

HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits CRYPTO 2024, August 19

Gregor Leander, Christof Paar, Julian Speith and Lukas Stennes

Symmetric Cryptography (Practice)

Symmetric Cryptography (Practice)

All cops are broadcasting: TETRA under scrutiny

Carlo Meijer Midnight Blue c.meijer@midnightblue.nl Wouter Bokslag Midnight Blue w.bokslag@midnightblue.nl Jos Wetzels Midnight Blue j.wetzels@midnightblue.nl

USENIX 2023

There is bad crypto.

There is bad crypto. Let's find it.

Documents

Academic papers, standards, patents ...

- Software
- Hardware

Documents

Academic papers, standards, patents . . .

- Software
- Hardware

Documents

Academic papers, standards, patents . . .

- Software
- Hardware

Documents

Academic papers, standards, patents . . .

- Software
- Hardware

Documents

Academic papers, standards, patents . . .

- Software
- Hardware

Documents easy

Academic papers, standards, patents . . .

- Software
- Hardware

Documents easy

► Academic papers, standards, patents

- Software Where's Crypto?, Meijer, Moonsamy, Wetzels at USENIX 2021
- Hardware

Documents easy

- ► Academic papers, standards, patents
- Reverse Engineering
 - Software Where's Crypto?, Meijer, Moonsamy, Wetzels at USENIX 2021
 - Hardware ???

Documents easy Academic papers, Reverse Engineering

- ► Software Where
- Hardware

els at USENIX 2021

Background

HAWKEYE | CRYPTO 2024 | August 19

ASICs

Decapsulation

FPGAs

HAWKEYE | CRYPTO 2024 | August 19

ASICs

Decapsulation

FPGAs

Delayering

FPGAs

FPGAs

HAWKEYE | CRYPTO 2024 | August 19

7/19

FPGAs

4

Netlist

HAWKEYE | CRYPTO 2024 | August 19

Netlist

4

Netlist Analysis

FPGAs

4

Netlist

Netlist Analysis

HAWKEYE | CRYPTO 2024 | August 19

Bitstream Extraction

Netlist

4

Netlist Analysis

^{7/19}

Pipelined

Round-Based

+ C

Pipelined

+ C

Pipelined

Round-Based

Pipelined

Round-Based

What Is Special About Symmetric Cryptography?

- Flip-flops in state register influence only state register and ciphertext output
 - State register flip-flops and ciphertext flip-flops are distinguishable
- Avalanche effect: Bits in first state register influences all bits of later state registers
- Round function only depends on plaintext, round keys, and finite state machine control signals

What Is Special About Symmetric Cryptography?

- Flip-flops in state register influence only state register and ciphertext output
 - State register flip-flops and ciphertext flip-flops are distinguishable
- Avalanche effect: Bits in first state register influences all bits of later state registers
- Round function only depends on plaintext, round keys, and finite state machine control signals

What Is Special About Symmetric Cryptography?

- Flip-flops in state register influence only state register and ciphertext output
 - State register flip-flops and ciphertext flip-flops are distinguishable
- Avalanche effect: Bits in first state register influences all bits of later state registers
- Round function only depends on plaintext, round keys, and finite state machine control signals

OF LARGE-SCALE ADVERSARIES

P —

FSM

К-

What Is Special About Symmetric Cryptography?

- ► Flip-flops in state register influence only state register and ciphertext output
 - State register flip-flops and ciphertext flip-flops are distinguishable
- Avalanche effect: Bits in first state register influences all bits of later state registers
- Round function only depends on plaintext, round keys, and finite state machine control signals

round function

kev schedule

→ C

Techniques

The Goal

Candidate Search – Preprocessing

Candidate Search – Preprocessing

Round Function Analysis

Round Function Analysis

Our techniques are a based on *heuristics*

- Imperative to evaluate the techniques
- \blacktriangleright Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- \blacktriangleright We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

Our techniques are a based on *heuristics*

Imperative to evaluate the techniques

- \blacktriangleright Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- \blacktriangleright We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

- Our techniques are a based on *heuristics*
- Imperative to evaluate the techniques
- \blacktriangleright Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- \blacktriangleright We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

- Our techniques are a based on *heuristics*
- Imperative to evaluate the techniques
- \blacktriangleright Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- \blacktriangleright We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

- Our techniques are a based on *heuristics*
- Imperative to evaluate the techniques
- \blacktriangleright Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

- Our techniques are a based on *heuristics*
- Imperative to evaluate the techniques
- \blacktriangleright Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

- Our techniques are a based on *heuristics*
- Imperative to evaluate the techniques
- \blacktriangleright Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

- Imperative to evaluate the techniques
- Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

OF LARGE-SCALE ADVERSARIE

- Our techniques are a based on *heuristics*
- Imperative to evaluate the techniques
- \blacktriangleright Hardware reverse engineering (ASIC/FPGA \rightarrow netlist) not an option
- \blacktriangleright We synthesized open source netlists (hardware design \rightarrow netlists)
 - OpenTitan: industry-grade chip
 - Cryptographic Accelerators in a small system-on-chips
 - Isolated (non-)cryptographic benchmarks
- Confident that our techniques generalise also to unknown ciphers
- Implementation available as artifact

Contains 424.341 gates

After 44s on Apple M2:

#FFs	Description
640	partial Keccak state
128	AES state
256	AES key state
256	SHA-2 state
256	Xoshiro $256++$ state
192	PRESENT state and key
64	PRINCE output

Contains 424.341 gates

After 44s on Apple M2:

#FFs	Description
640	partial Keccak state
128	AES state
256	AES key state
256	SHA-2 state
256	Xoshiro256++ state
192	PRESENT state and key
64	PRINCE output

▶ We evaluate HAWKEYE on a variety of symmetric ciphers and *noise*

- Run time is in the seconds (roughly linear in size of netlist)
- ► HAWKEYE finds almost all ciphers
- Only very few false positives
 - ► Mostly recurring, e.g., counters
 - Could be filtered out

- ▶ We evaluate HAWKEYE on a variety of symmetric ciphers and *noise*
- Run time is in the seconds (roughly linear in size of netlist)
- ► HAWKEYE finds almost all ciphers
- Only very few false positives
 - ► Mostly recurring, e.g., counters
 - Could be filtered out

- ▶ We evaluate HAWKEYE on a variety of symmetric ciphers and *noise*
- Run time is in the seconds (roughly linear in size of netlist)
- ► HAWKEYE finds almost all ciphers
- Only very few false positives
 - ► Mostly recurring, e.g., counters
 - Could be filtered out

- ▶ We evaluate HAWKEYE on a variety of symmetric ciphers and *noise*
- Run time is in the seconds (roughly linear in size of netlist)
- ► HAWKEYE finds almost all ciphers
- Only very few false positives
 - ► Mostly recurring, e.g., counters
 - Could be filtered out

- ▶ We evaluate HAWKEYE on a variety of symmetric ciphers and *noise*
- Run time is in the seconds (roughly linear in size of netlist)
- ► HAWKEYE finds almost all ciphers
- Only very few false positives
 - ► Mostly recurring, e.g., counters
 - Could be filtered out

- ▶ We evaluate HAWKEYE on a variety of symmetric ciphers and *noise*
- Run time is in the seconds (roughly linear in size of netlist)
- ► HAWKEYE finds almost all ciphers
- Only very few false positives
 - ► Mostly recurring, e.g., counters
 - Could be filtered out

Symmetric cryptography based on shift registers

- Side-channel protected implementation
- Actually finding unknown cryptography
- ▶ You have a real-world device to look at? Please reach out to us!

- Symmetric cryptography based on shift registers
- Side-channel protected implementation
- Actually finding unknown cryptography
- ▶ You have a real-world device to look at? Please reach out to us!

- Symmetric cryptography based on shift registers
- Side-channel protected implementation
- Actually finding unknown cryptography
- ▶ You have a real-world device to look at? Please reach out to us!

- Symmetric cryptography based on shift registers
- Side-channel protected implementation
- Actually finding unknown cryptography
- ▶ You have a real-world device to look at? Please reach out to us!

- Symmetric cryptography based on shift registers
- Side-channel protected implementation
- Actually finding unknown cryptography
- ▶ You have a real-world device to look at? Please reach out to us!

