

Unconditionally Secure Commitments with Quantum Auxiliary Inputs / Preprocessing

Merged talk based on concurrent works by

Barak Nehoran (Princeton University) Tomoyuki Morimae (Yukawa Institute for Theoretical Physics, Kyoto University) Takashi Yamakawa (NTT Social Informatics Labs & YITP, Kyoto University)

and

Luowen Qian (Boston University & NTT Research)

Unconditionally Secure Commitments with Quantum Auxiliary Inputs / Preprocessing

Merged talk based on concurrent works by

Barak Nehoran (Princeton University) Tomoyuki Morimae (Yukawa Institute for Theoretical Physics, Kyoto University) Takashi Yamakawa (NTT Social Informatics Labs & YITP, Kyoto University)

and

Luowen Qian (Boston University & NTT Research)

Unconditionally Secure

Unconditionally Secure

#

Information Theoretic Security

4

© 2024 Barak Nehoran

Unconditional ≠ Information-Theoretic Security

© 2024 Barak Nehoran

Unconditional ≠ Information-Theoretic Security

© 2024 Barak Nehoran

Unconditional ≠ Information-Theoretic Security

of security

PRINCETON UNIVERSITY

Unconditional ≠ Information-Theoretic Security

15

PRINCETON UNIVERSITY

Unconditional ≠ Information-Theoretic Security

19

Unconditional ≠ Information-Theoretic Security

20

•

Bob

•

Bob

•

Bob

•

Вов

Unconditional ≠ Inform<u>ation-Theoretic Securit</u>

Quantum Commitments

•

Bob

Unconditional ≠ Inform<u>ation-Theoretic Securit</u>

Quantum Commitments

•

Bob

Jnconditional ≠ Information-Theoretic Security

Quantum Commitments

•

Bob

Unconditional ≠ Information-Theoretic Security

Quantum Commitments

Unconditional ≠ Information-Theoretic Security

Quantum Commitments

from an

(QIP ≠ QMA)

Quantum Commitments showed security with Quantum Auxiliary Inputs assumption. First defined by [Chailloux, Kerenidis, Rosgen '16] • Alice Bob Commitments with **Quantum Auxiliary Inputs** This work ------

33

showed security from an

assumption.

 $(QIP \neq QMA)$

Quantum Commitments with Quantum Auxiliary Inputs First defined by [Chailloux, Kerenidis, Rosgen '16] • Alice Bob

Jnconditional

QED

Commitments with **Quantum Auxiliary Inputs**

This work ------

We show they exist *unconditionally*

from an

Quantum Commitments showed security with Quantum Auxiliary Inputs **Computational Security** assumption. First defined by [Chailloux, Kerenidis, Rosgen '16] $(QIP \neq QMA)$ • Alice Bob We show they exist *unconditionally* with *computational* security! QED Commitments with (computational hiding and statistical binding) **Quantum Auxiliary Inputs** This work ------

Jnconditional

Unconditional ≠ Information-Theoretic Security

Jnconditional

This work ------

Quantum Commitments with Quantum Auxiliary Inputs First defined by [Chailloux, Kerenidis, Rosgen '16]

showed security from an assumption. (QIP ≠ QMA)

•

Bob

We show they exist *unconditionally*

with *computational* security!

(computational hiding and statistical binding)

Quantum Commitments

(This is without loss of generality)

Quantum Commitments

Commitment to 0 $|\Psi_0\rangle$

(This is without loss of generality)

Quantum Commitments

(This is without loss of generality)

(in Schmidt representation)

(in Schmidt representation)

Bob

Quantum Commitments

Hiding:

Bob cannot distinguish if he has received a commitment to 0 or to 1

Quantum Commitments

Hiding:

Bob cannot distinguish if he has

Direct proof of security

Direct proof of security

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure!

[Mayers, Lo, Chau '97]

PRINCETON UNIVERSITY

Bob

P) PRINCETON UNIVERSITY P) PRINCETON UNIVERSITY POPULATION POPULATION POPULATION POPULATION POPULATION POPULATION UNIVERSITY

Commitments Cannot Be Statistically Secure! [Mayers, Lo, Chau '97]

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure!

Image: Strain Strain

Commitments Cannot Be Statistically Secure! [Mayers, Lo, Chau '97]

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure! [Mayers, Lo, Chau '97]

YITP) Image: Constraint of the second se

Commitments Cannot Be Statistically Secure! [Mayers, Lo, Chau '97]

PRINCETON UNIVERSITY NTT **Commitments Cannot Be Statistically Secure!**

[Mayers, Lo, Chau '97]

BOSTON IVERSITY

© 2024 Barak Nehoran

Unconditionally Secure Commitments with Quantum Auxiliary Inputs / Preprocessing Barak Nehoran (Princeton U), Luowen Qian (Boston U & NTT), Tomoyuki Morimae (YITP), Takashi Yamakawa (NTT & YITP)

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure!

[Mayers, Lo, Chau '97]

PRINCETON

NTT

UNIVERSITY

BOSTON

Commitments Cannot Be Statistically Secure!

[Mayers, Lo, Chau '97]

PRINCETON

NTT

UNIVERSITY

BOSTON

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure!

[Mayers, Lo, Chau '97]

PRINCETON

NTT

UNIVERSITY

BOSTON

IVERSITY

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure!

Commitments Cannot Be Statistically Secure!

[Mayers, Lo, Chau '97]

PRINCETON

BOSTON

NTT

Conclusion: Either hiding or binding must have *computational security*.

Commitments Cannot Be Statistically Secure!

[Mayers, Lo, Chau '97]

PRINCETON

BOSTON

NTT

Conclusion: Either hiding or binding must have *computational security*.

But classical barriers **don't** rule out showing it **unconditionally**.

PRINCETON

PRINCETON

VINIVERSITY

PRINCETON

PRINCETON

Quantum Agreeme

Secure

Unconditionally secure commitments with quantum auxiliary inputs/preprocessing

Barak Nehoran, Tomoyuki Morimae, Takashi Yamakawa

Princeton University; Yukawa Institute for Theoretical Physics, Kyoto University; NTT Social Informatics Laboratories

merged with

Luowen Qian Boston University \rightarrow NTT Research, Inc.

[Ostrovsky-Widgerson'93, ...]

("P $\stackrel{?}{=}$ NP" barrier still applies)

("P $\stackrel{?}{=}$ NP" barrier still applies)

Unconditionally, there exists a quantum auxiliary-input commitment scheme with inverse exponential security error that is:

Unconditionally, there exists a quantum auxiliary-input commitment scheme with inverse exponential security error that is:

• Statistically binding against (unbounded) committer/Alice

Unconditionally, there exists a quantum auxiliary-input commitment scheme with inverse exponential security error that is:

- Statistically binding against (unbounded) committer/Alice
- Computationally hiding against exponential-size receiver/Bob

Unconditionally, there exists a quantum auxiliary-input commitment scheme with inverse exponential security error that is:

- Statistically binding against (unbounded) committer/Alice
- Computationally hiding against exponential-size receiver/Bob

Q24: Preparing $|aux\rangle$ takes at most uniform doubly-exponential time

Unconditionally, there exists a quantum auxiliary-input commitment scheme with inverse exponential security error that is:

- Statistically binding against (unbounded) committer/Alice
- Computationally hiding against exponential-size receiver/Bob

Q24: Preparing |aux⟩ takes at most uniform doubly-exponential time
♦ Preprocessing time can be reduced to single exponential either with communication or assuming BQP = QMA

Exponential-time preprocessing means it is <u>practically</u> irrelevant, right? Exponential-time preprocessing means it is <u>practically</u> irrelevant, right?

> Well, you could pick a smaller security parameter... (48? so that preprocessing time is at most 2 years)

Yes! (without too much trouble)

Yes! (without too much trouble)

• MNY24: Quantum auxiliary-input zero knowledge proofs for NP with non-uniform simulators

Yes! (without too much trouble)

- MNY24: Quantum auxiliary-input zero knowledge proofs for NP with non-uniform simulators
- Q24: Quantum auxiliary-input ε -simulation secure multiparty computations with non-uniform simulators

Yes! (without too much trouble)

- MNY24: Quantum auxiliary-input zero knowledge proofs for NP with non-uniform simulators
- Q24: Quantum auxiliary-input *ε*-simulation secure multiparty computations with non-uniform simulators

(see papers for details)

Fix a good function $H: \{0, 1\}^{\lambda} \rightarrow \{0, 1\}^{3\lambda}$ (lexicographically smallest):

Fix a good function $H: \{0, 1\}^{\lambda} \to \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_0 \otimes |x\rangle_P$ (4 λ qubits in total)

Fix a good function $H: \{0, 1\}^{\lambda} \to \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_0 \otimes |x\rangle_P$ (4 λ qubits in total) $|\psi^{(1)}\rangle \propto \sum_{y \in \{0,1\}^{3\lambda}} |y\rangle_0 \otimes |y\rangle_P$ (efficient)

Fix a good function $H: \{0, 1\}^{\lambda} \to \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_{0} \otimes |x\rangle_{P}$ (4 λ qubits in total) $|\psi^{(1)}\rangle \propto \sum_{y \in \{0,1\}^{3\lambda}} |y\rangle_{0} \otimes |y\rangle_{P}$ (efficient)

Fix a good function $H: \{0, 1\}^{\lambda} \to \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_0 \otimes |x\rangle_P$ (4 λ qubits in total) $|\psi^{(1)}\rangle \propto \sum_{y \in \{0,1\}^{3\lambda}} |y\rangle_0 \otimes |y\rangle_P$ (efficient)

Fix a good function $H: \{0, 1\}^{\lambda} \to \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_0 \otimes |x\rangle_P$ (4 λ qubits in total) $|\psi^{(1)}\rangle \propto \sum_{y \in \{0,1\}^{3\lambda}} |y\rangle_0 \otimes |y\rangle_P$ (efficient)

Fix a good function $H: \{0, 1\}^{\lambda} \to \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_0 \otimes |x\rangle_P$ (4 λ qubits in total) $|\psi^{(1)}\rangle \propto \sum_{y \in \{0,1\}^{3\lambda}} |y\rangle_0 \otimes |y\rangle_P$ (efficient) $h \in \{0,1\}$

Fix a good function $H: \{0, 1\}^{\lambda} \to \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_{0} \otimes |x\rangle_{P}$ (4 λ qubits in total) $|\psi^{(1)}\rangle \propto \sum_{y \in \{0,1\}^{3\lambda}} |y\rangle_{0} \otimes |y\rangle_{P}$ (efficient)

Fix a good function $H: \{0, 1\}^{\lambda} \rightarrow \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_0 \otimes |x\rangle_P$ (4 λ qubits in total) $|\psi^{(1)}\rangle \propto \sum_{y \in \{0,1\}^{3\lambda}} |y\rangle_0 \otimes |y\rangle_P$ (efficient) $b\in\{0,1\}$ Commit $\left|\psi^{(b)}\right\rangle_{\mathrm{OP}}$ $\psi_{0}^{(b)}$ SWAP test with $|\psi^{(b)}|$ $\xrightarrow{\text{Reveal}} |\psi^{(b)}\rangle_{\text{OD}}$ \bigcirc $\psi_{\scriptscriptstyle P}^{(b)}$ 0

Fix a good function $H: \{0, 1\}^{\lambda} \rightarrow \{0, 1\}^{3\lambda}$ (lexicographically smallest): $|\psi^{(0)}\rangle \propto \sum_{x \in \{0,1\}^{\lambda}} |H(x)\rangle_0 \otimes |x\rangle_P$ (4 λ qubits in total) $|\psi^{(1)}\rangle \propto \sum_{y \in \{0,1\}^{3\lambda}} |y\rangle_0 \otimes |y\rangle_P$ (efficient) **Theorem**: picking *H* randomly is good with $b\in\{0,1\}$ overwhelming probability Commit $\left|\psi^{(b)}\right\rangle_{\mathrm{OP}}$ $\psi_{0}^{(b)}$ SWAP test with $|\psi^{(b)}|$ \bigcirc $\xrightarrow{\text{Reveal}} |\psi^{(b)}\rangle$ $\psi_{\scriptscriptstyle P}^{(b)}$ 0

Sparse pseudorandomness: [Goldreich-Krawczyk'92]

Sparse pseudorandomness: [Goldreich-Krawczyk'92]

Almost all functions satisfy $\{H(x)\} \approx_c \{y\}$ against all 2^{λ} -size circuits

Sparse pseudorandomness: [Goldreich-Krawczyk'92]

Almost all functions satisfy $\{H(x)\} \approx_c \{y\}$ against all 2^{λ} -size circuits (proof idea: standard counting/probabilistic argument)

Sparse pseudorandomness: [Goldreich-Krawczyk'92]

Almost all functions satisfy $\{H(x)\} \approx_c \{y\}$ against all 2^{λ} -size circuits (proof idea: standard counting/probabilistic argument)

Generalizes to quantum circuits <u>without</u> quantum advice:

Sparse pseudorandomness: [Goldreich-Krawczyk'92]

Almost all functions satisfy $\{H(x)\} \approx_c \{y\}$ against all 2^{λ} -size circuits (proof idea: standard counting/probabilistic argument)

Generalizes to quantum circuits <u>without</u> quantum advice:

• There are 2^S different classical circuits/bitstrings of size S

Sparse pseudorandomness: [Goldreich-Krawczyk'92]

Almost all functions satisfy $\{H(x)\} \approx_c \{y\}$ against all 2^{λ} -size circuits (proof idea: standard counting/probabilistic argument)

Generalizes to quantum circuits <u>without</u> quantum advice:

- There are 2^{S} different classical circuits/bitstrings of size S
- There are $exp(2^S)$ approximately-different quantum states of size S

Goal: almost any function *H* is pseudorandom against quantum non-uniform circuits (with quantum advice)

- **Goal**: almost any function *H* is pseudorandom against quantum non-uniform circuits (with quantum advice)
- 1. Invoke results in non-uniform QROM security [Chung-Guo-Liu-Q'20, Liu'23]

- **Goal**: almost any function *H* is pseudorandom against quantum non-uniform circuits (with quantum advice)
- 1. Invoke results in non-uniform QROM security [Chung-Guo-Liu-Q'20, Liu'23]
 - Random oracles are pseudorandom against quantum advice

- **Goal**: almost any function *H* is pseudorandom against quantum non-uniform circuits (with quantum advice)
- 1. Invoke results in non-uniform QROM security [Chung-Guo-Liu-Q'20, Liu'23]
 - Random oracles are pseudorandom against quantum advice
 - Underlying proof is more general and more algorithmic

- **Goal**: almost any function *H* is pseudorandom against quantum non-uniform circuits (with quantum advice)
- 1. Invoke results in non-uniform QROM security [Chung-Guo-Liu-Q'20, Liu'23]
 - Random oracles are pseudorandom against quantum advice
 - Underlying proof is more general and more algorithmic
- 2. A more GK-style algebraic proof [Ma (private communication)]

- **Goal**: almost any function *H* is pseudorandom against quantum non-uniform circuits (with quantum advice)
- 1. Invoke results in non-uniform QROM security [Chung-Guo-Liu-Q'20, Liu'23]
 - Random oracles are pseudorandom against quantum advice
 - Underlying proof is more general and more algorithmic
- 2. A more GK-style algebraic proof [Ma (private communication)]
 - Similar idea but use a matrix Hoeffding bound for operator norm

- **Goal**: almost any function *H* is pseudorandom against quantum non-uniform circuits (with quantum advice)
- 1. Invoke results in non-uniform QROM security [Chung-Guo-Liu-Q'20, Liu'23]
 - Random oracles are pseudorandom against quantum advice
 - Underlying proof is more general and more algorithmic
- 2. A more GK-style algebraic proof [Ma (private communication)]
 - Similar idea but use a matrix Hoeffding bound for operator norm
 - Less general but better security: $\sqrt{6S/2^{\lambda}}$ instead of $12\sqrt[3]{S/2^{\lambda}}$ asymptotically matches classical attack $\Omega\left(\sqrt{S/2^{\lambda}}\right)$

Quantum auxiliary-input commitment

Quantum auxiliary-input commitment

Quantum auxiliary-input commitment

Randomized auxiliary-input commitment

Randomized auxiliary-input commitment

Q24: classical commitments with sampling oracles $\Rightarrow P \neq NP$

Secret parameter model (trusted preprocessing)

Secret parameter model (trusted preprocessing)

Statistical (even classical) commitment is possible MNY24: commitments impossible if correlation < .127

(Unclonable) common reference quantum state model

(Unclonable) common reference quantum state model

Statistically secure <u>completely-efficient</u> commitments is possible in this model Q24: impossible in the common reference <u>classical distribution</u> model

Conclusions

Conclusions

 First demonstration of useful cryptography with unconditional inherently-computational security

Conclusions

 First demonstration of useful cryptography with unconditional inherently-computational security

First demonstration of useful cryptography with unconditional inherently-computational security

Beginning of unconditional computational cryptography?

 First demonstration of useful cryptography with unconditional inherently-computational security

Unconditional computational cryptography is far from reach w/o quantum auxiliary input?

Beginning of unconditional computational cryptography?

- First demonstration of useful cryptography with unconditional inherently-computational security
- Reassess the necessity of computational assumptions and the existence of barriers for quantum cryptography

- First demonstration of useful cryptography with unconditional inherently-computational security
- Reassess the necessity of computational assumptions and the existence of barriers for quantum cryptography

Thank you! Questions?

