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Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an A such that

∃A ϕ A−1 ψ=?

Yes, quickly! Given two tensors, is there a basis change taking one to the other?

ϕ

∃A
basis change

∃B
basis

change

∃C
basis change

=?

ψ

Most such linear algebraic problems concerning three dimensional
tensors (equivalently, trilinear forms) are (NP- or VNP- or #P-)hard.



Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an A such that

∃A ϕ A−1 ψ=?

Yes, quickly!

Given two tensors, is there a basis change taking one to the other?

ϕ

∃A
basis change

∃B
basis

change

∃C
basis change

=?

ψ

Most such linear algebraic problems concerning three dimensional
tensors (equivalently, trilinear forms) are (NP- or VNP- or #P-)hard.



Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an A such that

∃A ϕ A−1 ψ=?

Yes, quickly! Given two tensors, is there a basis change taking one to the other?

ϕ

∃A
basis change

∃B
basis

change

∃C
basis change

=?

ψ

Most such linear algebraic problems concerning three dimensional
tensors (equivalently, trilinear forms) are (NP- or VNP- or #P-)hard.



Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an A such that

∃A ϕ A−1 ψ=?

Yes, quickly! Given two tensors, is there a basis change taking one to the other?

ϕ

∃A
basis change

∃B
basis

change

∃C
basis change

=?

ψ

Most such linear algebraic problems concerning three dimensional
tensors (equivalently, trilinear forms) are (NP- or VNP- or #P-)hard.



A web of complexity theoretic reductions connect the tensor isomorphism problem
over finite fields (see the series ((ITCS 2021) I,II,III,IV) of papers by Grochow and
Qiao), on whose hardness NIST on-ramp signatures MEDS, ALTEQ, etc. are built.

We present new algorithms for finding isomorphisms of
tensors (equivalently, trilinear forms) over finite fields.

▶ polynomially faster than previously known

▶ informs the security/parameters of NIST on-ramp signatures
▶ bit security of MEDS cut in half asymptotically, and suggest an easy fix
▶ ALTEQ took our algorithm into account in designing the parameters

▶ new efficiently computable distinguishing invariants

▶ builds on algorithms by Bouillaguet, Fouque, and Véber (Eurocrypt 2013), and
Beullens (Crypto 2023).
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Trilinear forms
A trilinear form is a function

ϕ : Fnq × Fnq × Fnq −→ Fq

(u, v,w) 7−→
∑
i

∑
j

∑
k

ϕijkuivjwk

that is linear in each of its three arguments. Think of it as an n× n× n cube

ϕijk

u

v

w

of Fq elements.

It is alternating if it satisfies the anti-symmetry constraint

ϕ(u, u,w) = ϕ(u, v, v) = ϕ(w, v,w) = 0, ∀u, v,w ∈ Fnq.
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Tensor Isomorphism (MEDS variant).

Triples of invertible matrices (A,B,C) ∈ GLn(Fq)3 act on tensors by basis change

((A,B,C), ϕ(⋆, ⋆, ⋆)) 7−→ ϕA,B,C := ϕ(A⋆,B⋆,C⋆)

on the respective three dimensions.

Two forms ϕ, ψ are isomorphic if there exists
such a basis change (A,B,C) ∈ GLn(Fq)3 taking one to the other, as pictured.

ϕijk

∃A
basis change

∃B
basis

change

∃C
basis change

=
ψijk

Given two isomorphic tensors, find an isomorphism between them (if it exists).
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Tensor Isomorphism (ALTEQ variant).

Invertible matrices A ∈ GLn(Fq) act on alternating tensors by the same basis change

(A, ϕ(⋆, ⋆, ⋆)) 7−→ ϕA := ϕ(A⋆,A⋆,A⋆)

on each of the three dimensions. Two alternating trilinear forms ϕ, ψ are isomorphic
if there exists such a basis change A ∈ GLn(Fq) taking one to the other, as pictured.

ϕijk

∃A
basis change

∃A
basis

change

∃A
basis change

=
ψijk

Given two isomorphic alternating tensors, find an isomorphsim between them (if it
exists).



Finding tensor isomorphism (MEDS variant)

We design a fast computable invariant, pairing trilinear forms ϕ with co-rank one
projective points û ∈ P(Fnq),

(ϕ, û) 7−→
〈
ϕ, û

〉

satisfying, for all ϕ, û,A,B,C,

〈
ϕ, û

〉
=

〈
ϕA,B,C,A−1û

〉
.

Co-rank one points are u ∈ Fnq such that ϕ(u, ⋆, ⋆) is co-rank one. That is, the matrix

ϕijk

u

has rank n− 1. Denote the set of projective co-rank 1 vectors û as Pϕ ⊆ P(Fnq).
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Constructing the invariant

Start with a co-rank one û = û1 ∈ Pϕ ⊆ P(Fnq).

ϕ

u1

∃!v̂1 s.t. ϕ(u1,v1,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ1∈ s.t. ϕ(⋆,v1,w1)=0−−−−−−−−−−−−−−−→

ϕ

w1

∃!û2∈ s.t. ϕ(u2,⋆,w1)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ϕ

u2
∃!v̂2 s.t. ϕ(u2,v2,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ2∈ s.t. ϕ(⋆,v2,w2)=0−−−−−−−−−−−−−−−→

ϕ

w2

∃!û3∈ s.t. ϕ(u3,⋆,w2)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

ϕ

un
∃!v̂n s.t. ϕ(un,vn,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵn∈ s.t. ϕ(⋆,vn,wn)=0−−−−−−−−−−−−−−−→

ϕ

wn

U = {u1, u2, . . . , un} V = {v1, v2, . . . , vn} W = {w1,w2, . . . ,wn}
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Constructing the invariant

If each list U,V,W has n-linearly independent vectors, then we can construct three
unique invertible matrices AU,BV ,CW to act. The resulting tensor〈

ϕ, û
〉
:= ϕAU,BV ,CW

(not merely the isomorphism class) is the invariant. Some subtle choices are made to
resolve the ambiguity from the representatives of the projective points.

Algorithm: Input ϕ, ψ.

Sample from
{〈
ϕ, û

〉
, û ∈ Pϕ

}
and

{〈
ψ, û′

〉
, û′ ∈ Pψ

}
to look for a collision

ϕ ψ

〈
ϕ, û

〉
=

〈
ψ, û′

〉

?

û û′

Roughly
√
|Pϕ| ≈

√
|Pψ | ≈ q

n−2
2 samples each suffice.
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Runtime

Assuming certain heuristics, the expected runtime of our algorithm is

O(q
n−2

2 · (q · n3 + n4) · (log(q))2).

Consequently, the bit security estimates of the MEDS scheme is reduced, as
indicated in the table below.

parameter set n q Algebraic Leon-like Ours

MEDS-I 14 4093 148.1 170.68 102.59
MEDS-III 22 4093 218.41 246.95 152.55
MEDS-V 30 2039 298.82 297.77 186.57

Remedy. Enlarge q (doubling bit length asymptotically) to meet the security
demand. Does not affect the running times much, but increases the signature size.



Finding tensor isomorphism (ALTEQ variant)

For a projective point û of large co-rank r, let Kû := ker(ϕ(u, ⋆, ⋆)).

Then

(ϕ, û) 7−→
〈
ϕ, û

〉
:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(Kû)× GL(n, q))

is an invariant. On the right is the isomorphism class of the restriction
ϕ : Kû × Fnq × Fnq −→ Fq modulo GL(Kû) acting on the first dimension and GL(n, q)
acting on the other two.

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Isomorphism testing the tensor restriction⇒? Canonical forms.

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Find a collision
〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points,
assuming canonical forms. Already taken into account in the design of ALTEQ.
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〉
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(ϕ, û) 7−→
〈
ϕ, û
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acting on the other two.

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Isomorphism testing the tensor restriction⇒? Canonical forms.

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Find a collision
〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points,
assuming canonical forms. Already taken into account in the design of ALTEQ.
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(ϕ, û) 7−→
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:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(Kû)× GL(n, q))
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Quantum Collision Finding
Using Szegedy’s quantum random walks or Tani’s claw finding, we get cubic (instead
of quadratic) speedups on quantum computers.

An Open Problem
Tensor isomorphism problems are easy to phrase as hidden subgroup problems over
(products of) general linear groups. General linear groups are notorious hard cases,
due to large dimensional irreducible representations.

Do generic hidden subgroup problems over general linear groups reduce to tensor
isomorphism problems?
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