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• Completeness: honest P convinces V

• Soundness: V rejects  for any malicious Px ∉ L

• Zero-knowledge: there exists a simulator   

that can simulate 

𝖲
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Many practical applications!
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Voting Systems Private Cryptocurrencies

Proving Image Transformations

Anonymous credentials
ZK-Rollups

…and more!
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• The only post-quantum secure construction is from LWE!
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Why Search for New Post-Quantum NIZK?
1. Go beyond lattices & diversify constructions:

• Lack of post-quantum advanced cryptography from non-lattice-based assumptions

2. Achieve NIZK under “weaker” assumptions:

• Existing LWE-based constructions (w/ polynomial modulus) rely on FHE techniques*

3. Stepping stone towards BARGs, SNARGs, etc.

Can we build NIZK from post-quantum assumptions 
other than lattices?

* [Waters24] constructs NIZK from LWE with sub-exponential modulus
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1. We construct NIZK  from:     with computational soundness + zero-knowledge 

• Learning Parity with Noise (LPN),  * with slightly-stronger-than-PKE noise rate 

• Approximate Multivariate Quadratic (ApxMQ)  * implied by MQ with exponential hardness

† †

2. Our NIZK is achieved via an extremely simple construction of CI hashing: 

• For functions that can be approximated by concatenated constant-degree polynomials 

• Proof of CI reduces to hardness of Approximate MQ, or its higher-degree analogue

3. We can upgrade our NIZK to statistical zero-knowledge, assuming: 

• Dense-Sparse LPN [DJ24] * implies Lossy PKE with  linear decryption & low correct. error≈
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• Perfect completeness 

• Soundness error:  

• Honest-verifier zero-knowledge

1/2

Relation: {(G, H) |H is a Hamiltonian cycle of G}
contains all vertices of G

P V
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NIZK from Fiat-Shamir [FS86]? 

• Derive   

• Which hash function would preserve security?
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• One of the main branches of assumptions in post-quantum cryptography

• Hard for   . Usual parameter regime:  n ≪ m ≪ n2 m = Θ(n)

• This work: under-determined setting, with    for any m = n1−ϵ ϵ > 0

 best cryptanalysis [TW12, MHT13] suggests exponential security* 

* poly-time attackers have exponentially small success probability

⟹
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Hash Function from Multivariate Quadratic

This is not collision-resistant!    * Choose random , solve for Δ Q(x + Δ) = Q(x)

However, it is correlation-intractable against quadratic polynomials!

• Assume  for a quadratic function .HQ(x) = f(x) f

• Switch to hybrid where     hash key is still randomQ ↦ Q + f ⟹

• But we have:   , which breaks MQ.HQ+f (x) = f(x) ⟺ Q(x) = 0

Hash evaluation 

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key 

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]
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Approximate CI from Approximate MQ

Does  satisfy approximate CI against quadratic polynomials? 

• Assume  has agreement with , for some quadratic function  

• Use hybrid switch    we have  for of equations 

• New Assumption: Approximate MQ states that this is still hard 

• Approximate MQ is implied by MQ with exponential security

HQ

HQ(x) 99 % f(x) f

Q ↦ Q + f ⟹ Q(x) = 0 99 %

Hash evaluation 

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key 

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

* via guessing 
error pattern

Question: How to achieve ApproxCI against degree  polynomials, 
for any constant ?

−d
d
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Approximate CI against Degree  Polys−d
Two Solutions:

1. Evaluate random degree  polynomials on input−d

• Hardness follows from degree  analogue of (Approximate) MQ−d

• Downsides: not as well-studied, blows up key size & evaluation time

2. Achieve approximate CI against a sub-class of degree  polynomials−d

• Concatenated degree  polys:  ,    −d P (x1∥ … ∥xl) = P1(x1) ∥ … ∥ Pl (xl) deg(Pi) = d

• Setting:   is fixed,    may grow|xi | = s l = poly(λ)

• Hash evaluation:       

 achieves compression for large enough 

HQ (x1∥ … ∥xl) := Q (x⊗ d/2
1 , …, x⊗ d/2

l )
⟹ l = poly(λ)



1. Recap: NIZK from Correlation Intractability 

2. CI Hashing from (Approximate) MQ 

3. Putting Things Together

Talk Outline
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NIZK

LPNPKE w/  linear Dec≈

ApproxCI for 
deg- polysd *

 * d = O(1)

ApproxMPS  / 
Exponential MPS

d

d

ApproxCI for deg-
concatenated polys

d * ApproxMQ / 
Exponential MQ

Yes, with  

parallel repetition!



ApproxCI for Concatenated Poly’s Suffices



ApproxCI for Concatenated Poly’s Suffices
Bad challenge function of parallel-repeated 
protocol has concatenated format

c1, …, cn := Hhk(a1, …, an)

 check that 
revealed edges are 
non-edges of  

 check that 
 is a cycle

ci = 0 :

πi (G)
ci = 1 :
πi (H)

 reveal  & 
non-edges of  

 reveal edges 
of 

ci = 0 : πi
πi (G)

ci = 1 :
πi(H)

z1, …, zn

P V

crs = (pk, hk)

a1, …, an
πi

$← Sn
ai := Encpk(πi (H))

∥ Encpk(wi)



ApproxCI for Concatenated Poly’s Suffices
Bad challenge function of parallel-repeated 
protocol has concatenated format

c1, …, cn := Hhk(a1, …, an)

 check that 
revealed edges are 
non-edges of  

 check that 
 is a cycle

ci = 0 :

πi (G)
ci = 1 :
πi (H)

 reveal  & 
non-edges of  

 reveal edges 
of 

ci = 0 : πi
πi (G)

ci = 1 :
πi(H)

z1, …, zn

P V

crs = (pk, hk)

a1, …, an
πi

$← Sn
ai := Encpk(πi (H))

∥ Encpk(wi)

BadChal : 

For each  

• Decrypt     get  

• Output  if . 

Else output . 

 BadChal BadChal

sk(a1, …, an)
i = 1,…, n :
ai ⟹ πi (H), wi

ci = 0 Φ(πi (H), wi) = 1
ci = 1

= sk(a1)∥ … ∥ sk(an)

 BadChal  is approximable by 
concatenated constant-degree polynomials
⟹ sk
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Statistical ZK via Dense-Sparse LPN

NIZK

LPNPKE w/  linear Dec≈

Lossy  PKE w/  linear Dec⋆ ≈

 For statistical ZK†

† Dense-Sparse 
LPN [DJ24]

Problem: lossy PKE from LPN has correctness error 
1
2

−
1

poly(λ)
 not strong enough to achieve NIZK⟹

Instead, use Dense-Sparse LPN (variant of LPN with structured public matrix)

 lossy PKE from DS-LPN with correctness error ⟹
1

poly(λ)
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Summary & Open Problems

Future Directions: 
• NIZK solely from code-based / multivariate assumptions? 

• New post-quantum constructions of advanced proof systems? 

• ZAPs, BARGs, SNARGs, etc. 

• Cryptanalysis on higher-degree analogue of MQ

Thank you! Questions?

Read our paper! 
(ePrint 2024/1254)

Our Result: We build NIZK from two well-studied post-quantum assumptions, 
Learning Parity with Noise (LPN) and Multivariate Quadratic (MQ).


