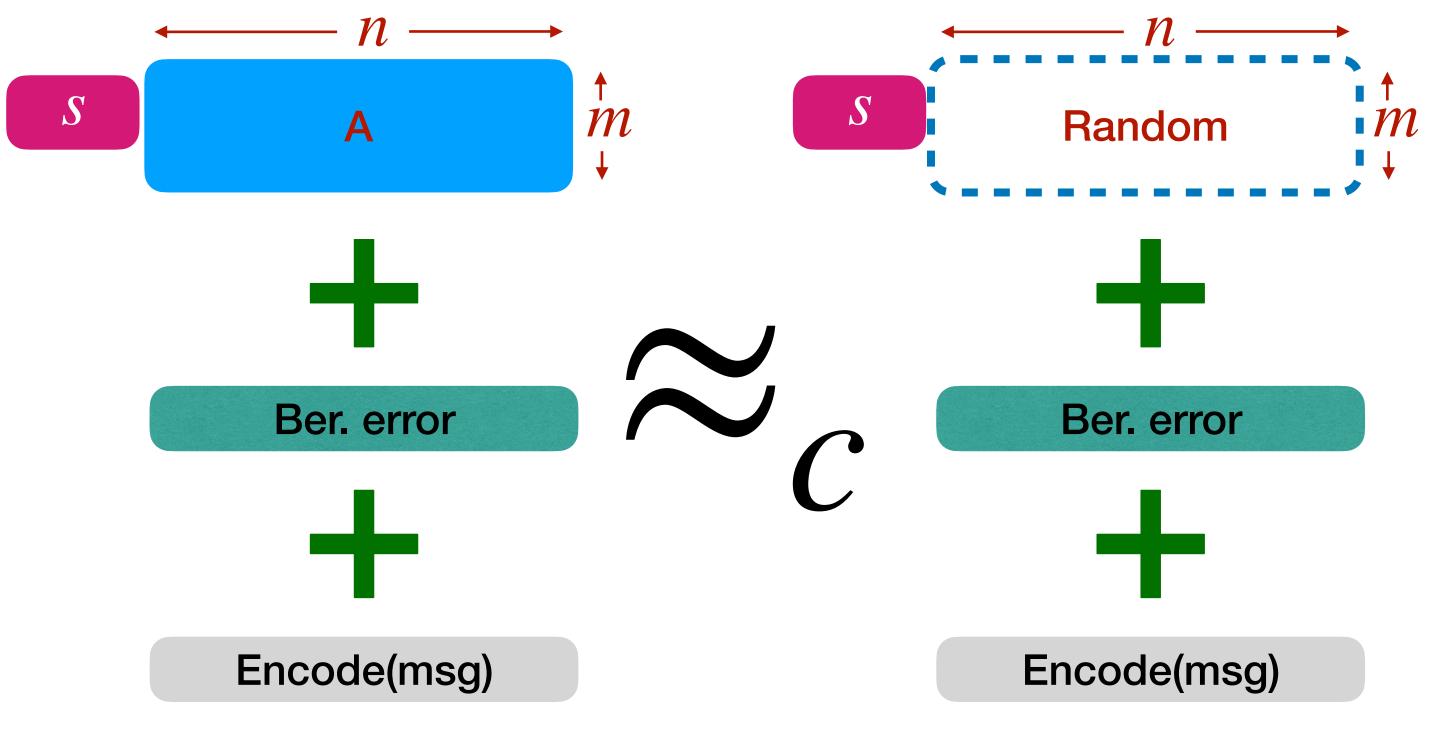
$$\Delta = \frac{k \log n}{m}$$

## Hardness of *k*-XOR



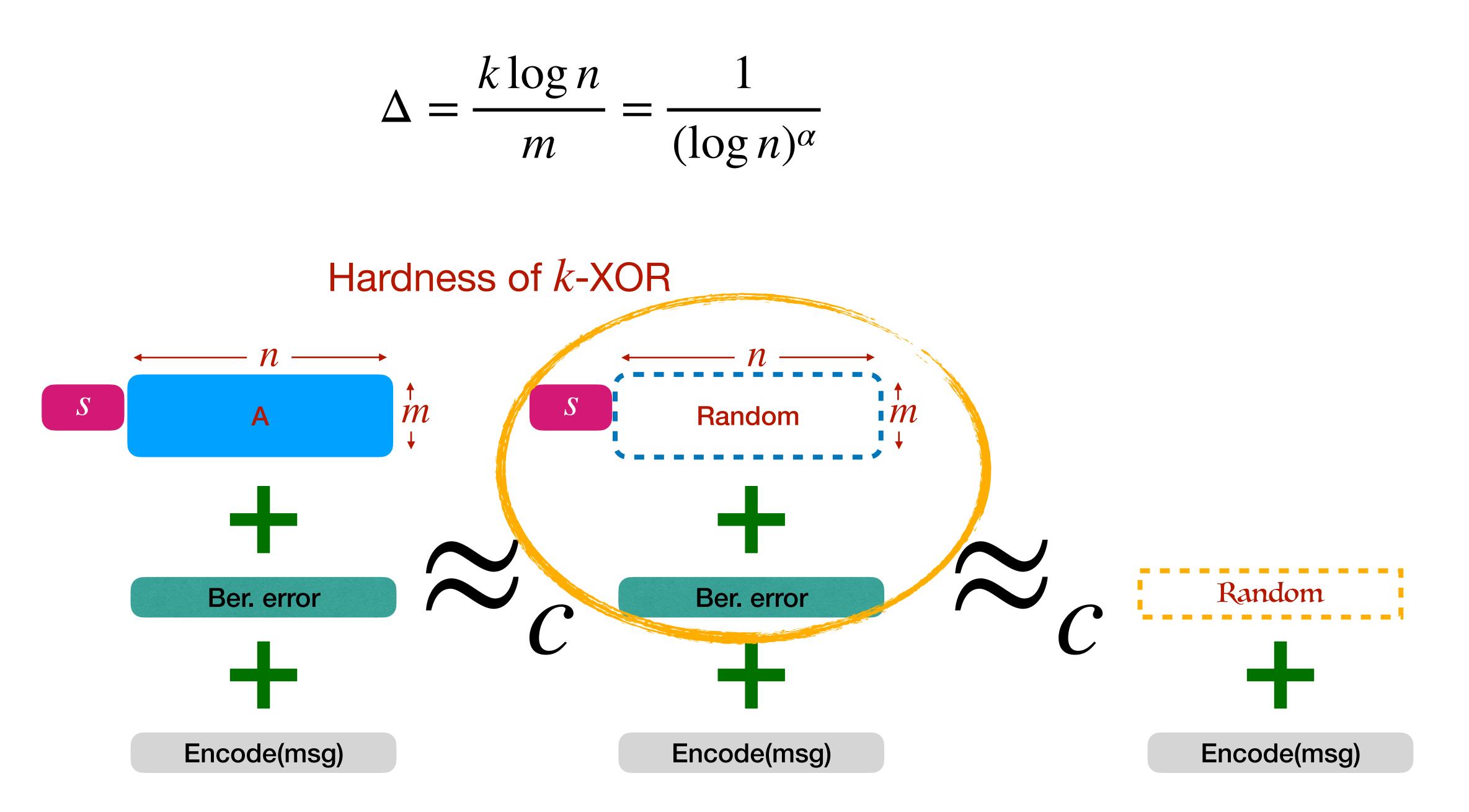
$$\Delta = \frac{k \log n}{m} = \frac{1}{(\log n)}$$

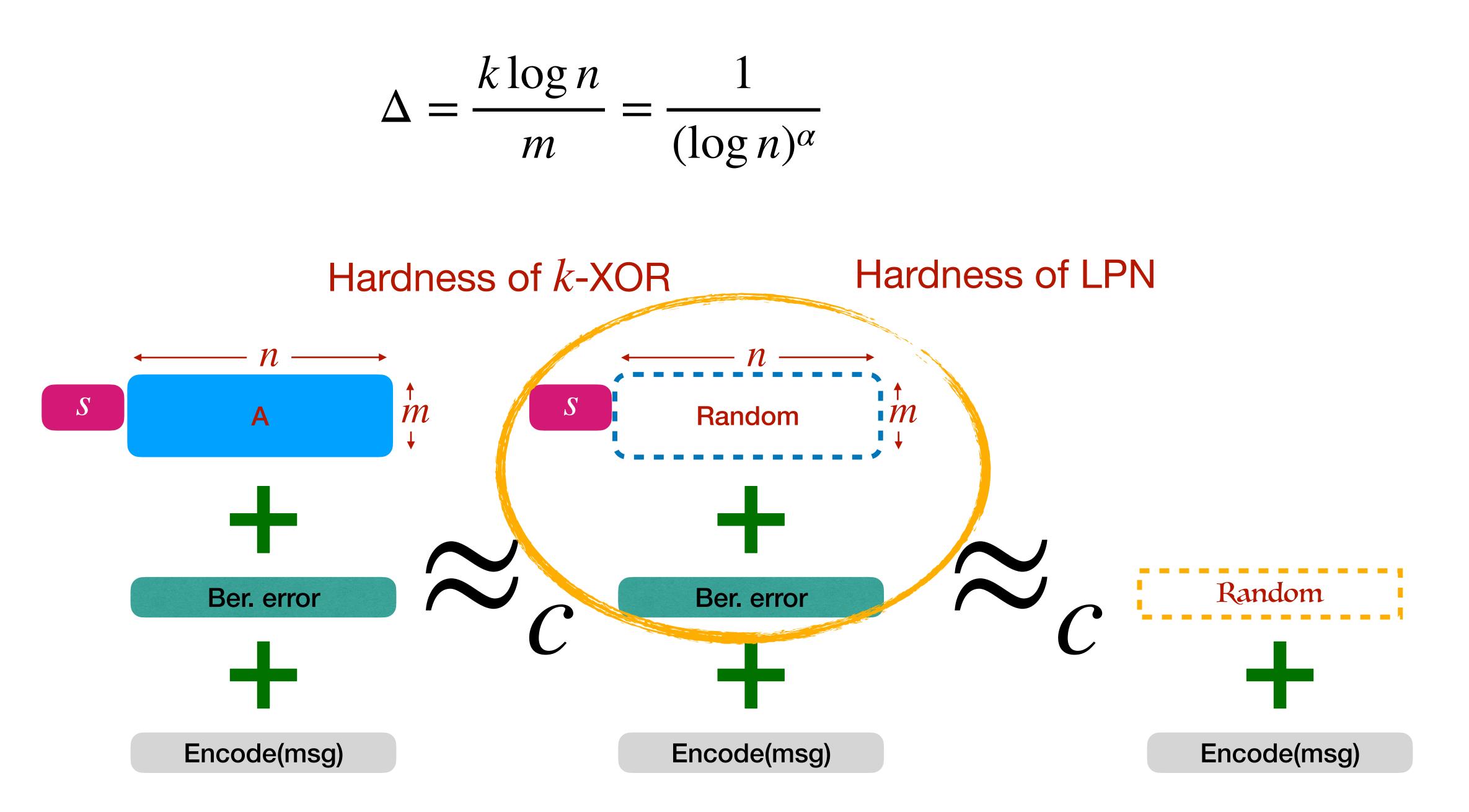
## Hardness of *k*-XOR



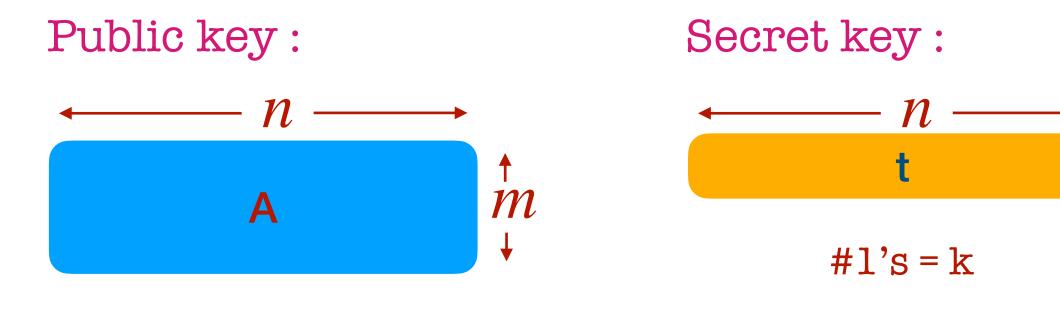


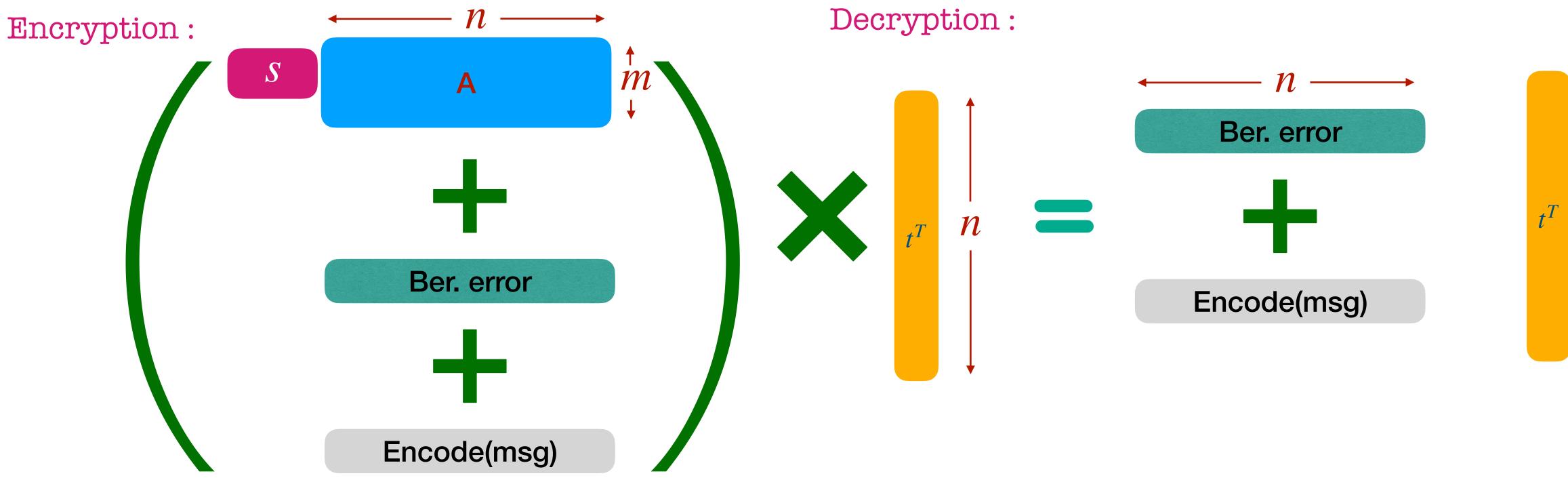
 $g(n)^{\alpha}$ 

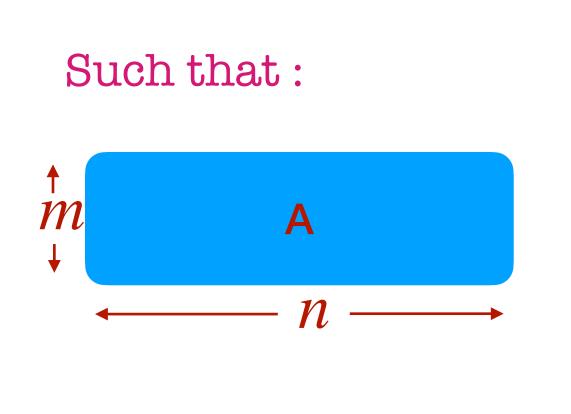


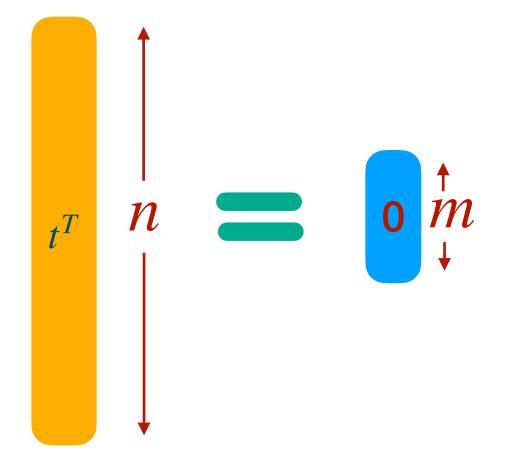


(All matrix and vector elements are in {0,1})





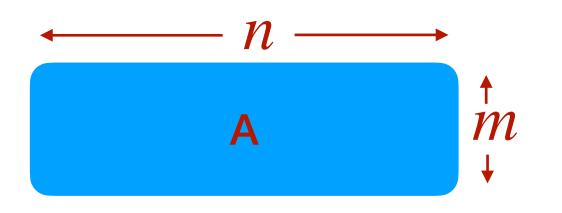




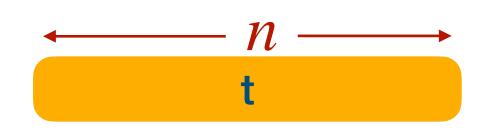


(All matrix and vector elements are in  $\{0,1\}$ )



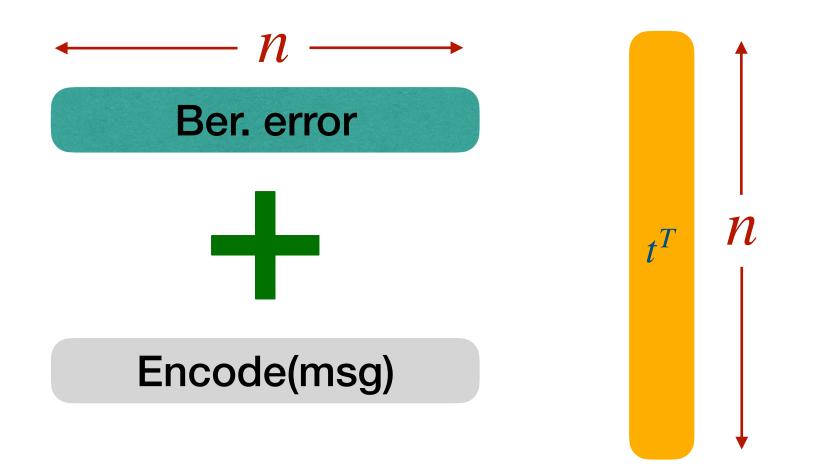


Secret key:



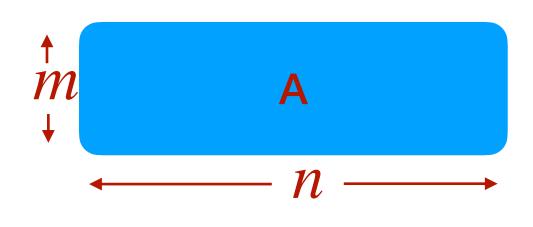
#1's = k

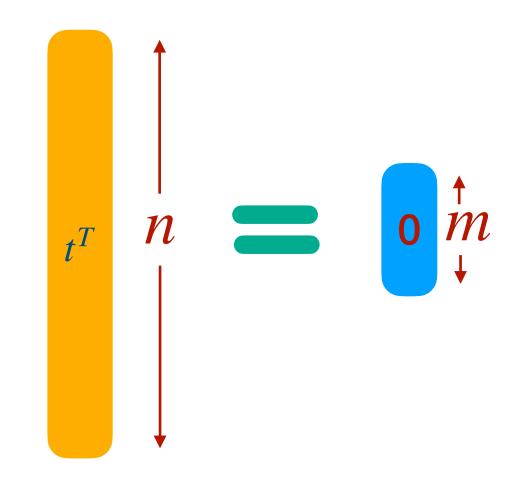
### Decryption :



Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation

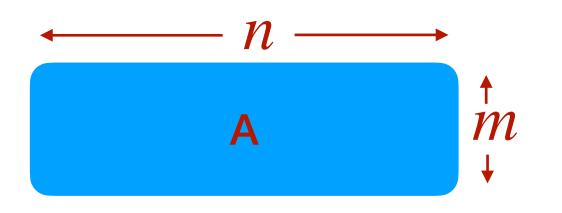
## Such that :



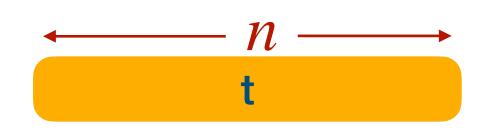


(All matrix and vector elements are in  $\{0,1\}$ )



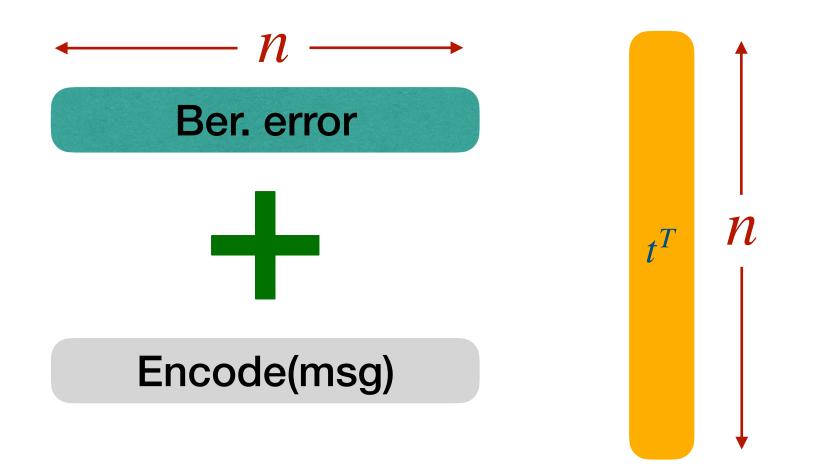


Secret key:

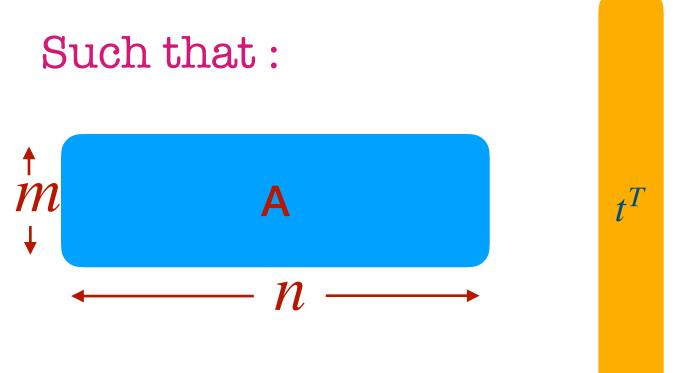


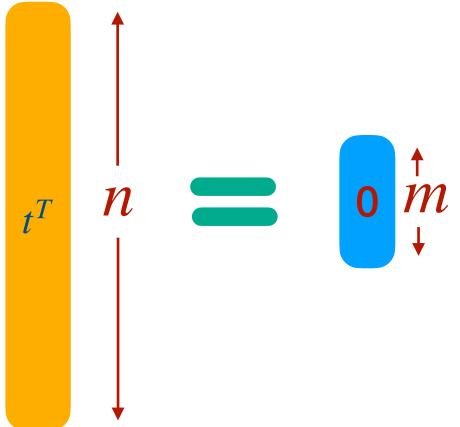
#1's = k

### Decryption :



Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation

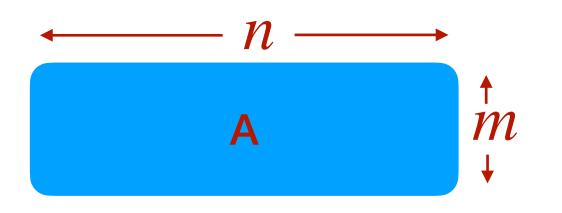




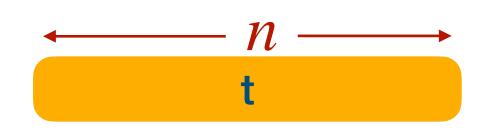
$$m = \frac{k \log n}{\Delta}$$

(All matrix and vector elements are in  $\{0,1\}$ )



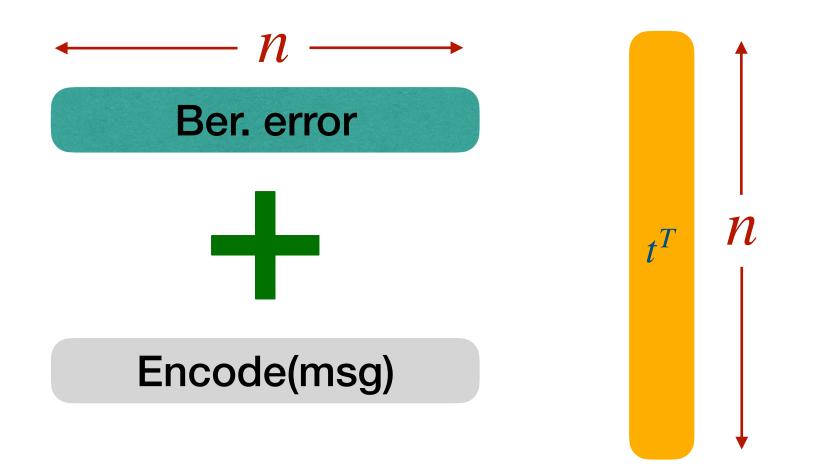


Secret key:

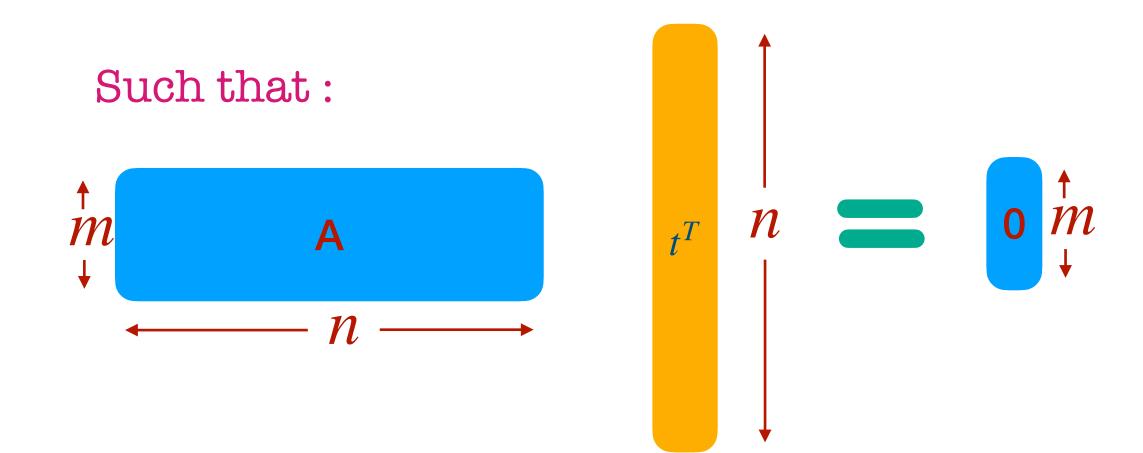


#1's = k

### Decryption :



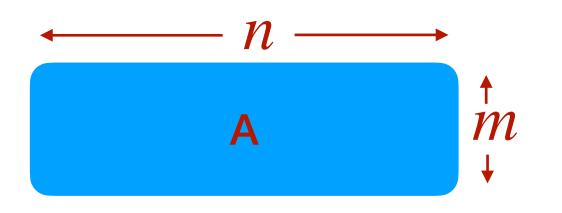
Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation



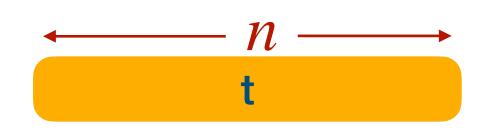
$$m = \frac{k \log n}{\Delta}$$
$$m \le \frac{(\log n)^2}{\Delta}$$

(All matrix and vector elements are in  $\{0,1\}$ )



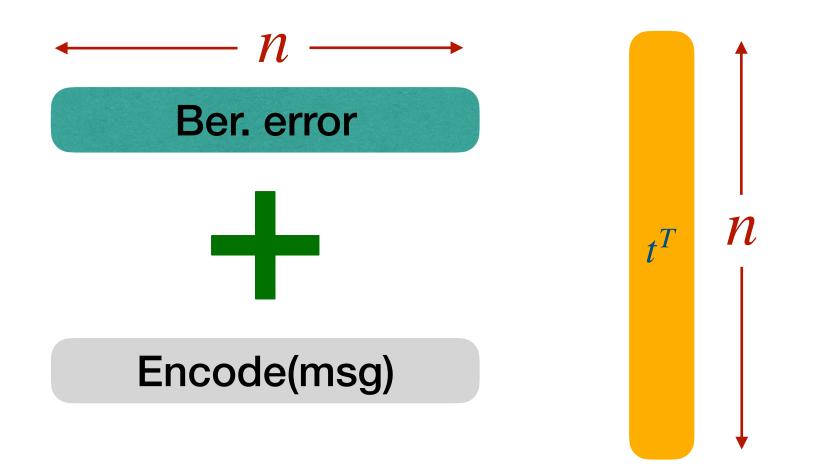


Secret key:

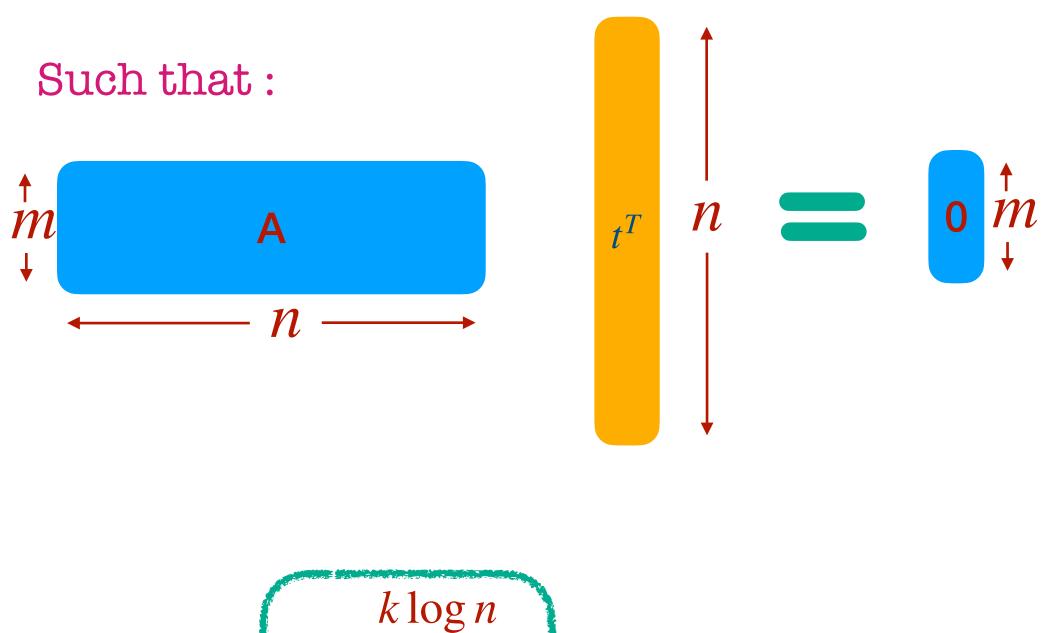


#1's = k

#### Decryption :

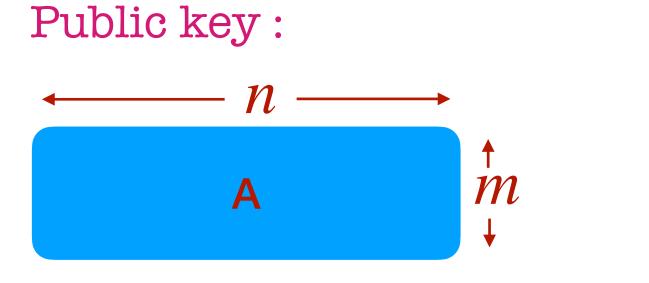


Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation

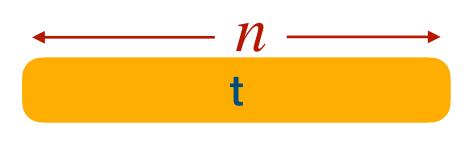


 $m = \frac{k \log n}{\Delta}$  $m \le \frac{(\log n)^2}{\Delta}$ 

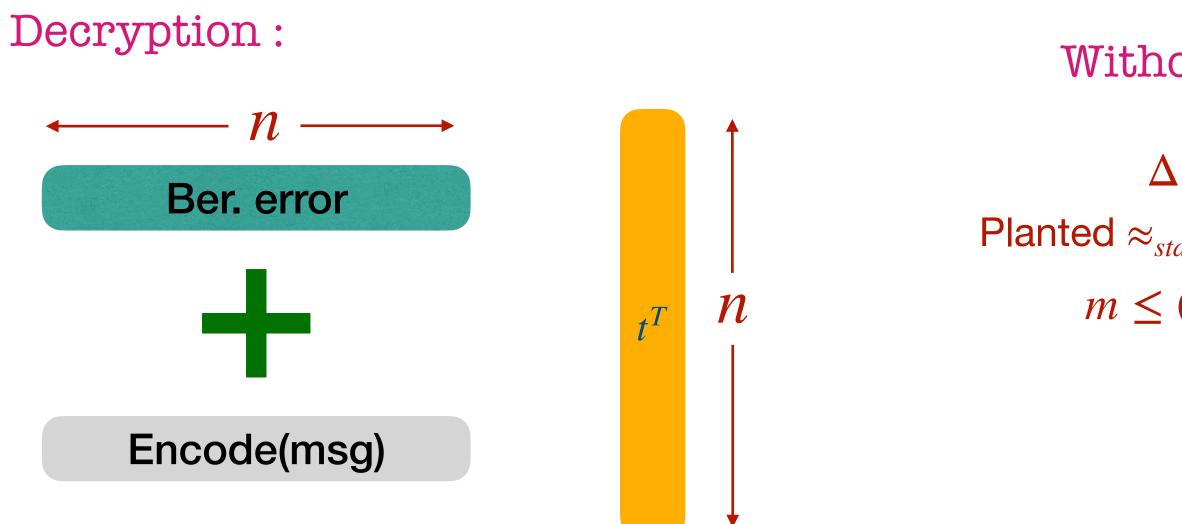
(All matrix and vector elements are in  $\{0,1\}$ )



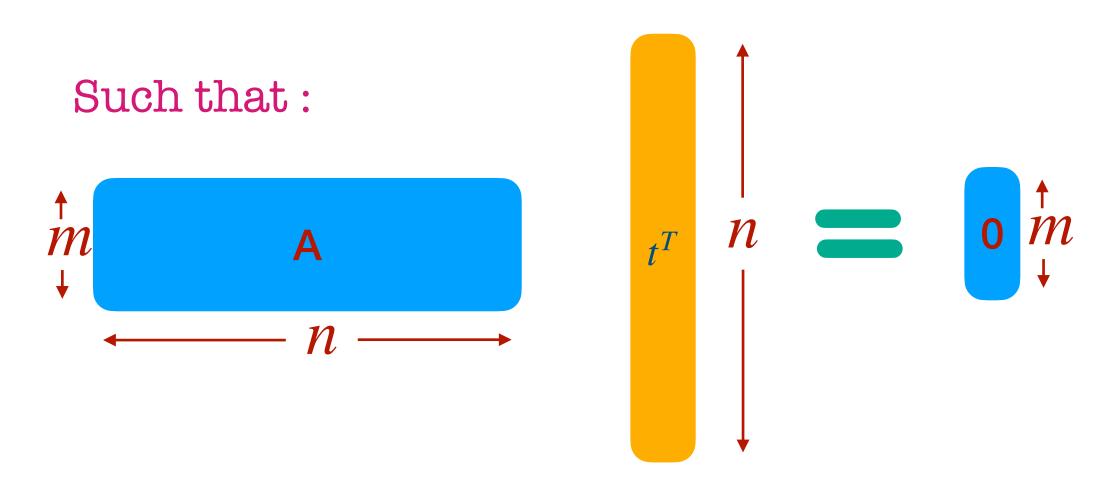
Secret key:



#1's = k

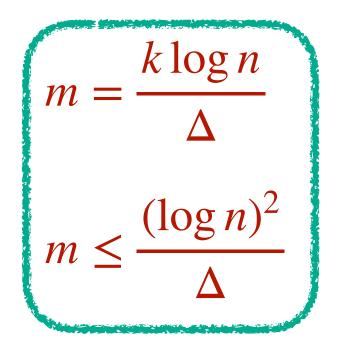


Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation

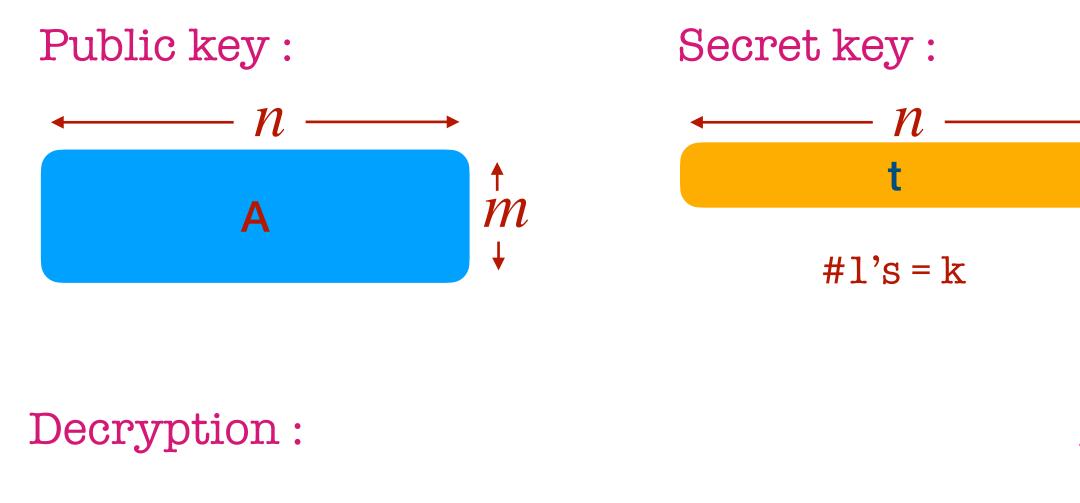


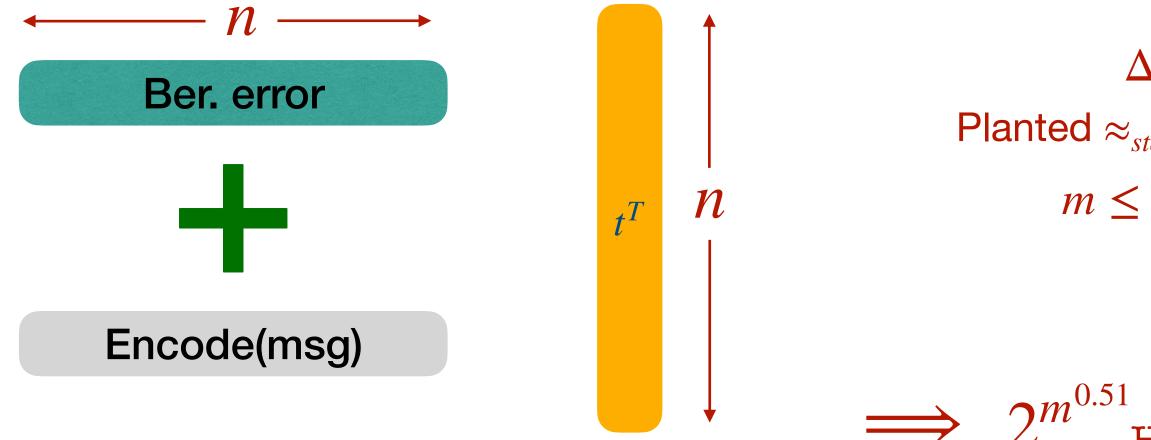
Without k-XOR :

 $\Delta \ge 1$ Planted  $\approx_{stat}$  non-Planted  $m \le (\log n)^2$ 

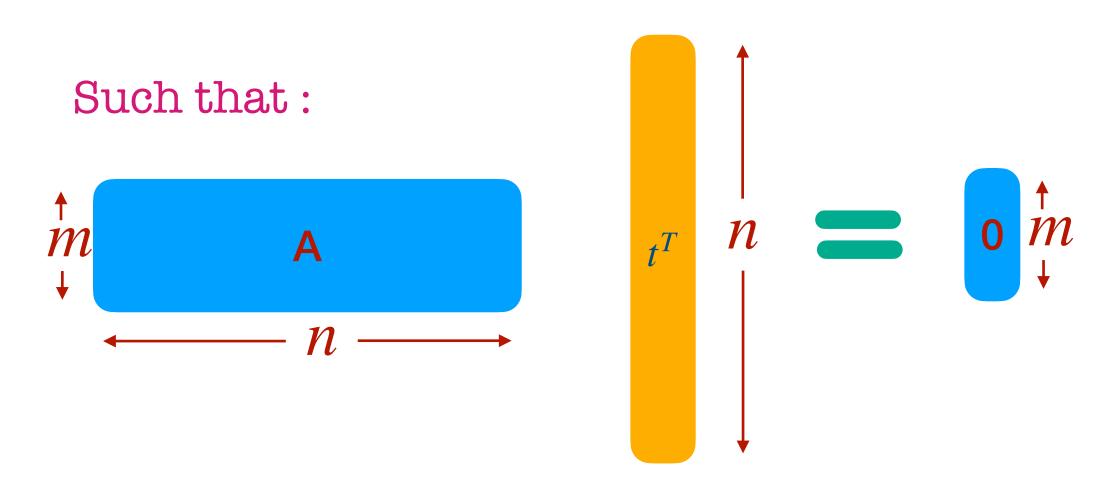


(All matrix and vector elements are in  $\{0,1\}$ )





Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation



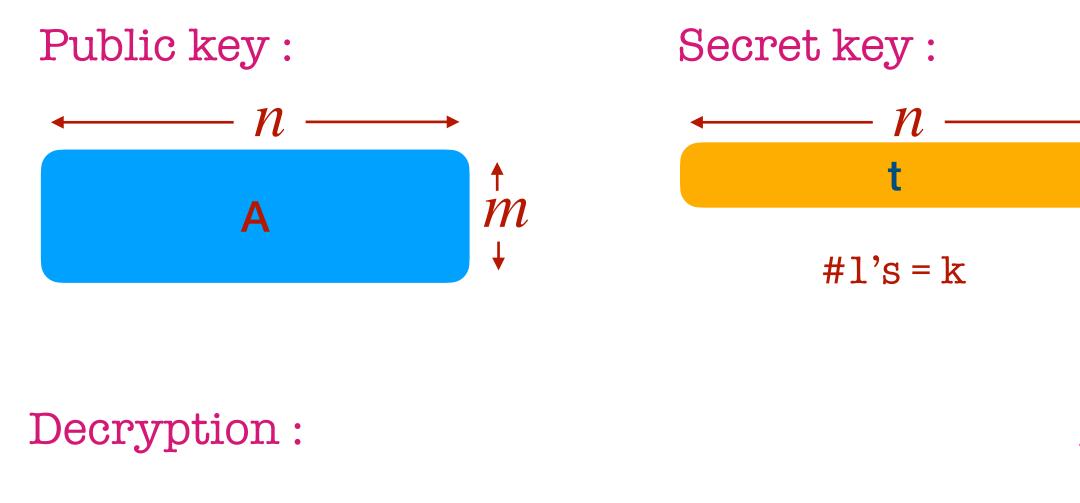
Without k-XOR :

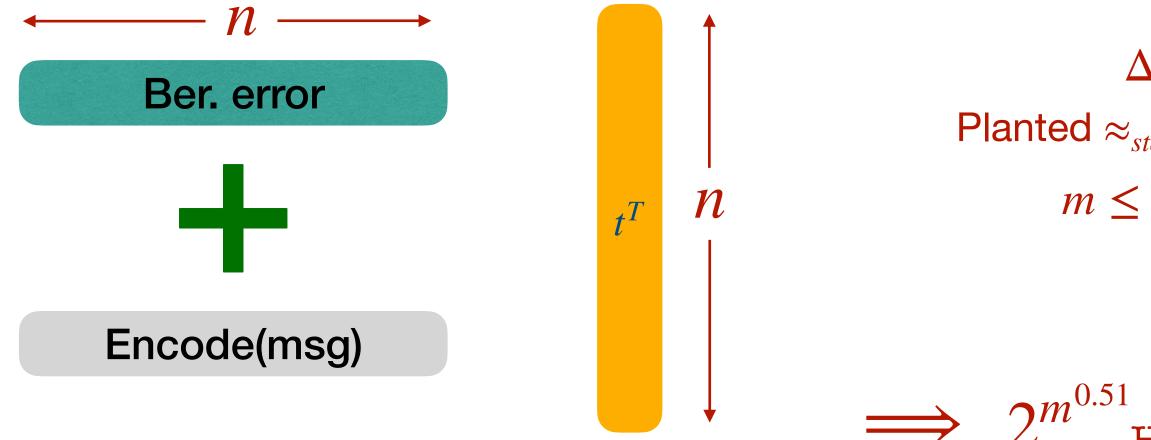
 $\Delta \ge 1$ Planted  $\approx_{stat}$  non-Planted  $m \le (\log n)^2$ 

$$m = \frac{k \log n}{\Delta}$$
$$m \le \frac{(\log n)^2}{\Delta}$$

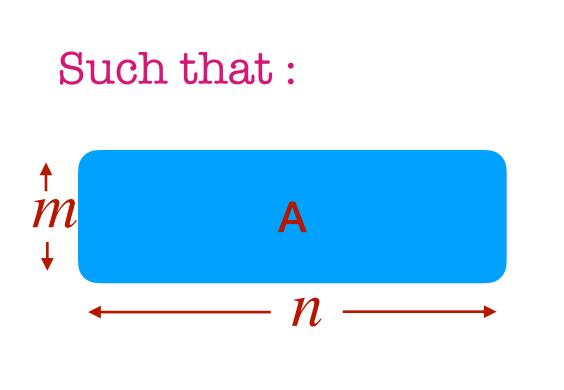
Hardness assumed

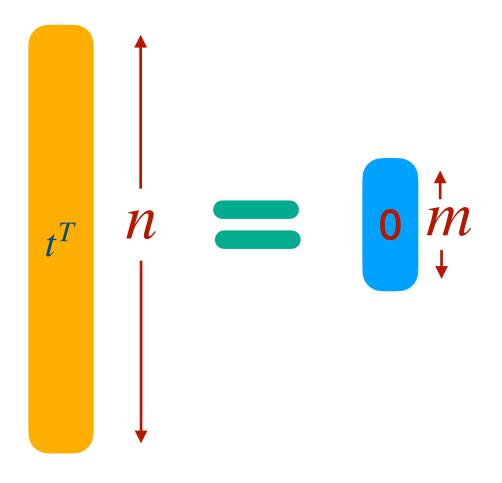
(All matrix and vector elements are in  $\{0,1\}$ )





Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation

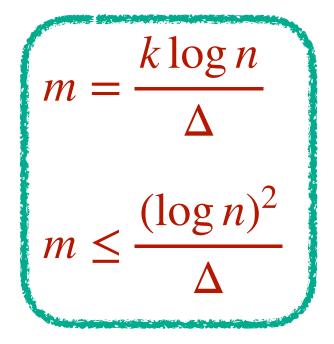




Without k-XOR :

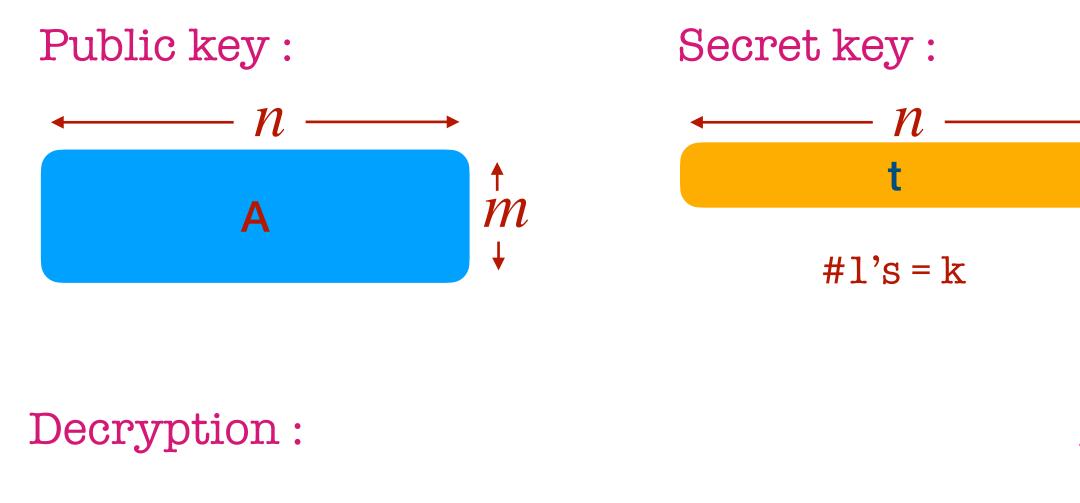
With k-XOR :

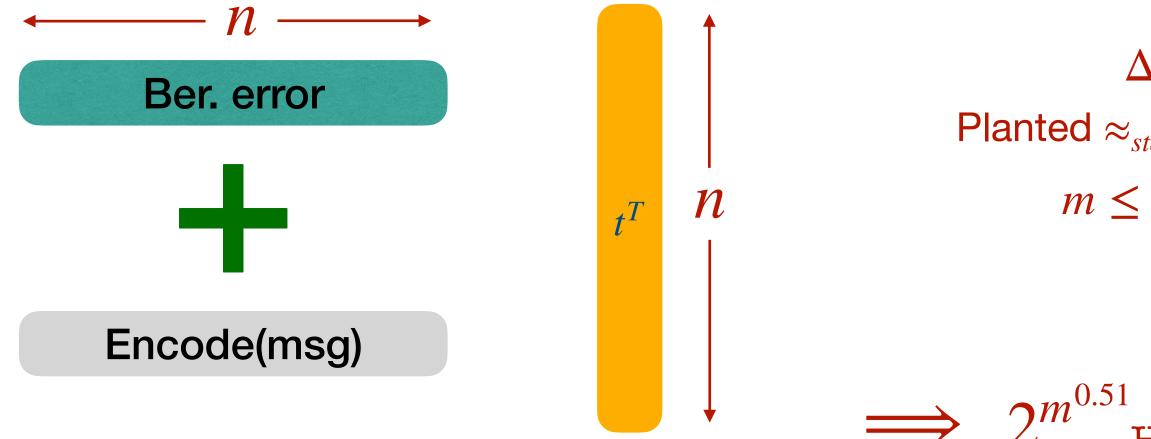
 $\Delta \ge 1$ Planted  $\approx_{stat}$  non-Planted  $m \le (\log n)^2$ 



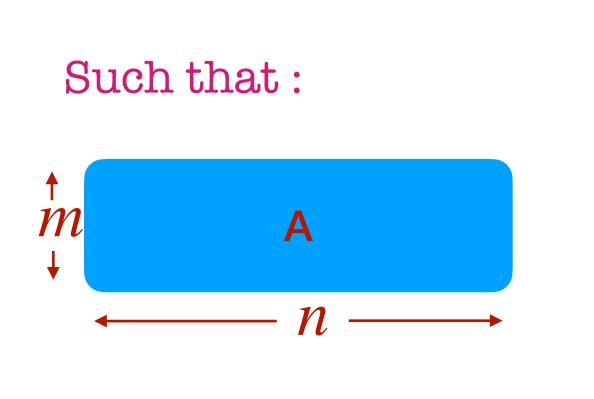
Hardness assumed

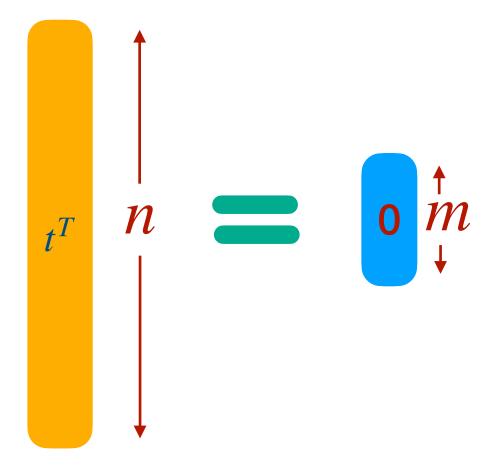
(All matrix and vector elements are in  $\{0,1\}$ )





Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation

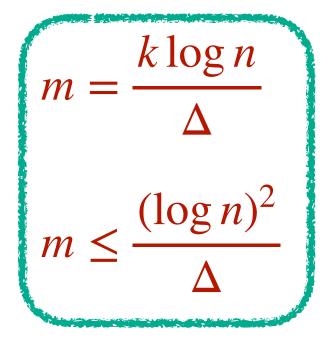




Without k-XOR :

With k-XOR :

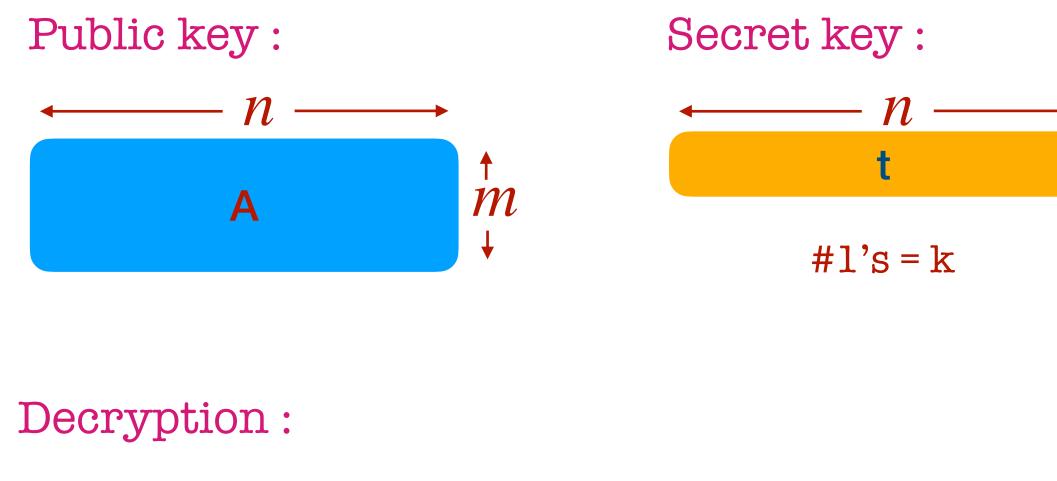
 $\Delta \ge 1$ Planted  $\approx_{stat}$  non-Planted  $m \le (\log n)^2$ 

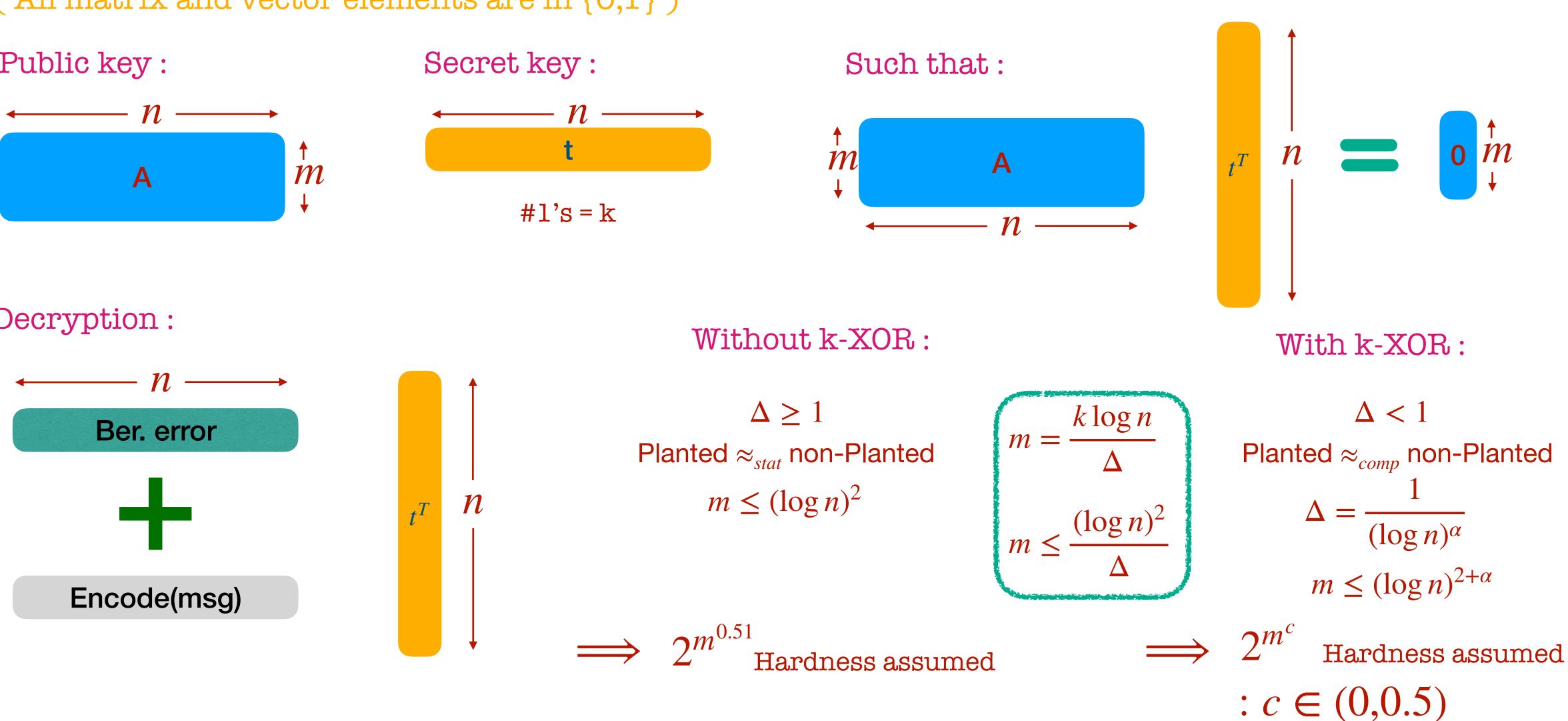


 $\Delta < 1$ Planted  $\approx_{comp}$  non-Planted  $\Delta = \frac{1}{(\log n)^{\alpha}}$   $m \le (\log n)^{2+\alpha}$ 

Hardness assumed

(All matrix and vector elements are in  $\{0,1\}$ )



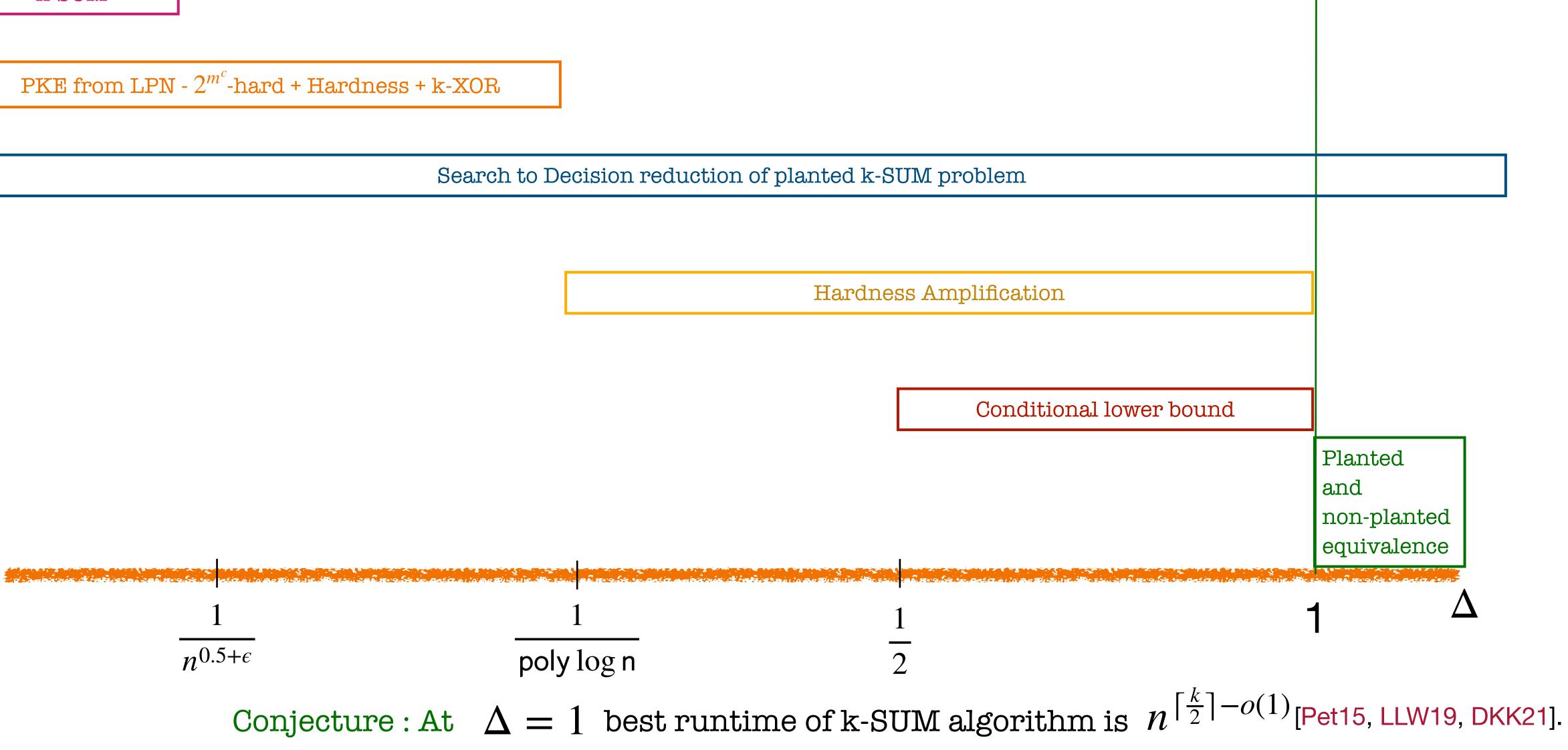


Decryption is possible only if k <= log(n) given Ber. error is constant- more #1's, more error accumulation

## Summary of results mentioned

Faster algorithm for a variant of k-SUM

PKE from LPN -  $2^{m^c}$ -hard + Hardness + k-XOR



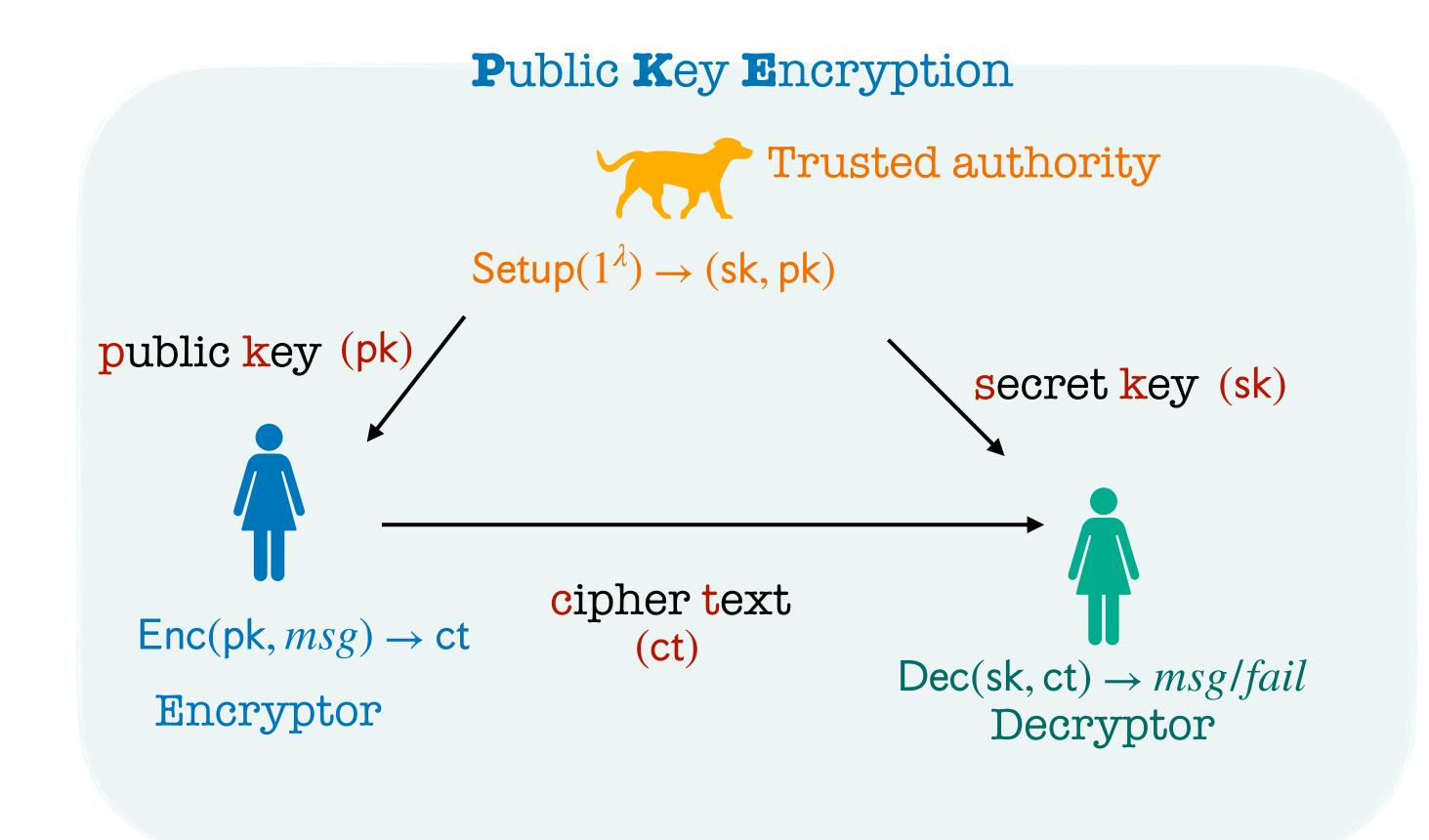




# Questions ?

# Thank you !

## Extra slides - PKE



**Correctness :**  $Dec(sk, Enc(pk, m)) \rightarrow m$ 

## Extra slides - PKE

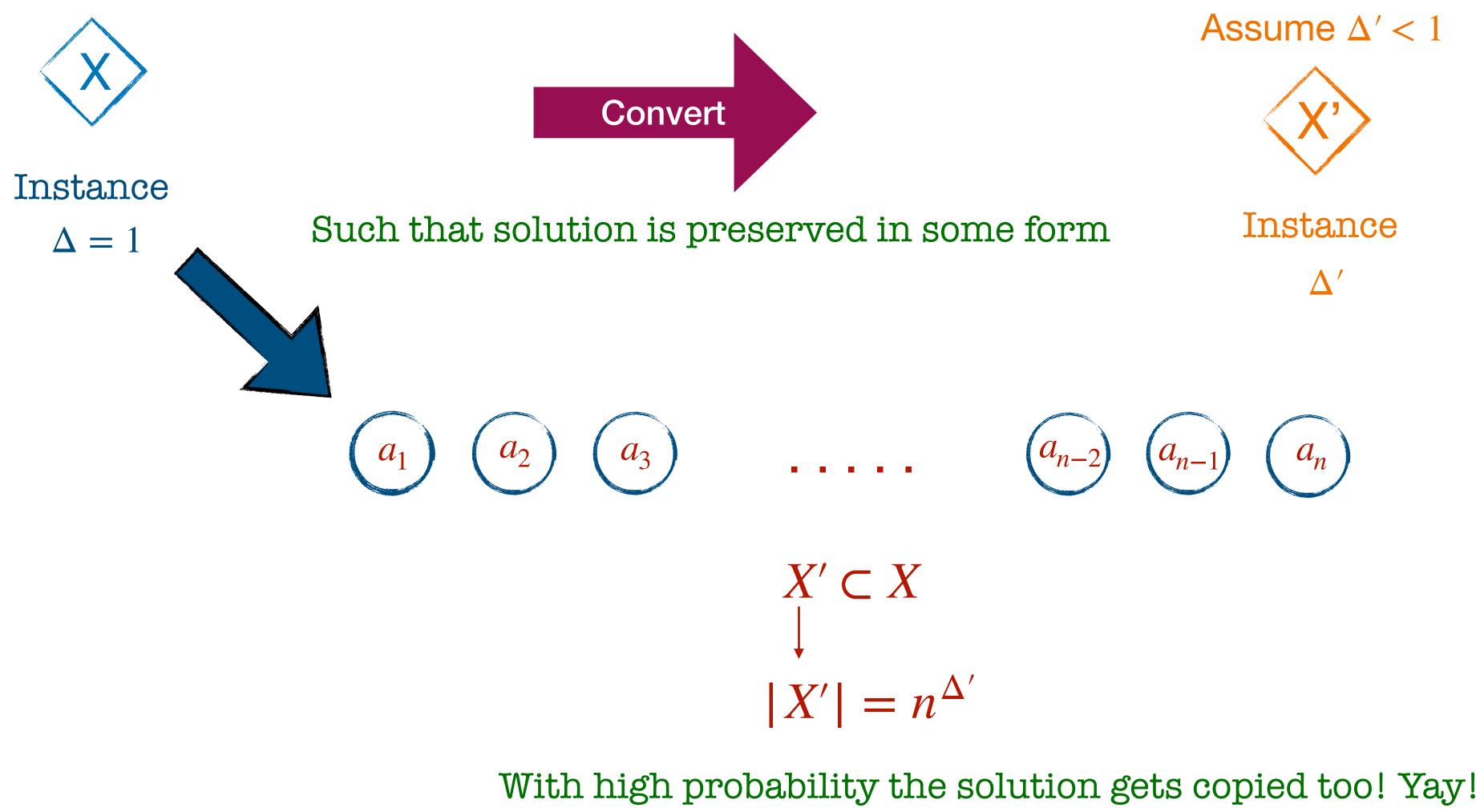






Adversary wins if b = b'

# Conditional lower bound intuition - one approach







Instance

# Planted and Non planted equivalence intuition

Distribution

