Non-Interactive Zero-Knowledge from LPN and MO

Aayush Jain

Zhengzhong Jin

Crypto 2024

Fundamental notion in cryptography [GMR85, BFM88]

Fundamental notion in cryptography [GMR85, BFM88]

- Completeness: honest P convinces V
- Soundness: V rejects $x \notin L$ for any malicious P
- Zero-knowledge: there exists a simulator S that can simulate (crs, π)

Fundamental notion in cryptography [GMR85, BFM88]

- Completeness: honest P convinces V
- Soundness: V rejects $x \notin L$ for any malicious P
- Zero-knowledge: there exists a simulator S

that can simulate (*crs*, π)

Many practical applications!

Private Cryptocurrencies Voting Systems

Proving Image Transformations

Anonymous credentials

ZK-Rollups

...and more!

Practice: use random oracles [Kilian94, Micali00, BCS16, etc], idealized group

models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

Practice: use random oracles [Kilian94, Micali00, BCS16, etc], idealized group

- models, or non-falsifiable assumptions [GGPR13, Groth16, etc]
- **<u>Theory</u>**: surprisingly difficult to construct!

Practice: use random oracles [Kilian94, Micali00, BCS16, etc], idealized group models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

<u>Theory</u>: surprisingly difficult to construct!

• From factoring / QR [BFM88, FLS90] or bilinear maps [CHK03, GOS06]

Practice: use random oracles [Kilian94, Micali00, BCS16, etc], idealized group models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

<u>Theory</u>: surprisingly difficult to construct!

- From factoring / QR [BFM88, FLS90] or bilinear maps [CHK03, GOS06]
- Recent progress relies on <u>correlation-intractable</u> (CI) hash functions!

 \implies enables constructions from LWE [CCR+19, PS19], DDH/DCR + LPN

[BKM20], or sub-exponential DDH [JJ21]

Practice: use random oracles [Kilian94, Micali00, BCS16, etc], idealized group models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

<u>Theory</u>: surprisingly difficult to construct!

- From factoring / QR [BFM88, FLS90] or bilinear maps [CHK03, GOS06]
- Recent progress relies on <u>correlation-intractable</u> (CI) hash functions!

 \implies enables constructions from LWE [CCR+19, PS19], DDH/DCR + LPN

[BKM20], or sub-exponential DDH [JJ21]

The only post-quantum secure construction is from LWE!

- 1. Go beyond lattices & diversify constructions:

Lack of post-quantum advanced cryptography from <u>non-lattice-based</u> assumptions

- 1. Go beyond lattices & diversify constructions:
 - Lack of post-quantum advanced cryptography from <u>non-lattice-based</u> assumptions
- 2. Achieve NIZK under "weaker" assumptions:
 - Existing LWE-based constructions (w/ polynomial modulus) rely on FHE techniques*

* [Waters24] constructs NIZK from LWE with sub-exponential modulus

- 1. Go beyond lattices & diversify constructions:
 - Lack of post-quantum advanced cryptography from <u>non-lattice-based</u> assumptions
- 2. Achieve NIZK under "weaker" assumptions:
 - Existing LWE-based constructions (w/ polynomial modulus) rely on FHE techniques*
- 3. Stepping stone towards **BARGs**, **SNARGs**, etc.

* [Waters24] constructs NIZK from LWE with sub-exponential modulus

- 1. Go beyond lattices & diversify constructions:
 - Lack of post-quantum advanced cryptography from <u>non-lattice-based</u> assumptions
- 2. Achieve NIZK under "weaker" assumptions:
 - Existing LWE-based constructions (w/ polynomial modulus) rely on FHE techniques*
- 3. Stepping stone towards **BARGs**, **SNARGs**, etc.

* [Waters24] constructs NIZK from LWE with sub-exponential modulus

Can we build NIZK from post-quantum assumptions other than lattices?

Our Result: NIZK from LPN and MQ

Our Result: NIZK from LPN and MO

- 1. We construct NIZK[†] from: [†] with computational soundness + zero-knowledge
 - Learning Parity with Noise (LPN), * with slightly-stronger-than-PKE noise rate
 - Approximate Multivariate Quadratic (ApxMQ) * implied by MQ with <u>exponential</u> hardness

Our Result: NIZK from LPN and MO

- 1. We construct NIZK[†] from: [†] with computational soundness + zero-knowledge
 - Learning Parity with Noise (LPN), * with slightly-stronger-than-PKE noise rate
 - Approximate Multivariate Quadratic (ApxMQ) * implied by MQ with <u>exponential</u> hardness
- 2. Our NIZK is achieved via an <u>extremely simple</u> construction of CI hashing:
 - For functions that can be approximated by <u>concatenated constant-degree polynomials</u>
 - Proof of CI reduces to hardness of Approximate MQ, or its higher-degree analogue

Our Result: NIZK from LPN and MO

- 1. We construct NIZK[†] from: [†] with computational soundness + zero-knowledge
 - Learning Parity with Noise (LPN), * with slightly-stronger-than-PKE noise rate
 - Approximate Multivariate Quadratic (ApxMQ) * implied by MQ with <u>exponential</u> hardness
- 2. Our NIZK is achieved via an *extremely simple* construction of CI hashing:
 - For functions that can be approximated by <u>concatenated constant-degree polynomials</u>
 - Proof of CI reduces to hardness of Approximate MQ, or its higher-degree analogue
- 3. We can upgrade our NIZK to statistical zero-knowledge, assuming:
 - Dense-Sparse LPN [DJ24] * implies Lossy PKE with \approx linear decryption & low correct. error

Our Result: NIZK from LPN and MQ

Assumptions

Factoring [21, 62, 10]

Bilinear Maps [37,74]

Bilinear Maps [73]

Learning with Errors [33,108]

DDH + LPN [28]

sub-exponential DDH [82]

LPN + exponential MQ (Ours

DS-LPN + exponential MQ (Ou

\mathbf{CRS}	\mathbf{SND}	$\mathbf{Z}\mathbf{K}$	Post-Quantum
random	\mathbf{S}	С	no
random	С	S	no
structured	S	С	
structured	С	\mathbf{S}	no
random	S	С	
random	С	\mathbf{S}	yes
structured	\mathbf{S}	С	
random	\mathbf{C}	\mathbf{C}	no
random	С	\mathbf{S}	no
random	С	С	yes
structured	С	\mathbf{S}	yes
	random random structured random structured random random	random S random C structured S structured C random C structured S random C random C random C	randomSCrandomCSstructuredSCstructuredCSrandomSCrandomCSstructuredSCrandomCSrandomCSrandomCSrandomCSrandomCSrandomCSrandomCS

Talk Outline

1. Recap: NIZK from Correlation Intractability

2. Cl Hashing from (Approximate) MQ

3. Putting Things Together

Talk Outline

1. Recap: NIZK from Correlation Intractability

2. Cl Hashing from (Approximate) MQ

3. Putting Things Together

<u>Relation</u>: $\{(G, H) | H \text{ is a Hamiltonian cycle of } G\}$

contains all vertices of G

<u>Relation</u>: $\{(G, H) | H \text{ is a Hamiltonian cycle of } G\}$

contains all vertices of G

<u>Relation</u>: $\{(G, H) | H \text{ is a Hamiltonian cycle of } G\}$

contains all vertices of G

<u>Relation</u>: $\{(G, H) | H \text{ is a Hamiltonian cycle of } G\}$

contains all vertices of ${\cal G}$

<u>Relation</u>: $\{(G, H) | H \text{ is a Hamiltonian cycle of } G\}$

contains all vertices of G

c = 1 : reveal edges of $\pi(H)$

<u>Relation</u>: $\{(G, H) | H \text{ is a Hamiltonian cycle of } G\}$

contains all vertices of G

- Perfect completeness
- Soundness error: 1/2
- Honest-verifier zero-knowledge

c = 1 : reveal edges of $\pi(H)$

<u>Relation</u>: $\{(G, H) | H \text{ is a Hamiltonian cycle of } G\}$

contains all vertices of G

- Perfect completeness
- Soundness error: 1/2
- Honest-verifier zero-knowledge

NIZK from Fiat-Shamir [FS86]?

c = 1 : reveal edges of $\pi(H)$

<u>Relation</u>: $\{(G, H) | H \text{ is a Hamiltonian cycle of } G\}$

contains all vertices of G

- Perfect completeness
- Soundness error: 1/2
- Honest-verifier zero-knowledge

NIZK from Fiat-Shamir [FS86]?

- Derive $c := \operatorname{Hash}_{hk}(a)$
- Which hash function would preserve security?

Correlation Intractability: [CGH04]

• H_{hk} is CI against a relation R if

 $\Pr_{hk}\left[(x, \mathsf{H}_{hk}(x)) \in R \mid x \leftarrow \mathscr{A}(hk)\right] \leq \mathsf{negl}(\lambda)$

Correlation Intractability: [CGH04]

- H_{hk} is CI against a relation R if $Pr_{hk}\left[(x, H_{hk}(x)) \in R \mid x \leftarrow \mathscr{A}(hk)\right] \leq \operatorname{negl}(\lambda)$
- Fiat-Shamir is secure if H is CI against

 $R_{bad}(x) := \{(a, c) \mid \exists z \text{ s.t. } V \text{ accepts } (x, a, c, z)\}$

Correlation Intractability: [CGH04]

- H_{hk} is CI against a relation R if $Pr_{hk}\left[(x, H_{hk}(x)) \in R \mid x \leftarrow \mathscr{A}(hk)\right] \leq \operatorname{negl}(\lambda)$
- Fiat-Shamir is secure if H is CI against

 $R_{bad}(x) := \{(a, c) \mid \exists z \text{ s.t. V accepts } (x, a, c, z)\}$

• For Blum's protocol, bad *c* is unique & efficiently-computable via **BadChal**_{*sk*} :

• Decrypt
$$a \implies \text{get } \pi(H)$$

• Output c = 0 if $\pi(H)$ is a cycle, else output c = 1.

NIZK from Correlation Intractability

Correlation Intractability: [CGH04]

• H_{hk} is CI against a relation R if

 $Pr_{hk} [(x, H_{hk}(x)) \in R \mid x \leftarrow \mathscr{A}(hk)] \leq \operatorname{negl}(\lambda)$ • F Goal: build hash functions t $R_{bad}(x) := \{(a, c) \mid \exists z \text{ s.t. V accepts } (x, a, c, z)\}$

• For Blum's protocol, bad *c* is unique & efficiently-computable via **BadChal**_{*sk*} :

• Decrypt
$$a \implies \text{get } \pi(H)$$

• Output c = 0 if $\pi(H)$ is a cycle, else output c = 1.

Goal: build hash functions that are CI against **BadChal**_{sk}

NIZK from Correlation Intractability

Correlation Intractability: [CGH04]

• H_{hk} is CI against a relation R if

<u>Goal</u>: build hash functions that are CI against BadChal_{sk}

Problem: BadChal_{sk} is not simple enough!

```
non-edges of \pi(G)
```

```
c = 1 : reveal edges
of \pi(H)
```

c = 0 : check that revealed edges are non-edges of $\pi(G)$ c = 1 : check that $\pi(H)$ is a cycle

 $\mathbf{H}_{hk}(a)$

[BKM20] CI against functions f approximable

by constant-degree polynomials!

 $\Pr_{g \leftarrow \mathscr{G}} [f(x) = g(x)] \ge 0.99 \text{ for some distribution}$ $\mathscr{G} \text{ over constant-degree polynomials}$

[BKM20] CI against functions f approximable

by constant-degree polynomials!

 $\Pr_{g \leftarrow \mathscr{G}} [f(x) = g(x)] \ge 0.99 \text{ for some distribution}$ $\mathscr{G} \text{ over constant-degree polynomials}$

 $f = \text{BadChal}_{sk}(a):$ $(\bullet \text{ Decrypt } a \implies \text{get } \pi(H))$ $(\bullet \text{ Output } c = 0 \text{ if } \pi(H) \text{ is a cycle, }$ $(\bullet \text{ else output } c = 1.$

Can we modify BadChal_{sk} to fall into this function class?

$$f = \text{BadChal}_{sk}(a):$$
• Decrypt $a \implies \text{get } \pi(H)$
• Output $c = 0$ if $\pi(H)$ is a cycle,
else output $c = 1$.

1. Have Dec_{sk} be approximately linear

 \implies achieved via LPN-based PKE

$$f = \text{BadChal}_{sk}(a):$$
• Decrypt $a \implies \text{get } \pi(H)$
• Output $c = 0$ if $\pi(H)$ is a cycle,
else output $c = 1$.

1. Have Dec_{sk} be approximately linear

 \implies achieved via LPN-based PKE

2. Turn cycle check into 3CNF formula Φ :

 $\pi(H)$ is a cycle $\iff \exists w \text{ s.t. } \Phi(\pi(H), w) = 1$

(Φ is approximable by O(1)-degree poly)

$$f = \text{BadChal}_{sk}(a):$$
• Decrypt $a \implies \text{get } \pi(H)$
• Output $c = 0$ if $\pi(H)$ is a cycle,
else output $c = 1$.

1. Have Dec_{sk} be approximately linear

 \implies achieved via LPN-based PKE

2. Turn cycle check into 3CNF formula Φ :

 $\pi(H)$ is a cycle $\iff \exists w \text{ s.t. } \Phi(\pi(H), w) = 1$

(Φ is approximable by O(1)-degree poly)

3. Encrypt & send w in the first round

$$f = \text{BadChal}_{sk}(a):$$
• Decrypt $a \implies \text{get } \pi(H), w$
• Output $c = 0$ if $\Phi(\pi(H), w) = 1$,
else output $c = 1$.

1. Have Dec_{sk} be approximately linear

 \implies achieved via LPN-based PKE

2. Turn cycle check into 3CNF formula Φ :

 $\pi(H)$ is a cycle $\iff \exists w \text{ s.t. } \Phi(\pi(H), w) = 1$

(Φ is approximable by O(1)-degree poly)

3. Encrypt & send w in the first round

 $\pi(H)$ is a cycle

Talk Outline

1. Recap: NIZK from Correlation Intractability

2. Cl Hashing from (Approximate) MQ

3. Putting Things Together

Solving a random system of quadratic polynomial equations (over finite \mathbb{F}) is hard!

$$\begin{cases} \sum_{i,j=1}^{n} a_{i,j}^{(1)} \cdot x_i \cdot x_j + \sum_{i=1}^{n} b_i^{(1)} \cdot x_i + c^{(1)} = 0 \\ \vdots & , \text{ where } \\ \sum_{i,j=1}^{n} a_{i,j}^{(m)} \cdot x_i \cdot x_j + \sum_{i=1}^{n} b_i^{(m)} \cdot x_i + c^{(m)} = 0 \end{cases} \quad \text{where } \begin{cases} n = \# \text{ variables} \\ m = \# \text{ equations} \\ \text{eqns. over a finite field } \mathbb{F} \end{cases}$$

Solving a random system of quadratic polynomial equations (over finite \mathbb{F}) is hard!

$$\begin{cases} \sum_{i,j=1}^{n} a_{i,j}^{(1)} \cdot x_i \cdot x_j + \sum_{i=1}^{n} b_i^{(1)} \cdot x_i + c^{(1)} = 0 \\ \vdots & , \text{ where } \\ \sum_{i,j=1}^{n} a_{i,j}^{(m)} \cdot x_i \cdot x_j + \sum_{i=1}^{n} b_i^{(m)} \cdot x_i + c^{(m)} = 0 \end{cases} \quad \text{where } \begin{cases} n = \# \text{ variables} \\ m = \# \text{ equations} \\ \text{eqns. over a finite field } \mathbb{F} \end{cases}$$

- One of the main branches of assumptions in post-quantum cryptography
- Hard for $\sqrt{n} \ll m \ll n^2$. Usual parameter regime: $m = \Theta(n)$

Solving a random system of quadratic polynomial equations (over finite \mathbb{F}) is hard!

$$\begin{cases} \sum_{i,j=1}^{n} a_{i,j}^{(1)} \cdot x_i \cdot x_j + \sum_{i=1}^{n} b_i^{(1)} \cdot x_i + c^{(1)} = 0 \\ \vdots & , \text{ where } \\ \sum_{i,j=1}^{n} a_{i,j}^{(m)} \cdot x_i \cdot x_j + \sum_{i=1}^{n} b_i^{(m)} \cdot x_i + c^{(m)} = 0 \end{cases} \quad \text{where } \begin{cases} n = \# \text{ variables} \\ m = \# \text{ equations} \\ \text{eqns. over a finite field } \mathbb{F} \end{cases}$$

- One of the main branches of assumptions in post-quantum cryptography
- Hard for $\sqrt{n} \ll m \ll n^2$. Usual parameter regime: $m = \Theta(n)$
- This work: under-determined setting, with $m = n^{1-\epsilon}$ for any $\epsilon > 0$

⇒ best cryptanalysis [TW12, MHT13] suggests <u>exponential</u> security*

* poly-time attackers have <u>exponentially</u> small success probability

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^{m}$$

This is not collision-resistant! * Choose random Δ , solve for $Q(x + \Delta) = Q(x)$

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^m$$

This is not collision-resistant! * Choose random Δ , solve for $Q(x + \Delta) = Q(x)$ However, it is correlation-intractable against quadratic polynomials!

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^m$$

This is not collision-resistant! * Choose random Δ , solve for $Q(x + \Delta) = Q(x)$

However, it is correlation-intractable against quadratic polynomials!

- Assume $H_Q(x) = f(x)$ for a quadratic function f.
- Switch to hybrid where $Q \mapsto Q + f \Longrightarrow$ hash key is still random
- But we have: $H_{Q+f}(x) = f(x) \iff Q(x) = 0$, which breaks MQ.

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^m$$

Hash key $Q := \left(a_{i,j}^{(k)}, b_i^{(k)}, c^{(k)}\right)_{i,j \in [n], k \in [m]}$

$$\mathbf{I}_{Q}(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_{i} x_{j} + b_{i}^{(k)} x_{i} + c^{(k)}\right)_{k=1}^{m}$$

Does H_Q satisfy approximate CI against quadratic polynomials?

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^m$$

Does H₀ satisfy approximate CI against quadratic polynomials?

- Assume $H_O(x)$ has 99% agreement with f(x), for some quadratic function f
- Use hybrid switch $Q \mapsto Q + f \Longrightarrow$ we have Q(x) = 0 for 99 % of equations

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^m$$

Does H_Q satisfy approximate CI against quadratic polynomials?

- Assume $H_Q(x)$ has 99% agreement with f(x), for some quadratic function f
- Use hybrid switch $Q \mapsto Q + f \Longrightarrow$ we have Q(x) = 0 for 99% of equations
- <u>New Assumption</u>: Approximate MQ states that this is still hard

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^m$$

Does H_Q satisfy approximate CI against quadratic polynomials?

- Assume $H_Q(x)$ has 99 % agreement with f(x), for some quadratic function f
- Use hybrid switch $Q \mapsto Q + f \implies$ we have Q(x) = 0 for 99% of equations
- <u>New Assumption</u>: Approximate MQ states that this is still hard
- Approximate MQ is implied by MQ with exponential security

Hash evaluation

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^m$$

* via guessing error pattern

Does H_Q satisfy approximate CI against quadratic polynomials?

• Assume $H_Q(x)$ has 99% agreement with f(x), for some quadratic function f

<u>Question</u>: How to achieve ApproxCl against degree -d polynomials, • Use for <u>any</u> constant d? Nev

Approximate MQ is implied by MQ with exponential security

Hash evaluation

$$I_Q(x) := Q(x) = \left(\sum_{i,j} a_{i,j}^{(k)} x_i x_j + b_i^{(k)} x_i + c^{(k)}\right)_{k=1}^m$$

* via guessing

error pattern

Approximate CI against Degree-*d* **Polys**

Approximate Cl against Degree-*d* **Polys**

Two Solutions:

Approximate CI against Degree -d Polys

Two Solutions:

- 1. Evaluate random degree -d polynomials on input
 - Hardness follows from degree -d analogue of (Approximate) MQ
 - **Downsides:** not as well-studied, blows up key size & evaluation time

Approximate Cl against Degree-*d* **Polys**

Two Solutions:

- 1. Evaluate random degree -d polynomials on input
 - Hardness follows from degree -d analogue of (Approximate) MQ
 - Downsides: not as well-studied, blows up key size & evaluation time
- 2. Achieve approximate CI against a <u>sub-class</u> of degree-d polynomials
 - <u>Concatenated</u> degree -d polys: $P(x_1 \parallel ... \parallel x_l) = P_1(x_1) \parallel ... \parallel P_l(x_l)$, $\deg(P_i) = d$
 - Setting: $|x_i| = s$ is fixed, $l = poly(\lambda)$ may grow
 - Hash evaluation: $H_Q(x_1 \parallel \dots \parallel x_l) := Q(x_1^{\otimes d/2}, \dots, x_l^{\otimes d/2})$
 - \implies achieves compression for large enough $l = poly(\lambda)$

Talk Outline

1. Recap: NIZK from Correlation Intractability

2. Cl Hashing from (Approximate) MQ

3. Putting Things Together

Road to Achieve NIZK

Road to Achieve NIZK

Road to Achieve NIZK

ApproxCI for Concatenated Poly's Suffices

ApproxCl for Concatenated Poly's Suffices

Bad challenge function of parallel-repeated protocol has <u>concatenated</u> format

 $\pi_i(H)$ is a cycle

ApproxCl for Concatenated Poly's Suffices

Bad challenge function of parallel-repeated protocol has <u>concatenated</u> format

BadChal_{sk} $(a_1, ..., a_n)$: For each i = 1, ..., n: • Decrypt $a_i \implies \text{get } \pi_i(H), w_i$ • Output $c_i = 0$ if $\Phi(\pi_i(H), w_i) = 1$. Else output $c_i = 1$.

 $= \mathbf{BadChal}_{sk}(a_1) \| \dots \| \mathbf{BadChal}_{sk}(a_n)$

 \implies **BadChal**_{*sk*} is approximable by <u>concatenated</u> constant-degree polynomials

 $\pi_i(H)$ is a cycle

\implies not strong enough to achieve NIZK

 \implies not strong enough to achieve NIZK

Instead, use Dense-Sparse LPN (variant of LPN with structured public matrix)

 \implies lossy PKE from DS-LPN with correctness error $\frac{1}{poly(\lambda)}$

<u>Our Result:</u> We build NIZK from two well-studied post-quantum assumptions, Learning Parity with Noise (LPN) and Multivariate Quadratic (MQ).

<u>Our Result</u>: We build NIZK from two well-studied post-quantum assumptions, Learning Parity with Noise (LPN) and Multivariate Quadratic (MQ).

Future Directions:

- NIZK solely from code-based / multivariate assumptions?
- New post-quantum constructions of advanced proof systems?
 - ZAPs, BARGs, SNARGs, etc.
- Cryptanalysis on higher-degree analogue of MQ

<u>Our Result</u>: We build NIZK from two well-studied post-quantum assumptions, Learning Parity with Noise (LPN) and Multivariate Quadratic (MQ).

Future Directions:

- NIZK solely from code-based / multivariate assumptions?
- New post-quantum constructions of advanced proof systems?
 - ZAPs, BARGs, SNARGs, etc.
- Cryptanalysis on higher-degree analogue of MQ

Thank you! Questions?

Read our paper! (ePrint 2024/1254)

