
Non-Interactive Zero-Knowledge
from LPN and MQ

Crypto 2024

Quang Dao Aayush Jain Zhengzhong Jin

Non-Interactive Zero-Knowledge (NIZK)

Non-Interactive Zero-Knowledge (NIZK)
Fundamental notion in cryptography [GMR85, BFM88]

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π

crs

Public
Statement

Private
Witness

Non-Interactive Zero-Knowledge (NIZK)
Fundamental notion in cryptography [GMR85, BFM88]

• Completeness: honest P convinces V

• Soundness: V rejects for any malicious Px ∉ L

• Zero-knowledge: there exists a simulator

that can simulate

𝖲

(crs, π)

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π

crs

Public
Statement

Private
Witness

Non-Interactive Zero-Knowledge (NIZK)
Fundamental notion in cryptography [GMR85, BFM88]

• Completeness: honest P convinces V

• Soundness: V rejects for any malicious Px ∉ L

• Zero-knowledge: there exists a simulator

that can simulate

𝖲

(crs, π)

Many practical applications!

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π

crs

Public
Statement

Private
Witness

Voting Systems Private Cryptocurrencies

Proving Image Transformations

Anonymous credentials
ZK-Rollups

…and more!

Achieving NIZK in Practice and Theory

Achieving NIZK in Practice and Theory
Practice: use random oracles [Kilian94, Micali00, BCS16, etc] , idealized group
models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

Achieving NIZK in Practice and Theory
Practice: use random oracles [Kilian94, Micali00, BCS16, etc] , idealized group
models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

Theory: surprisingly difficult to construct!

Achieving NIZK in Practice and Theory
Practice: use random oracles [Kilian94, Micali00, BCS16, etc] , idealized group
models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

Theory: surprisingly difficult to construct!

• From factoring / QR [BFM88, FLS90] or bilinear maps [CHK03, GOS06]

Achieving NIZK in Practice and Theory
Practice: use random oracles [Kilian94, Micali00, BCS16, etc] , idealized group
models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

Theory: surprisingly difficult to construct!

• From factoring / QR [BFM88, FLS90] or bilinear maps [CHK03, GOS06]

• Recent progress relies on correlation-intractable (CI) hash functions!

 enables constructions from LWE [CCR+19, PS19], DDH/DCR + LPN

[BKM20], or sub-exponential DDH [JJ21]

⟹

Achieving NIZK in Practice and Theory
Practice: use random oracles [Kilian94, Micali00, BCS16, etc] , idealized group
models, or non-falsifiable assumptions [GGPR13, Groth16, etc]

Theory: surprisingly difficult to construct!

• From factoring / QR [BFM88, FLS90] or bilinear maps [CHK03, GOS06]

• Recent progress relies on correlation-intractable (CI) hash functions!

 enables constructions from LWE [CCR+19, PS19], DDH/DCR + LPN

[BKM20], or sub-exponential DDH [JJ21]

⟹

• The only post-quantum secure construction is from LWE!

Why Search for New Post-Quantum NIZK?

Why Search for New Post-Quantum NIZK?
1. Go beyond lattices & diversify constructions:

• Lack of post-quantum advanced cryptography from non-lattice-based assumptions

Why Search for New Post-Quantum NIZK?
1. Go beyond lattices & diversify constructions:

• Lack of post-quantum advanced cryptography from non-lattice-based assumptions

2. Achieve NIZK under “weaker” assumptions:

• Existing LWE-based constructions (w/ polynomial modulus) rely on FHE techniques*

* [Waters24] constructs NIZK from LWE with sub-exponential modulus

Why Search for New Post-Quantum NIZK?
1. Go beyond lattices & diversify constructions:

• Lack of post-quantum advanced cryptography from non-lattice-based assumptions

2. Achieve NIZK under “weaker” assumptions:

• Existing LWE-based constructions (w/ polynomial modulus) rely on FHE techniques*

3. Stepping stone towards BARGs, SNARGs, etc.

* [Waters24] constructs NIZK from LWE with sub-exponential modulus

Why Search for New Post-Quantum NIZK?
1. Go beyond lattices & diversify constructions:

• Lack of post-quantum advanced cryptography from non-lattice-based assumptions

2. Achieve NIZK under “weaker” assumptions:

• Existing LWE-based constructions (w/ polynomial modulus) rely on FHE techniques*

3. Stepping stone towards BARGs, SNARGs, etc.

Can we build NIZK from post-quantum assumptions
other than lattices?

* [Waters24] constructs NIZK from LWE with sub-exponential modulus

Our Result: NIZK from LPN and MQ

Our Result: NIZK from LPN and MQ
1. We construct NIZK from: with computational soundness + zero-knowledge

• Learning Parity with Noise (LPN), * with slightly-stronger-than-PKE noise rate

• Approximate Multivariate Quadratic (ApxMQ) * implied by MQ with exponential hardness

† †

Our Result: NIZK from LPN and MQ
1. We construct NIZK from: with computational soundness + zero-knowledge

• Learning Parity with Noise (LPN), * with slightly-stronger-than-PKE noise rate

• Approximate Multivariate Quadratic (ApxMQ) * implied by MQ with exponential hardness

† †

2. Our NIZK is achieved via an extremely simple construction of CI hashing:

• For functions that can be approximated by concatenated constant-degree polynomials

• Proof of CI reduces to hardness of Approximate MQ, or its higher-degree analogue

Our Result: NIZK from LPN and MQ
1. We construct NIZK from: with computational soundness + zero-knowledge

• Learning Parity with Noise (LPN), * with slightly-stronger-than-PKE noise rate

• Approximate Multivariate Quadratic (ApxMQ) * implied by MQ with exponential hardness

† †

2. Our NIZK is achieved via an extremely simple construction of CI hashing:

• For functions that can be approximated by concatenated constant-degree polynomials

• Proof of CI reduces to hardness of Approximate MQ, or its higher-degree analogue

3. We can upgrade our NIZK to statistical zero-knowledge, assuming:

• Dense-Sparse LPN [DJ24] * implies Lossy PKE with linear decryption & low correct. error≈

Our Result: NIZK from LPN and MQ

1. Recap: NIZK from Correlation Intractability

2. CI Hashing from (Approximate) MQ

3. Putting Things Together

Talk Outline

1. Recap: NIZK from Correlation Intractability

2. CI Hashing from (Approximate) MQ

3. Putting Things Together

Talk Outline

Recap: Blum’s Hamiltonicity protocol

Recap: Blum’s Hamiltonicity protocol
Relation: {(G, H) |H is a Hamiltonian cycle of G}

contains all vertices of G
P V

crs = pk

Recap: Blum’s Hamiltonicity protocol
Relation: {(G, H) |H is a Hamiltonian cycle of G}

contains all vertices of G
P V

crs = pk

a
π $← Sn

a := Encpk(π(H))

Recap: Blum’s Hamiltonicity protocol
Relation: {(G, H) |H is a Hamiltonian cycle of G}

contains all vertices of G
P V

crs = pk

c ∈ {0,1}

a
π $← Sn

a := Encpk(π(H))

Recap: Blum’s Hamiltonicity protocol
Relation: {(G, H) |H is a Hamiltonian cycle of G}

contains all vertices of G
P V

crs = pk

c ∈ {0,1}

a
π $← Sn

a := Encpk(π(H))

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

Recap: Blum’s Hamiltonicity protocol
Relation: {(G, H) |H is a Hamiltonian cycle of G}

contains all vertices of G
P V

crs = pk

c ∈ {0,1}

a
π $← Sn

a := Encpk(π(H))

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

Recap: Blum’s Hamiltonicity protocol

• Perfect completeness

• Soundness error:

• Honest-verifier zero-knowledge

1/2

Relation: {(G, H) |H is a Hamiltonian cycle of G}
contains all vertices of G

P V

crs = pk

c ∈ {0,1}

a
π $← Sn

a := Encpk(π(H))

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

Recap: Blum’s Hamiltonicity protocol

• Perfect completeness

• Soundness error:

• Honest-verifier zero-knowledge

1/2

Relation: {(G, H) |H is a Hamiltonian cycle of G}
contains all vertices of G

P V

crs = pk

c ∈ {0,1}

a
π $← Sn

a := Encpk(π(H))

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

NIZK from Fiat-Shamir [FS86]?

Recap: Blum’s Hamiltonicity protocol

• Perfect completeness

• Soundness error:

• Honest-verifier zero-knowledge

1/2

Relation: {(G, H) |H is a Hamiltonian cycle of G}
contains all vertices of G

P V

crs = (pk, hk)

c := Hhk(a)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

NIZK from Fiat-Shamir [FS86]?

• Derive

• Which hash function would preserve security?

c := Hashhk(a)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

NIZK from Correlation Intractability

c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

NIZK from Correlation Intractability
Correlation Intractability: [CGH04]

• is CI against a relation if Hhk R

Pr
hk

[(x, Hhk(x)) ∈ R ∣ x ← 𝒜(hk)] ≤ negl(λ)

c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

NIZK from Correlation Intractability
Correlation Intractability: [CGH04]

• is CI against a relation if Hhk R

Pr
hk

[(x, Hhk(x)) ∈ R ∣ x ← 𝒜(hk)] ≤ negl(λ)

• Fiat-Shamir is secure if is CI against H

Rbad(x) := {(a, c) ∣ ∃z s.t. V accepts (x, a, c, z)} c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

NIZK from Correlation Intractability
Correlation Intractability: [CGH04]

• is CI against a relation if Hhk R

Pr
hk

[(x, Hhk(x)) ∈ R ∣ x ← 𝒜(hk)] ≤ negl(λ)

• Fiat-Shamir is secure if is CI against H

Rbad(x) := {(a, c) ∣ ∃z s.t. V accepts (x, a, c, z)}
• For Blum’s protocol, bad is unique &

efficiently-computable via BadChal :

• Decrypt get

• Output if is a cycle, else

output .

c

sk

a ⟹ π(H)
c = 0 π(H)
c = 1

c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

NIZK from Correlation Intractability
Correlation Intractability: [CGH04]

• is CI against a relation if Hhk R

Pr
hk

[(x, Hhk(x)) ∈ R ∣ x ← 𝒜(hk)] ≤ negl(λ)

• Fiat-Shamir is secure if is CI against H

Rbad(x) := {(a, c) ∣ ∃z s.t. V accepts (x, a, c, z)}
• For Blum’s protocol, bad is unique &

efficiently-computable via BadChal :

• Decrypt get

• Output if is a cycle, else

output .

c

sk

a ⟹ π(H)
c = 0 π(H)
c = 1

c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

Goal: build hash functions that are CI against BadChalsk

NIZK from Correlation Intractability
Correlation Intractability: [CGH04]

• is CI against a relation if Hhk R

Pr
hk

[(x, Hhk(x)) ∈ R ∣ x ← 𝒜(hk)] ≤ negl(λ)

• Fiat-Shamir is secure if is CI against H

Rbad(x) := {(a, c) ∣ ∃z s.t. V accepts (x, a, c, z)}
• For Blum’s protocol, bad is unique &

efficiently-computable via BadChal :

• Decrypt get

• Output if is a cycle, else

output .

c

sk

a ⟹ π(H)
c = 0 π(H)
c = 1

c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

Goal: build hash functions that are CI against BadChalsk

Problem: BadChal is not simple enough!sk

Simplifying Bad Challenge Function

c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

Simplifying Bad Challenge Function
[BKM20] CI against functions approximable

by constant-degree polynomials!

 for some distribution

 over constant-degree polynomials

f

Pr
g←𝒢

[f(x) = g(x)] ≥ 0.99

𝒢

c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

Simplifying Bad Challenge Function
[BKM20] CI against functions approximable

by constant-degree polynomials!

 for some distribution

 over constant-degree polynomials

f

Pr
g←𝒢

[f(x) = g(x)] ≥ 0.99

𝒢

Can we modify BadChal to fall into

this function class?
sk

BadChal :

• Decrypt get

• Output if is a cycle,

else output .

f = sk(a)
a ⟹ π(H)

c = 0 π(H)
c = 1

c := Hhk(a)

P V

crs = (pk, hk)

a
π $← Sn

a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

Simplifying Bad Challenge Function

c := Hhk(a)

P V

crs = (pk, hk)

π $← Sn
a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

a

BadChal :

• Decrypt get

• Output if is a cycle,

else output .

f = sk(a)
a ⟹ π(H)

c = 0 π(H)
c = 1

Simplifying Bad Challenge Function

c := Hhk(a)

P V

crs = (pk, hk)

π $← Sn
a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

a

BadChal :

• Decrypt get

• Output if is a cycle,

else output .

f = sk(a)
a ⟹ π(H)

c = 0 π(H)
c = 1

1. Have be approximately linearDecsk

 achieved via LPN-based PKE⟹

Simplifying Bad Challenge Function

c := Hhk(a)

P V

crs = (pk, hk)

π $← Sn
a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

a

BadChal :

• Decrypt get

• Output if is a cycle,

else output .

f = sk(a)
a ⟹ π(H)

c = 0 π(H)
c = 1

1. Have be approximately linearDecsk

 achieved via LPN-based PKE⟹

2. Turn cycle check into 3CNF formula :Φ

 is a cycle s.t. π(H) ⟺ ∃w Φ(π(H), w) = 1

(is approximable by -degree poly)Φ O(1)

Simplifying Bad Challenge Function

c := Hhk(a)

P V

crs = (pk, hk)

π $← Sn
a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

a

BadChal :

• Decrypt get

• Output if is a cycle,

else output .

f = sk(a)
a ⟹ π(H)

c = 0 π(H)
c = 1

1. Have be approximately linearDecsk

 achieved via LPN-based PKE⟹

2. Turn cycle check into 3CNF formula :Φ

 is a cycle s.t. π(H) ⟺ ∃w Φ(π(H), w) = 1

(is approximable by -degree poly)Φ O(1)

3. Encrypt & send in the first roundw

Simplifying Bad Challenge Function

1. Have be approximately linear

 achieved via LPN-based PKE

2. Turn cycle check into 3CNF formula :

 is a cycle s.t.

(is approximable by -degree poly)

3. Encrypt & send in the first round

Decsk

⟹

Φ

π(H) ⟺ ∃w Φ(π(H), w) = 1

Φ O(1)

w

c := Hhk(a)

P V

crs = (pk, hk)

π $← Sn
a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

∥ Encpk(w)

a

BadChal :

• Decrypt get

• Output if ,

else output .

f = sk(a)
a ⟹ π(H), w

c = 0 Φ(π(H), w) = 1
c = 1

Simplifying Bad Challenge Function

1. Have be approximately linear

 achieved via LPN-based PKE

2. Turn cycle check into 3CNF formula :

 is a cycle s.t.

(is approximable by -degree poly)

3. Encrypt & send in the first round

Decsk

⟹

Φ

π(H) ⟺ ∃w Φ(π(H), w) = 1

Φ O(1)

w

c := Hhk(a)

P V

crs = (pk, hk)

π $← Sn
a := Encpk(π(H))

 check that
revealed edges are
non-edges of

 check that
 is a cycle

c = 0 :

π(G)
c = 1 :
π(H)

 reveal &
non-edges of

 reveal edges
of

c = 0 : π
π(G)

c = 1 :
π(H)

z

∥ Encpk(w)

aNew Goal: build hash functions that are approximate CI against
constant-degree polynomials

BadChal :

• Decrypt get

• Output if ,

else output .

f = sk(a)
a ⟹ π(H), w

c = 0 Φ(π(H), w) = 1
c = 1

1. Recap: NIZK from Correlation Intractability

2. CI Hashing from (Approximate) MQ

3. Putting Things Together

Talk Outline

Multivariate Quadratic

Multivariate Quadratic
Solving a random system of quadratic polynomial equations (over finite) is hard!𝔽

, where

∑n
i,j=1 a(1)

i,j ⋅ xi ⋅ xj + ∑n
i=1 b(1)

i ⋅ xi + c(1) = 0

⋮
∑n

i,j=1 a(m)
i,j ⋅ xi ⋅ xj + ∑n

i=1 b(m)
i ⋅ xi + c(m) = 0

n = # variables
m = # equations
eqns. over a finite field 𝔽

Multivariate Quadratic
Solving a random system of quadratic polynomial equations (over finite) is hard!𝔽

, where

∑n
i,j=1 a(1)

i,j ⋅ xi ⋅ xj + ∑n
i=1 b(1)

i ⋅ xi + c(1) = 0

⋮
∑n

i,j=1 a(m)
i,j ⋅ xi ⋅ xj + ∑n

i=1 b(m)
i ⋅ xi + c(m) = 0

n = # variables
m = # equations
eqns. over a finite field 𝔽

• One of the main branches of assumptions in post-quantum cryptography

• Hard for . Usual parameter regime: n ≪ m ≪ n2 m = Θ(n)

Multivariate Quadratic
Solving a random system of quadratic polynomial equations (over finite) is hard!𝔽

, where

∑n
i,j=1 a(1)

i,j ⋅ xi ⋅ xj + ∑n
i=1 b(1)

i ⋅ xi + c(1) = 0

⋮
∑n

i,j=1 a(m)
i,j ⋅ xi ⋅ xj + ∑n

i=1 b(m)
i ⋅ xi + c(m) = 0

n = # variables
m = # equations
eqns. over a finite field 𝔽

• One of the main branches of assumptions in post-quantum cryptography

• Hard for . Usual parameter regime: n ≪ m ≪ n2 m = Θ(n)

• This work: under-determined setting, with for any m = n1−ϵ ϵ > 0

 best cryptanalysis [TW12, MHT13] suggests exponential security*

* poly-time attackers have exponentially small success probability

⟹

Hash Function from Multivariate Quadratic

Hash Function from Multivariate Quadratic
Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

Hash Function from Multivariate Quadratic

This is not collision-resistant! * Choose random , solve for Δ Q(x + Δ) = Q(x)

Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

Hash Function from Multivariate Quadratic

This is not collision-resistant! * Choose random , solve for Δ Q(x + Δ) = Q(x)

However, it is correlation-intractable against quadratic polynomials!

Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

Hash Function from Multivariate Quadratic

This is not collision-resistant! * Choose random , solve for Δ Q(x + Δ) = Q(x)

However, it is correlation-intractable against quadratic polynomials!

• Assume for a quadratic function .HQ(x) = f(x) f

• Switch to hybrid where hash key is still randomQ ↦ Q + f ⟹

• But we have: , which breaks MQ.HQ+f (x) = f(x) ⟺ Q(x) = 0

Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

Approximate CI from Approximate MQ
Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

Approximate CI from Approximate MQ

Does satisfy approximate CI against quadratic polynomials?HQ

Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

Approximate CI from Approximate MQ

Does satisfy approximate CI against quadratic polynomials?HQ

• Assume has agreement with , for some quadratic function HQ(x) 99 % f(x) f

• Use hybrid switch we have for of equationsQ ↦ Q + f ⟹ Q(x) = 0 99 %

Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

Approximate CI from Approximate MQ

Does satisfy approximate CI against quadratic polynomials?HQ

• Assume has agreement with , for some quadratic function HQ(x) 99 % f(x) f

• Use hybrid switch we have for of equationsQ ↦ Q + f ⟹ Q(x) = 0 99 %

• New Assumption: Approximate MQ states that this is still hard

Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

Approximate CI from Approximate MQ

Does satisfy approximate CI against quadratic polynomials?HQ

• Assume has agreement with , for some quadratic function HQ(x) 99 % f(x) f

• Use hybrid switch we have for of equationsQ ↦ Q + f ⟹ Q(x) = 0 99 %

• New Assumption: Approximate MQ states that this is still hard

• Approximate MQ is implied by MQ with exponential security

Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

* via guessing
error pattern

Approximate CI from Approximate MQ

Does satisfy approximate CI against quadratic polynomials?

• Assume has agreement with , for some quadratic function

• Use hybrid switch we have for of equations

• New Assumption: Approximate MQ states that this is still hard

• Approximate MQ is implied by MQ with exponential security

HQ

HQ(x) 99 % f(x) f

Q ↦ Q + f ⟹ Q(x) = 0 99 %

Hash evaluation

HQ(x) := Q(x) = ∑
i,j

a(k)
i,j xixj + b(k)

i xi + c(k)

m

k=1

Hash key

Q := (a(k)
i,j , b(k)

i , c(k))i,j∈[n], k∈[m]

* via guessing
error pattern

Question: How to achieve ApproxCI against degree polynomials,
for any constant ?

−d
d

Approximate CI against Degree Polys−d

Approximate CI against Degree Polys−d
Two Solutions:

Approximate CI against Degree Polys−d
Two Solutions:

1. Evaluate random degree polynomials on input−d

• Hardness follows from degree analogue of (Approximate) MQ−d

• Downsides: not as well-studied, blows up key size & evaluation time

Approximate CI against Degree Polys−d
Two Solutions:

1. Evaluate random degree polynomials on input−d

• Hardness follows from degree analogue of (Approximate) MQ−d

• Downsides: not as well-studied, blows up key size & evaluation time

2. Achieve approximate CI against a sub-class of degree polynomials−d

• Concatenated degree polys: , −d P (x1∥ … ∥xl) = P1(x1) ∥ … ∥ Pl (xl) deg(Pi) = d

• Setting: is fixed, may grow|xi | = s l = poly(λ)

• Hash evaluation:

 achieves compression for large enough

HQ (x1∥ … ∥xl) := Q (x⊗ d/2
1 , …, x⊗ d/2

l)
⟹ l = poly(λ)

1. Recap: NIZK from Correlation Intractability

2. CI Hashing from (Approximate) MQ

3. Putting Things Together

Talk Outline

Road to Achieve NIZK

Road to Achieve NIZK

NIZK

LPNPKE w/ linear Dec≈

ApproxCI for
deg- polysd *

 * d = O(1)

ApproxMPS /
Exponential MPS

d

d

ApproxCI for deg-
concatenated polys

d * ApproxMQ /
Exponential MQ

?

Road to Achieve NIZK

NIZK

LPNPKE w/ linear Dec≈

ApproxCI for
deg- polysd *

 * d = O(1)

ApproxMPS /
Exponential MPS

d

d

ApproxCI for deg-
concatenated polys

d * ApproxMQ /
Exponential MQ

Yes, with

parallel repetition!

ApproxCI for Concatenated Poly’s Suffices

ApproxCI for Concatenated Poly’s Suffices
Bad challenge function of parallel-repeated
protocol has concatenated format

c1, …, cn := Hhk(a1, …, an)

 check that
revealed edges are
non-edges of

 check that
 is a cycle

ci = 0 :

πi (G)
ci = 1 :
πi (H)

 reveal &
non-edges of

 reveal edges
of

ci = 0 : πi
πi (G)

ci = 1 :
πi(H)

z1, …, zn

P V

crs = (pk, hk)

a1, …, an
πi

$← Sn
ai := Encpk(πi (H))

∥ Encpk(wi)

ApproxCI for Concatenated Poly’s Suffices
Bad challenge function of parallel-repeated
protocol has concatenated format

c1, …, cn := Hhk(a1, …, an)

 check that
revealed edges are
non-edges of

 check that
 is a cycle

ci = 0 :

πi (G)
ci = 1 :
πi (H)

 reveal &
non-edges of

 reveal edges
of

ci = 0 : πi
πi (G)

ci = 1 :
πi(H)

z1, …, zn

P V

crs = (pk, hk)

a1, …, an
πi

$← Sn
ai := Encpk(πi (H))

∥ Encpk(wi)

BadChal :

For each

• Decrypt get

• Output if .

Else output .

 BadChal BadChal

sk(a1, …, an)
i = 1,…, n :
ai ⟹ πi (H), wi

ci = 0 Φ(πi (H), wi) = 1
ci = 1

= sk(a1)∥ … ∥ sk(an)

 BadChal is approximable by
concatenated constant-degree polynomials
⟹ sk

Statistical ZK via Dense-Sparse LPN

Statistical ZK via Dense-Sparse LPN

NIZK

LPNPKE w/ linear Dec≈

ApproxCI for
deg- polysd *

 * d = O(1)

ApproxMPS /
Exponential MPS

d

d

ApproxCI for deg-
concatenated polys

d * ApproxMQ /
Exponential MQ

Statistical ZK via Dense-Sparse LPN

NIZK

LPNPKE w/ linear Dec≈

ApproxCI for
deg- polysd *

 * d = O(1)

ApproxMPS /
Exponential MPS

d

d

ApproxCI for deg-
concatenated polys

d * ApproxMQ /
Exponential MQ

Lossy PKE w/ linear Dec⋆ ≈

 For statistical ZK†

†

 ciphertexts are statistically
indistinguishable under lossy

public keys

⋆

?

Statistical ZK via Dense-Sparse LPN

NIZK

LPNPKE w/ linear Dec≈

ApproxCI for
deg- polysd *

 * d = O(1)

ApproxMPS /
Exponential MPS

d

d

ApproxCI for deg-
concatenated polys

d * ApproxMQ /
Exponential MQ

Lossy PKE w/ linear Dec⋆ ≈

 For statistical ZK†

† Dense-Sparse
LPN [DJ24]

 ciphertexts are statistically
indistinguishable under lossy

public keys

⋆

Statistical ZK via Dense-Sparse LPN

NIZK

LPNPKE w/ linear Dec≈

Lossy PKE w/ linear Dec⋆ ≈

 For statistical ZK†

† Dense-Sparse
LPN [DJ24]

Statistical ZK via Dense-Sparse LPN

NIZK

LPNPKE w/ linear Dec≈

Lossy PKE w/ linear Dec⋆ ≈

 For statistical ZK†

† Dense-Sparse
LPN [DJ24]

Problem: lossy PKE from LPN has correctness error
1
2

−
1

poly(λ)
 not strong enough to achieve NIZK⟹

Statistical ZK via Dense-Sparse LPN

NIZK

LPNPKE w/ linear Dec≈

Lossy PKE w/ linear Dec⋆ ≈

 For statistical ZK†

† Dense-Sparse
LPN [DJ24]

Problem: lossy PKE from LPN has correctness error
1
2

−
1

poly(λ)
 not strong enough to achieve NIZK⟹

Instead, use Dense-Sparse LPN (variant of LPN with structured public matrix)

 lossy PKE from DS-LPN with correctness error ⟹
1

poly(λ)

Summary & Open Problems

Summary & Open Problems
Our Result: We build NIZK from two well-studied post-quantum assumptions,

Learning Parity with Noise (LPN) and Multivariate Quadratic (MQ).

Summary & Open Problems

Future Directions:
• NIZK solely from code-based / multivariate assumptions?

• New post-quantum constructions of advanced proof systems?

• ZAPs, BARGs, SNARGs, etc.

• Cryptanalysis on higher-degree analogue of MQ

Our Result: We build NIZK from two well-studied post-quantum assumptions,
Learning Parity with Noise (LPN) and Multivariate Quadratic (MQ).

Summary & Open Problems

Future Directions:
• NIZK solely from code-based / multivariate assumptions?

• New post-quantum constructions of advanced proof systems?

• ZAPs, BARGs, SNARGs, etc.

• Cryptanalysis on higher-degree analogue of MQ

Thank you! Questions?

Read our paper!
(ePrint 2024/1254)

Our Result: We build NIZK from two well-studied post-quantum assumptions,
Learning Parity with Noise (LPN) and Multivariate Quadratic (MQ).

