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Private Information Retrieval

⋮

Database 𝐷𝐵 ∈ 0,1 𝑁 Query 𝑥 ∈ [𝑁]

𝐷𝐵[𝑥]

Privacy
Servers learn no information on the client’s query 𝑥.

The privacy of 𝐷𝐵 is not considered.
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Secure Database Search
• We consider a more general setting of computing a function 𝑓.

⋮

Function 𝑓 ∶ 𝒳 → 𝒴 Query 𝑥 ∈ 𝒳

𝑓(𝑥)

Privacy
Servers learn no information on the client’s query 𝑥.

The privacy of 𝑓 is not considered.
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Secure Database Search
• We consider a more general setting of computing a function 𝑓.

⋮

Function 𝑓 ∶ 𝒳 → 𝒴 Query 𝑥 ∈ 𝒳

𝑓(𝑥)

However, Client-side computation/communication is proportional to |𝑓|.

Client can download 𝑓 and compute 𝑓(𝑥) locally.Trivial solution

Protocols whose computation/communication is ≪ |𝑓|.Question
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Multi-server vs Single-server

𝑓

Function 𝑓

Better efficiency
Weaker assumption

✘ # of corrupted servers ≤ 𝑡

Multi-server setting

This work

Single-server setting

✘ Heavy computation
✘ Stronger assumption 
(Unconditional security
cannot be achieved)

𝑓
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Passively Secure Protocols
• Passive 𝑡-security: Semi-honest adversary corrupts 𝑡 servers.

• Private information retrieval (PIR)

2𝑡-server protocol from OWF [BGI16]+[BIW10],

3𝑡-server protocol (unconditional) [BIKO10]+[BIW10],…

• Degree-𝐷 polynomial

Θ(𝑡𝐷)-server protocol [WY07],

(𝑡 + 1)-server protocol for 𝐷 = 𝑜(log 𝜆) from sparse LPN [DIJL23]

• Constant-depth circuits of size 𝑀

(𝑡 ⋅ polylog𝑀)-server protocol [BI05]



• Corrupted servers may deviate from a protocol.
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Active Security

Privacy

Byzantine-robustness

⋮

Malicious

Corrupted servers learn no information on 𝑥.

𝑦 = 𝑓(𝑥) with high probability.

𝑦

cf. Verifiability [CNC+23,ZW22]

𝑦 ∈ {𝑓 𝑥 , ⊥} with high probability.
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Previous Works
• Passive-to-active compilers were proposed for PIR [BS07], [EKN22].

1-round
passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

✘ 𝑚
𝑡

= 𝑚𝑂(𝑡) computation/communication overhead.

✘ Do not consider general functions.

Compiler # servers # rounds Function

[BS07] 𝑚 = 𝑘 + 2𝑡 1 PIR

[EKN22] 𝑚 = 𝑘 + 𝑡 1 PIR
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Our Results
• We propose generic passive-to-active compilers with polynomial overheads.

poly(𝑚) computation/communication overhead

1-round
passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

Compiler # servers # rounds Function

[BS07] 𝑚 = 𝑘 + 2𝑡 1 PIR

[EKN22] 𝑚 = 𝑘 + 𝑡 1 PIR

Ours-1 𝑚 = 𝑘 + 𝑡 𝑂 𝑚2 Any

Ours-2 𝑚 = Θ(𝑘 log 𝑘) + 2𝑡 1 Any

General 𝑓



10

Techniques of Our Compilers

1-round
passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

Compiler # servers # rounds Function

[BS07] 𝑚 = 𝑘 + 2𝑡 1 PIR

[EKN22] 𝑚 = 𝑘 + 𝑡 1 PIR

Ours-1 𝑚 = 𝑘 + 𝑡 𝑂 𝑚2 Any

Ours-2 𝑚 = Θ(𝑘 log 𝑘) + 2𝑡 1 Any
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Conflict-finding Protocol

Passively 𝑡-secure
𝑘-server protocol 

Actively 𝑡-secure
𝑚-server protocol 

𝑡-Conflict-finding
𝑘-server protocol 

New notion
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Conflict-finding Protocol

Passively 𝑡-secure
𝑘-server protocol 

Actively 𝑡-secure
𝑚-server protocol 

𝑡-Conflict-finding
𝑘-server protocol 

New notion

⋮

Privacy Same

Conflict-finding

Client outputs either
(1) 𝑓(𝑥), or
(2) a partition (𝐺0, 𝐺1) such that 𝐻 ⊆ 𝐺0 or 𝐻 ⊆ 𝐺1.

𝐺0

𝐺1

Set of honest servers
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Conflict-finding Protocol

Passively 𝑡-secure
𝑘-server protocol 

Actively 𝑡-secure
𝑚-server protocol 

𝑡-Conflict-finding
𝑘-server protocol 

New notion

⋮

Privacy Same

Conflict-finding

Client outputs either
(1) 𝑓(𝑥), or
(2) a partition (𝐺0, 𝐺1) such that 𝐻 ⊆ 𝐺0 or 𝐻 ⊆ 𝐺1.

For any pair (𝑆𝑖 , 𝑆𝑗) with 𝑆𝑖 ∈ 𝐺0, 𝑆𝑗 ∈ 𝐺1, we have that 𝑆𝑖 or 𝑆𝑗 is malicious.

𝐺0

𝐺1 Conflicting pair

Set of honest servers
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𝑚-server protocol 

𝑡-Conflict-finding
𝑘-server protocol 
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⋮
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From Conflict-finding to Actively Secure
• There are 𝑚 servers out of which 𝑡 are malicious.

• If a 𝑘-server protocol is executed with the set of honest servers, 
Client obtains a correct result 𝑓(𝑥).

⋮

# of honest servers is 𝑚 − 𝑡 = 𝑘

Find sufficiently many conflicting pairs to determine 𝑘 honest servers Strategy
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From Conflict-finding to Actively Secure
• We consider a graph whose nodes represent servers.

– An initial graph is a complete graph.

(𝑆𝑖 , 𝑆𝑗) is an edge if and only if 

it is NOT a conflicting pair.
𝑆1

𝑆2 𝑆5

𝑆4𝑆3
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From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.
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From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.
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From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

Conflicting pair
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From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.
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From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

A remaining connected component
contains honest servers only.
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From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

No conflicting pair is found 
and output 𝑓(𝑥)

A remaining connected component
contains honest servers only.
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• Passive-to-active compilers for secure database search protocols with poly(𝑚) overheads.

• Future work

– Is it possible to achieve 𝑂(1) rounds while keeping 𝑚 = 𝑘 + 𝑡?

Passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

Compiler # servers # rounds Function

[BS07] 𝑚 = 𝑘 + 2𝑡 1 PIR

[EKN22] 𝑚 = 𝑘 + 𝑡 1 PIR

Ours-1 𝑚 = 𝑘 + 𝑡 𝑂 𝑚2 Any

Ours-2 𝑚 = Θ(𝑘 log 𝑘) + 2𝑡 1 Any
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