
Efficient and Generic Methods to Achieve
Active Security in Private Information Retrieval and

More Advanced Database Search

Reo Eriguchi, Kaoru Kurosawa, Koji Nuida

May 29, 2024

EUROCRYPT 2024

1

1. AIST, Japan

2. Chuo University, Japan

3. Kyushu University, Japan

1 2,1 3,1

2

Private Information Retrieval

⋮

Database 𝐷𝐵 ∈ 0,1 𝑁 Query 𝑥 ∈ [𝑁]

𝐷𝐵[𝑥]

Privacy
Servers learn no information on the client’s query 𝑥.

The privacy of 𝐷𝐵 is not considered.

3

Secure Database Search
• We consider a more general setting of computing a function 𝑓.

⋮

Function 𝑓 ∶ 𝒳 → 𝒴 Query 𝑥 ∈ 𝒳

𝑓(𝑥)

Privacy
Servers learn no information on the client’s query 𝑥.

The privacy of 𝑓 is not considered.

4

Secure Database Search
• We consider a more general setting of computing a function 𝑓.

⋮

Function 𝑓 ∶ 𝒳 → 𝒴 Query 𝑥 ∈ 𝒳

𝑓(𝑥)

However, Client-side computation/communication is proportional to |𝑓|.

Client can download 𝑓 and compute 𝑓(𝑥) locally.Trivial solution

Protocols whose computation/communication is ≪ |𝑓|.Question

5

Multi-server vs Single-server

𝑓

Function 𝑓

Better efficiency
Weaker assumption

✘ # of corrupted servers ≤ 𝑡

Multi-server setting

This work

Single-server setting

✘ Heavy computation
✘ Stronger assumption
(Unconditional security
cannot be achieved)

𝑓

6

Passively Secure Protocols
• Passive 𝑡-security: Semi-honest adversary corrupts 𝑡 servers.

• Private information retrieval (PIR)

2𝑡-server protocol from OWF [BGI16]+[BIW10],

3𝑡-server protocol (unconditional) [BIKO10]+[BIW10],…

• Degree-𝐷 polynomial

Θ(𝑡𝐷)-server protocol [WY07],

(𝑡 + 1)-server protocol for 𝐷 = 𝑜(log 𝜆) from sparse LPN [DIJL23]

• Constant-depth circuits of size 𝑀

(𝑡 ⋅ polylog𝑀)-server protocol [BI05]

• Corrupted servers may deviate from a protocol.

7

Active Security

Privacy

Byzantine-robustness

⋮

Malicious

Corrupted servers learn no information on 𝑥.

𝑦 = 𝑓(𝑥) with high probability.

𝑦

cf. Verifiability [CNC+23,ZW22]

𝑦 ∈ {𝑓 𝑥 , ⊥} with high probability.

8

Previous Works
• Passive-to-active compilers were proposed for PIR [BS07], [EKN22].

1-round
passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

✘ 𝑚
𝑡

= 𝑚𝑂(𝑡) computation/communication overhead.

✘ Do not consider general functions.

Compiler # servers # rounds Function

[BS07] 𝑚 = 𝑘 + 2𝑡 1 PIR

[EKN22] 𝑚 = 𝑘 + 𝑡 1 PIR

9

Our Results
• We propose generic passive-to-active compilers with polynomial overheads.

poly(𝑚) computation/communication overhead

1-round
passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

Compiler # servers # rounds Function

[BS07] 𝑚 = 𝑘 + 2𝑡 1 PIR

[EKN22] 𝑚 = 𝑘 + 𝑡 1 PIR

Ours-1 𝑚 = 𝑘 + 𝑡 𝑂 𝑚2 Any

Ours-2 𝑚 = Θ(𝑘 log 𝑘) + 2𝑡 1 Any

General 𝑓

10

Techniques of Our Compilers

1-round
passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

Compiler # servers # rounds Function

[BS07] 𝑚 = 𝑘 + 2𝑡 1 PIR

[EKN22] 𝑚 = 𝑘 + 𝑡 1 PIR

Ours-1 𝑚 = 𝑘 + 𝑡 𝑂 𝑚2 Any

Ours-2 𝑚 = Θ(𝑘 log 𝑘) + 2𝑡 1 Any

11

Conflict-finding Protocol

Passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

𝑡-Conflict-finding
𝑘-server protocol

New notion

12

Conflict-finding Protocol

Passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

𝑡-Conflict-finding
𝑘-server protocol

New notion

⋮

Privacy Same

Conflict-finding

Client outputs either
(1) 𝑓(𝑥), or
(2) a partition (𝐺0, 𝐺1) such that 𝐻 ⊆ 𝐺0 or 𝐻 ⊆ 𝐺1.

𝐺0

𝐺1

Set of honest servers

13

Conflict-finding Protocol

Passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

𝑡-Conflict-finding
𝑘-server protocol

New notion

⋮

Privacy Same

Conflict-finding

Client outputs either
(1) 𝑓(𝑥), or
(2) a partition (𝐺0, 𝐺1) such that 𝐻 ⊆ 𝐺0 or 𝐻 ⊆ 𝐺1.

For any pair (𝑆𝑖 , 𝑆𝑗) with 𝑆𝑖 ∈ 𝐺0, 𝑆𝑗 ∈ 𝐺1, we have that 𝑆𝑖 or 𝑆𝑗 is malicious.

𝐺0

𝐺1 Conflicting pair

Set of honest servers

14

Conflict-finding Protocol

Passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

𝑡-Conflict-finding
𝑘-server protocol

New notion

⋮

Privacy Same

Conflict-finding

Client outputs either
(1) 𝑓(𝑥), or
(2) a partition (𝐺0, 𝐺1) such that 𝐻 ⊆ 𝐺0 or 𝐻 ⊆ 𝐺1.

For any pair (𝑆𝑖 , 𝑆𝑗) with 𝑆𝑖 ∈ 𝐺0, 𝑆𝑗 ∈ 𝐺1, we have that 𝑆𝑖 or 𝑆𝑗 is malicious.

𝐺0

𝐺1 Conflicting pair

Set of honest servers

15

From Conflict-finding to Actively Secure
• There are 𝑚 servers out of which 𝑡 are malicious.

• If a 𝑘-server protocol is executed with the set of honest servers,
Client obtains a correct result 𝑓(𝑥).

⋮

of honest servers is 𝑚 − 𝑡 = 𝑘

Find sufficiently many conflicting pairs to determine 𝑘 honest servers Strategy

16

From Conflict-finding to Actively Secure
• We consider a graph whose nodes represent servers.

– An initial graph is a complete graph.

(𝑆𝑖 , 𝑆𝑗) is an edge if and only if

it is NOT a conflicting pair.
𝑆1

𝑆2 𝑆5

𝑆4𝑆3

17

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

18

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

19

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

Conflicting pair

20

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

21

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

22

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

23

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

Conflicting pair

24

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

25

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

26

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

27

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

Conflicting pair

28

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

29

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

30

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

31

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

Conflicting pair

32

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

33

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

34

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

35

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

Conflicting pair

36

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

37

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

38

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

39

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

Conflicting pair

40

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

41

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

A remaining connected component
contains honest servers only.

42

From Conflict-finding to Actively Secure
• The client iterates the following:

– Choose a connected subgraph of size 𝑘 and executes a conflict-finding protocol.

– If a conflicting pair (𝑆𝑖 , 𝑆𝑗) is found, then remove the corresponding edge.

No conflicting pair is found
and output 𝑓(𝑥)

A remaining connected component
contains honest servers only.

Summary

43

• Passive-to-active compilers for secure database search protocols with poly(𝑚) overheads.

• Future work

– Is it possible to achieve 𝑂(1) rounds while keeping 𝑚 = 𝑘 + 𝑡?

Passively 𝑡-secure
𝑘-server protocol

Actively 𝑡-secure
𝑚-server protocol

Compiler # servers # rounds Function

[BS07] 𝑚 = 𝑘 + 2𝑡 1 PIR

[EKN22] 𝑚 = 𝑘 + 𝑡 1 PIR

Ours-1 𝑚 = 𝑘 + 𝑡 𝑂 𝑚2 Any

Ours-2 𝑚 = Θ(𝑘 log 𝑘) + 2𝑡 1 Any

Reference

44

[BIW10]: Barkol, O., Ishai, Y., Weinreb, E.: On locally decodable codes, self-correctable codes, and t-private PIR. Algorithmica 58(4).

[BGI16]: Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and extensions. ACM CCS ’16.

[BIKO10]: Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and private information retrieval. 2012 IEEE 27th Conference on
Computational Complexity.

[WY07]: Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic private information retrieval. SIAM Journal on Computing
37(4).

[DIJL23]: Dao, Q., Ishai, Y., Jain, A., Lin, H.: Multi-party homomorphic secret sharing and sublinear MPC from sparse LPN. CRYPTO 2023.

[BI05]: Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with applications to database search problems. CRYPTO 2005.

[CNC+23]: Colombo, S., Nikitin, K., Corrigan-Gibbs, H., Wu, D.J., Ford, B.: Authenticated private information retrieval. USENIX Security 23.

[ZW22]: Zhang, L.F., Wang, H.: Multi-server verifiable computation of low-degree polynomials. 2022 IEEE Symposium on Security and Privacy (SP).

[BS07]: Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval. Journal of Cryptology 20(3).

[EKN22]: Eriguchi, R., Kurosawa, K., Nuida, K.: On the optimal communication complexity of error-correcting multi-server PIR. In: Theory of
Cryptography.

Thank you!

	Default Section
	スライド 1: Efficient and Generic Methods to Achieve Active Security in Private Information Retrieval and More Advanced Database Search
	スライド 2: Private Information Retrieval
	スライド 3: Secure Database Search
	スライド 4: Secure Database Search
	スライド 5: Multi-server vs Single-server
	スライド 6: Passively Secure Protocols
	スライド 7: Active Security
	スライド 8: Previous Works
	スライド 9: Our Results
	スライド 10: Techniques of Our Compilers
	スライド 11: Conflict-finding Protocol
	スライド 12: Conflict-finding Protocol
	スライド 13: Conflict-finding Protocol
	スライド 14: Conflict-finding Protocol
	スライド 15: From Conflict-finding to Actively Secure
	スライド 16: From Conflict-finding to Actively Secure
	スライド 17: From Conflict-finding to Actively Secure
	スライド 18: From Conflict-finding to Actively Secure
	スライド 19: From Conflict-finding to Actively Secure
	スライド 20: From Conflict-finding to Actively Secure
	スライド 21: From Conflict-finding to Actively Secure
	スライド 22: From Conflict-finding to Actively Secure
	スライド 23: From Conflict-finding to Actively Secure
	スライド 24: From Conflict-finding to Actively Secure
	スライド 25: From Conflict-finding to Actively Secure
	スライド 26: From Conflict-finding to Actively Secure
	スライド 27: From Conflict-finding to Actively Secure
	スライド 28: From Conflict-finding to Actively Secure
	スライド 29: From Conflict-finding to Actively Secure
	スライド 30: From Conflict-finding to Actively Secure
	スライド 31: From Conflict-finding to Actively Secure
	スライド 32: From Conflict-finding to Actively Secure
	スライド 33: From Conflict-finding to Actively Secure
	スライド 34: From Conflict-finding to Actively Secure
	スライド 35: From Conflict-finding to Actively Secure
	スライド 36: From Conflict-finding to Actively Secure
	スライド 37: From Conflict-finding to Actively Secure
	スライド 38: From Conflict-finding to Actively Secure
	スライド 39: From Conflict-finding to Actively Secure
	スライド 40: From Conflict-finding to Actively Secure
	スライド 41: From Conflict-finding to Actively Secure
	スライド 42: From Conflict-finding to Actively Secure
	スライド 43: Summary
	スライド 44: Reference

