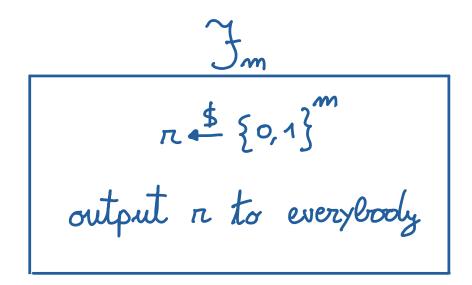
CONSTANT-ROUND SIMULATION - SECURE COIN TOSSING EXTENSION WITH GUARANTEED OUTPUT VARUN DAMIANO JACK YUVAL DOERNER ABRAM NARAYANAN ISHAL TECHNION AARHUS UNIVERSITY UCLA REICHMAN UNIVERSITY TECHNION ROCCONI UNIVERSITY BROWN UNIVERSITY

COIN TOSSING



COIN TOSSING

n \$ {0,1}^m output n to everybody dishonest majority + malicious corruption

SIMULATION SECURITY

COIN TOSSING

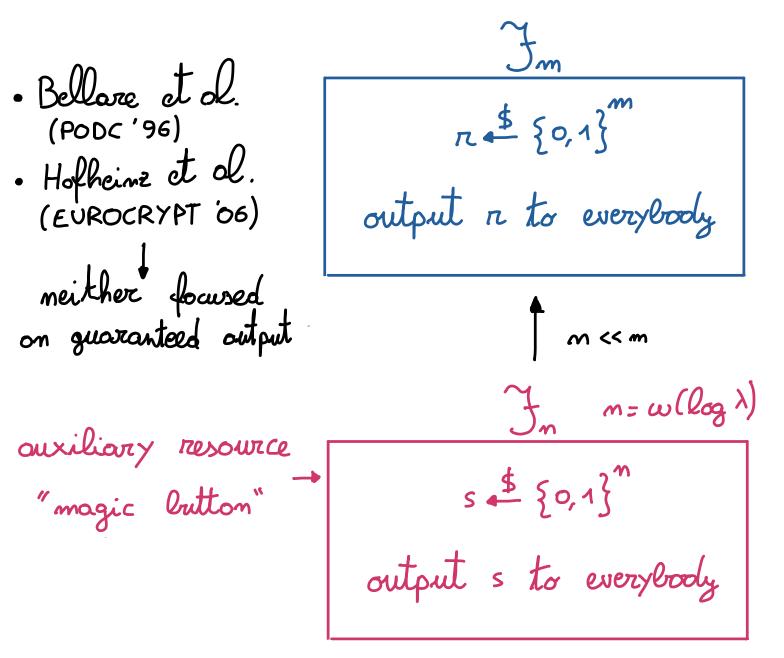
n \$ {0,1} m output n to everybody dishonest majority + molicious corruption

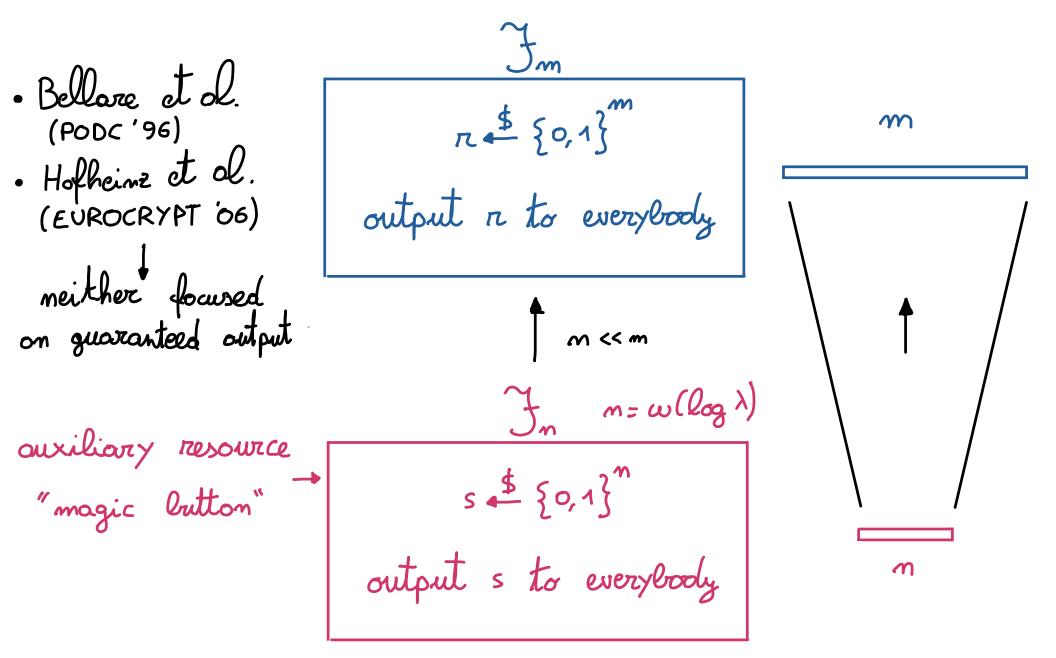
SIMULATION SECURITY

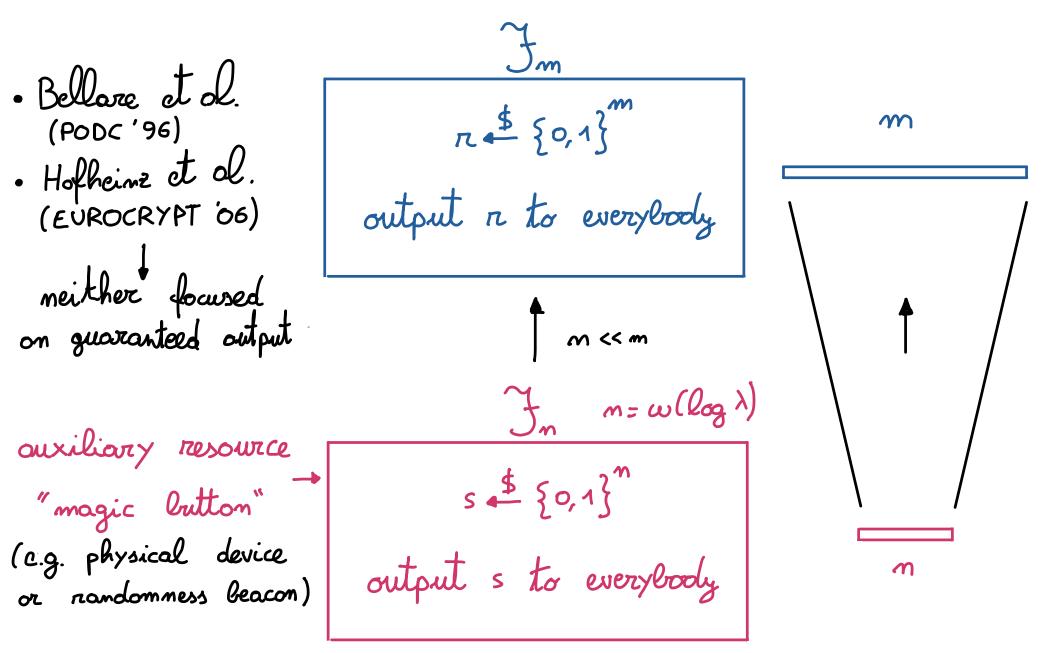
IMPOSSIBLE (even for computational security) [CLEVE 86]

Bellaze et ol. (PODC'96)
Hofheinz et ol. (EUROCRYPT'06)
meither focused on guaranteed output

π € {0,1}m output n to everybody







SOLUTIONS THAT DON'T VX/ORK

ONLY GAME-BASED SECURITY

- BAD IDEA: PRGs
 - n=PRG(s) looks random only if s is secret!

SOLUTIONS THAT DON'T WORK

ONLY GAME-BASED · BAD IDEA: PRGs r=PRG(s) looks random only if s is secret! if H= hash function IDEA: random oracle . BORING r= Jel(s) looks random, but RO don't exist!

BETTER SOLUTION: RANDOMNESS EXTRACTORS ALICE BOB

3 4 50,15

5 - 50,15

BETTER SOLUTION: RANDOMNESS EXTRACTORS ALICE BOB

5 - 50,15

BETTER SOLUTION: RANDOMNESS EXTRACTORS ALICE ROB a 4 { 50,1} 5 \$ 80,13 Output n=Ext(s, allb) nandom even if one party is corrupted

SOLUTION: BETTER RANDOMNESS EXTRACTORS ALICE ROB a 4 { [0,1] 5 - 5015 J \$ 5 random even Output n=Ext(s, allb) if one party is corrupted How do ve simulate?

EXPLAINABLE EXTRACTOR

$$\left\{ \Pi, S, \partial, b \left| \begin{array}{c} \partial \stackrel{\$}{\leftarrow} \left\{ 0, 1 \right\}^{L} \\ b \stackrel{\$}{\leftarrow} \left\{ 0, 1 \right\}^{L} \\ b \stackrel{\$}{\leftarrow} \left\{ 0, 1 \right\}^{L} \\ s \stackrel{\$}{\leftarrow} \left\{ 0, 1 \right\}^{m} \\ s \stackrel{\$}{\leftarrow} \left\{ 0, 1 \right\}^{m} \\ n \stackrel{\clubsuit}{\leftarrow} \left\{ x + \left(s, \partial \| b \right) \right\} \right\} \right\} \right\} \\ \left\{ \begin{array}{c} \Pi, S, \partial, b \\ n, S, \partial, b \\ n \stackrel{\$}{\leftarrow} \left\{ s, \partial, b \right\} \stackrel{\$}{\leftarrow} \left\{ s, b \right\} \stackrel{\ast}{\leftarrow} \left\{ s, b \right\} \stackrel{$$

EXPLAINABLE EXTRACTOR

EX: STRONG EXTRACTORS WITH $O(\log \lambda)$ - STRETCH Ext(s,x)= (s,y) where $|y|=O(\log \lambda)$

EXPLAINABLE EXTRACTOR

EX: STRONG EXTRACTORS WITH $O(log \lambda)$ - STRETCH $E \times t(s, \chi) = (s, \chi)$ where $|y| = O(log \lambda)$ $Sim_{\mathcal{A}}$ can brute - force for $\times !$ 1-round statistical CTE with $O(log \lambda)$ - stretch [HMU06]

O(1)-ROUND CTE WITH ARBITRARY STRETCH computational security:

computational security:

ASSUMPTION #PARTIES # ROUNDS coin tossing with 2 0(1)

computational security:

ASSUMPTION	# PARTIES	# ROUNDS
coin tossing with abort	2	O(1)
coin tossing with identifiable abort	N	0(N)

computational security:

ASSUMPTION	# PARTIES	# ROUNDS	MODEL
coin tossing with abort	2	0(1)	it depends
coin tossing with identifiable abort	N	O(N)	it depends
OWF [Goyal at al]	Ν	О(N)	standolone

computational security:

ASSUMPTION	# PARTIES	# ROUNDS	MODEL
coin tossing with abort	2	O(1)	it depends
coin tossing with identifiable abort	N	0(N)	it depends
OWF [Goyal et al]	Ν	0 (N)	standolone
DDH/Billier/groups	N	1	UC + reuselle CRS

computational security: MODEL CORRUPTION **#PARTIES** # ROUNDS ASSUMPTION coin tossing with abort 2 O(1)

Ν

LWE with $w(\lambda^{eg})$ modulus-noise ratio

沈 it depends... depends... coin tossing with identifiable abort it depends... it depends... N O(N)OWF [Goyal et al] O(N)? standolone N UC + DDH / Paillier / class groups イ NO N reusable CRS

ノ

ADAPTIVE

YES

UC

statistical security:

• impossibility for standalone black-box simulation R-round CTE has O(R·log >) stretch

CTE WITH D(1) - ROUND ARBITRARY STRETCH statistical security: • impossibility for standolone black-box R-round CTE has O(R·log >) stretch simulation generolisation: • 1- round, 1-coll secure sampling from any distribution (x-bit, unstructured, reusoble CRS) i0 + indistinguishability-preserving distributed samplers J Output st {0,1}" to everybody Output R D(1*) to everybody

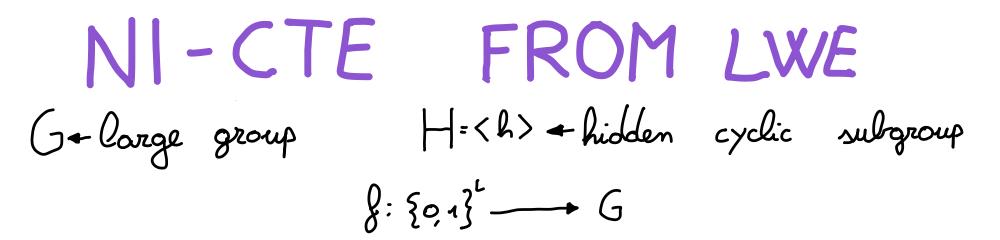
NI - CTE FROM LWE 1st ingredient: (G+) - Carge group H=<h> hidden cyclic subgroup 9 - H g ≠ G looks like

NI - CTE FROM LWE 1st ingredient: (G, +) ← Carge group H=<h> hidden cyclic subgroup 9 4 H like g & G looks 2 nd ingredient: lossy trapdoor function & (unstructured description)

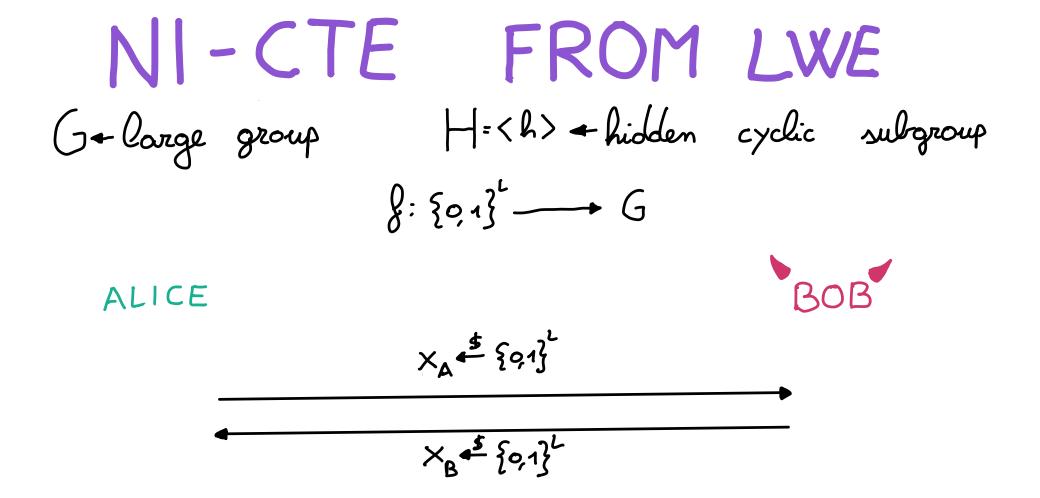
NI - CTE FROM LWE 1st ingredient: (G, +) ← Carge group H=<h> hidden cyclic subgroup 9 4 H like g & G looks 2 nd ingredient: lossy trapdoor function & (unstructured description) SURJECTIVE MODE LOSSY MODE

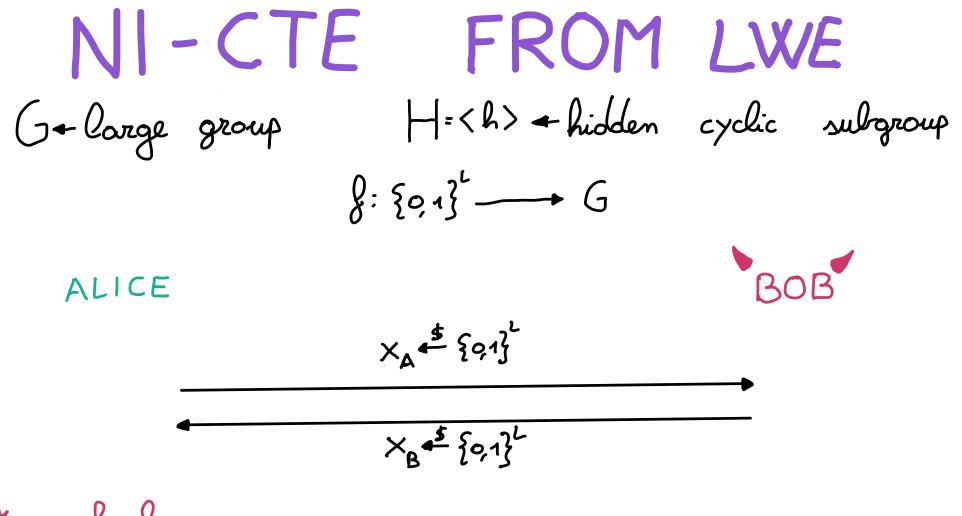
NI - CTE FROM LWE 1st ingredient: (G, +) ← Carge group H=<h> hidden cyclic subgroup 9 4 H g & G looks like 2 nd ingredient: lossy trapdoor function & (unstructured description) SURJECTIVE MODE - & outputs random elements in G LOSSY MODE

NI - CTE FROM LWE 1st ingredient: (G, +) ← Carge group |-=<h> hidden cyclic subgroup g ≠ G looks like g ≠ H 2 nd ingredient: lossy trapdoor function & (unstructured description) SURJECTIVE MODE - & g outputs random elements in G LOSSY MODE - g outputs random elements in H

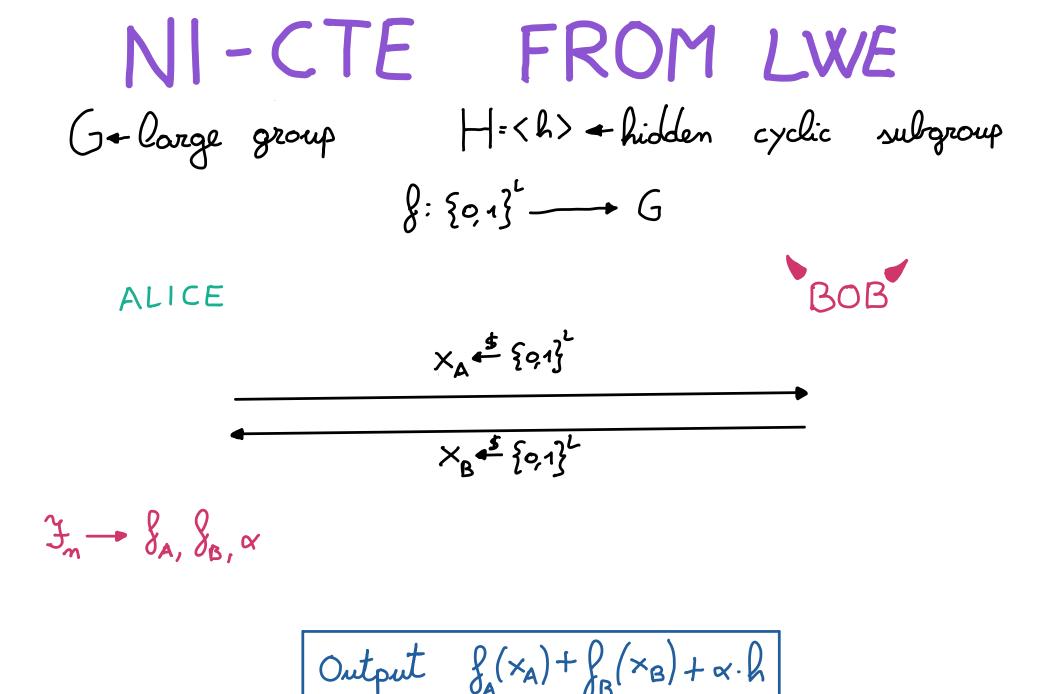


ALICE

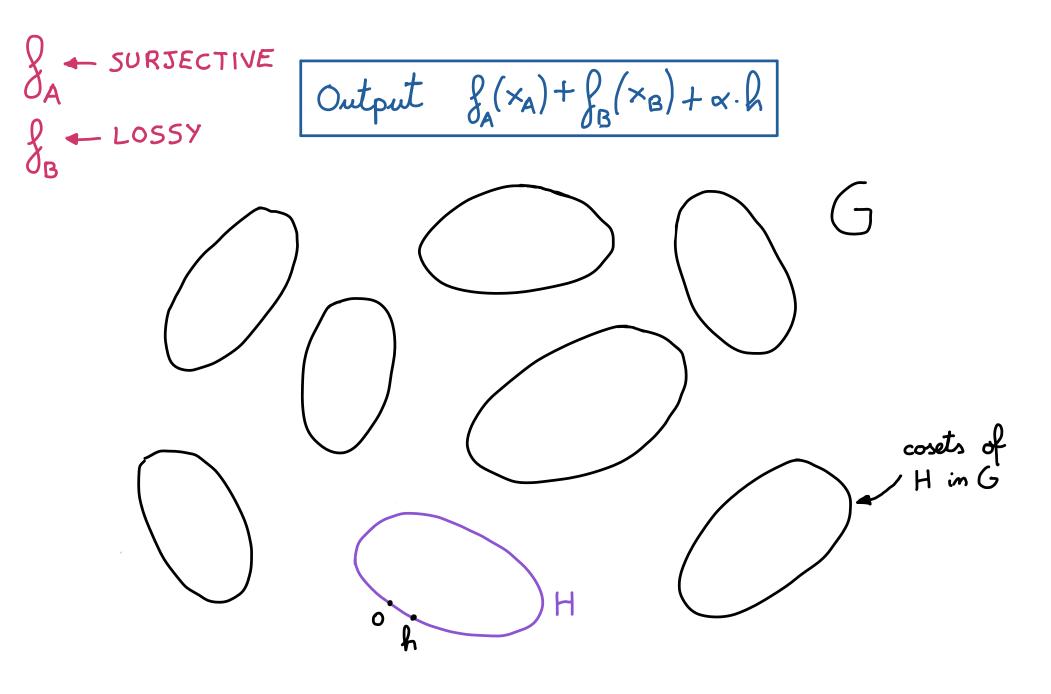




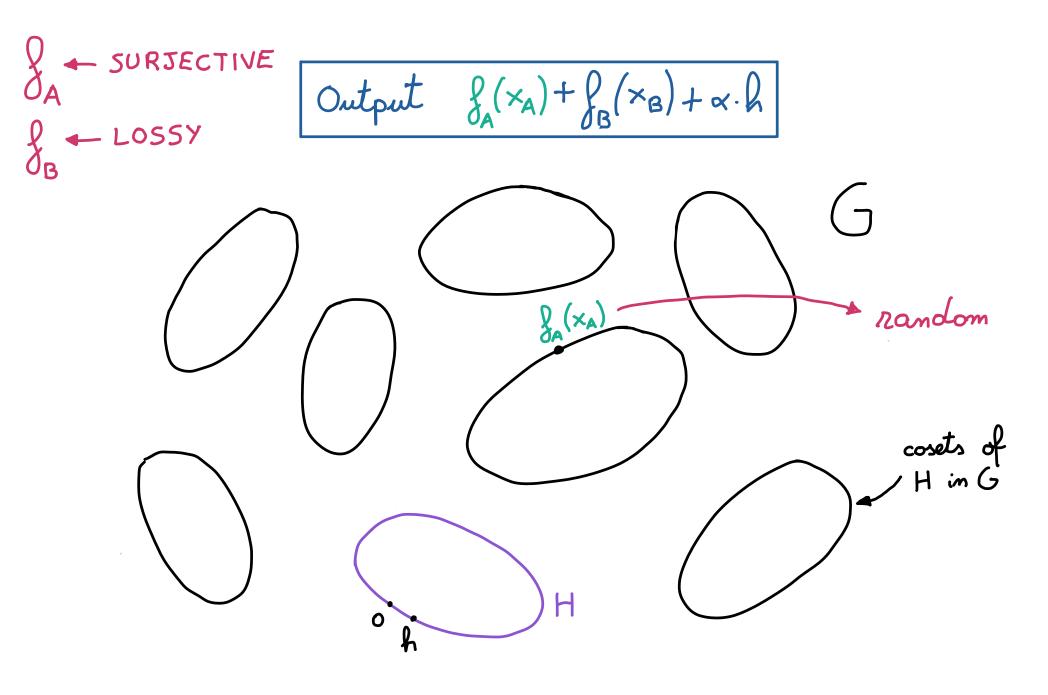
 $\mathcal{F}_{m} \rightarrow \mathcal{S}_{A}, \mathcal{S}_{B}, \alpha$

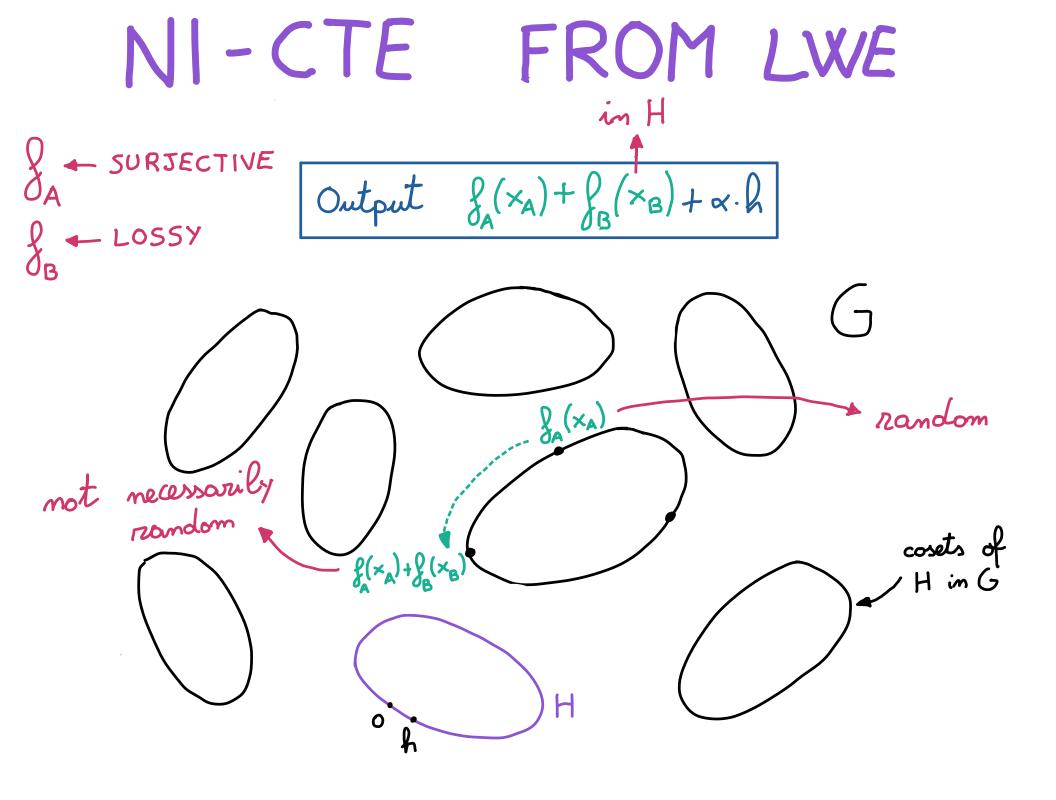


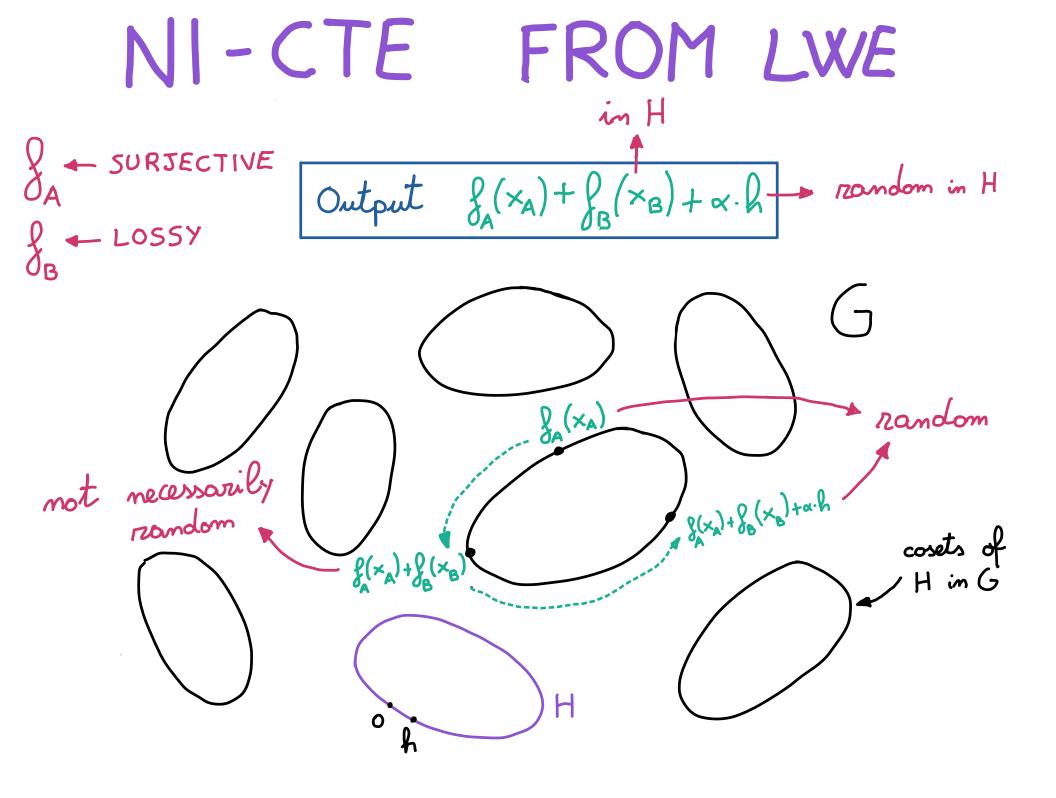
NI-CTE FROM LWE



NI-CTE FROM LWE







NI-CTE FROM LWE $G = \mathbb{Z}_{q}^{\kappa+\tau}$

$\begin{array}{ccc} NI - CTE & FROM LWE \\ G = \mathbb{Z}_{q}^{\kappa+T} & H = \left\{ (v_{1}, v_{2}) \mid v_{2} = S \cdot v_{1} \right\} & S \leftarrow \mathbb{Z}_{q}^{T \times K} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$

SURJECTIVE MODE

 $g \sim M \stackrel{s}{\leftarrow} \mathbb{Z}_q^{(\kappa+T) \times W}$

$\begin{array}{ccc} NI - CTE & FROM LWE \\ G = \mathbb{Z}_{q}^{\kappa + T} & H = \left\{ (v_{1}, v_{2}) \mid v_{2} = S \cdot v_{1} \right\} & S \leftarrow \mathbb{Z}_{q}^{T \times K} \\ & H = \left\{ (v_{1}, v_{2}) \mid v_{2} = S \cdot v_{1} \right\} & S \leftarrow \mathbb{Z}_{q}^{T \times K} \\ & \text{ secret} \end{array}$

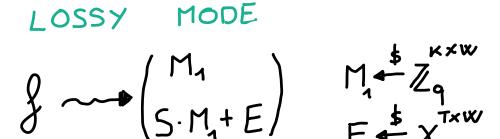
SURJECTIVE MODE

 $g \longrightarrow M \stackrel{*}{\leftarrow} Z_q^{(\kappa+\tau) \times w} \qquad g(x) = M \cdot x' \stackrel{\text{view } x}{\leftarrow} os randomners for discrete Goussion}$

NI-CTE FROM LWE $G = \mathbb{Z}_{q}^{\kappa + T} \qquad H = \left\{ \left(v_{1}, v_{2} \right) \middle| v_{2} = S \cdot v_{1} \right\} \qquad S \stackrel{*}{\leftarrow} \mathbb{Z}_{q}^{T \times \kappa}$ secret

SURJECTIVE MODE

 $g \sim M \stackrel{*}{\leftarrow} \mathbb{Z}_q^{(\kappa+\tau) \times W} \qquad g(x) = M \cdot x' \stackrel{\text{view } x}{\leftarrow} os randomners for discrete Goussien$



$\begin{array}{ccc} NI - CTE & FROM LWE \\ G = \mathbb{Z}_{q}^{\kappa + T} & H = \left\{ (v_{1}, v_{2}) \mid v_{2} = S \cdot v_{1} \right\} & S \leftarrow \mathbb{Z}_{q}^{T \times K} \\ & H = \left\{ (v_{1}, v_{2}) \mid v_{2} = S \cdot v_{1} \right\} & S \leftarrow \mathbb{Z}_{q}^{T \times K} \\ & \text{secret} \end{array}$

SURJECTIVE MODE

 $g \sim M \stackrel{*}{\leftarrow} \mathbb{Z}_q^{(\kappa+\tau) \times W} \qquad g(x) = M \cdot x' \stackrel{\text{view } x}{\leftarrow} os randomners for discrete Goursion$

LOSSY MODE

$\begin{array}{ccc} NI - CTE & FROM LWE \\ G = \mathbb{Z}_{q}^{\kappa + T} & H = \left\{ (v_{1}, v_{2}) \mid v_{2} = S \cdot v_{1} \right\} & S \leftarrow \mathbb{Z}_{q}^{T \times K} \\ & H = \left\{ (v_{1}, v_{2}) \mid v_{2} = S \cdot v_{1} \right\} & S \leftarrow \mathbb{Z}_{q}^{T \times K} \\ & \text{ secret} \end{array}$

SURJECTIVE MODE

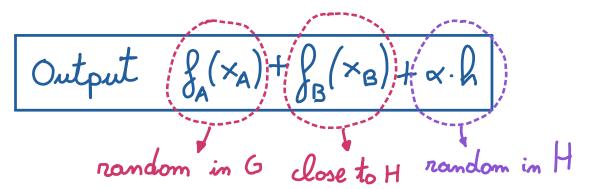
 $g \sim M \stackrel{*}{\leftarrow} \mathbb{Z}_q^{(\kappa+\tau) \times w} \qquad g(x) = M \cdot x' \stackrel{\text{view } x}{\leftarrow} os randomners for discrete Goussion}$

LOSSY MODE

$$\begin{cases} M_{1} \\ S \cdot M_{1} + E \end{pmatrix} \xrightarrow{M_{1} \leftarrow Z_{q}} \qquad looks random under LWE$$

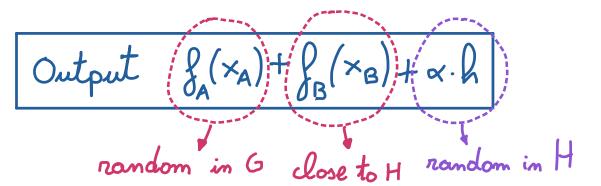
 $E \leftarrow X^{T \times W}$
 $f(x) = \begin{pmatrix} M_{1} \cdot x' \\ S \cdot M_{1} \cdot x' + E \cdot x' \end{pmatrix} \approx \begin{pmatrix} Y_{1} \\ S \cdot Y_{n} \end{pmatrix} \xrightarrow{H} Y_{1} := M_{1} \cdot x'$

NI-CTE FROM LWE



 $H = \left\{ \left(v_{1}, v_{2} \right) \in \mathbb{Z}_{q}^{\kappa} \times \mathbb{Z}_{q}^{T} \middle| v_{2} = S \cdot v_{1} \right\}$ not cyclic

NI-CTE FROM LWE



 $H = \left\{ (v_1, v_2) \in \mathbb{Z}_q^{\kappa} \times \mathbb{Z}_q^{\mathsf{T}} \middle| v_2 = S \cdot v_1 \right\}$ not cyclic

PROBLEM:

how to sample at random in H?

NI-CTE FROM LWE Output $\beta_A(x_A) + \beta_B(x_B) + D \cdot e$ random in G close to H close to random element in H Fn & JA, JB, D, e $H = \left\{ (v_1, v_2) \in \mathbb{Z}_q^{\kappa} \times \mathbb{Z}_q^{\mathsf{T}} \middle| v_2 = S \cdot v_1 \right\}$ not cyclic PROBIEM: how to sample at random in H? Let Fn give ~ K.logq vectors close to H (matrix D) and gaussian vector e. Output D.e dose to NB: |e| « output size in H Klogg << (K+T) log q

NI-CTE FROM LWE

OTHER PROBLEMS:

· how to deal with the maise?

how to deal with the noise?
 Round down the last T entries of the autput

- how to deal with the noise?
 Round down the last T entries of the autput
- the stretch is negative!

- how to deal with the noise?
 Round down the last T entries of the output
- the stretch is negative! Run the protocol L times reusing &a, &o and D!

how to deal with the noise?
 Round down the last T entries of the autput

the stretch is negative!
 Run the protocol L times rewring & & & and D!
 Jun needs to generate L goussian vectors energies ~ L.K. logg lits.
 ALL GOOD: the output is L.(K+T). log g lits!

how to deal with the noise?
 Round down the last T entries of the output

the stretch is negative!
 Run the protocol L times rewring &, & and D!
 Jan needs to generate L goussian vectors en..., en L.K. logg bits.
 ALL GOOD: the output is L.(K+T). log g bits!

• the output of In is linear in #parties N!

how to deal with the maise?
 Round down the last T entries of the autput

the stretch is negative!
 Run the protocol L times rewring \$\$\$, \$\$\$ and D!
 Jun needs to generate L goussian vectors en,..., er ~ L·K·logg bits.
 ALL GOOD: the output is L·(K+T)·log g bits!

the output of Im is linear in #parties N!
 Using GSW13-based techniques, we can make it O(log N)

	ASSUMPTION	SUMM OUTPUT			DAPTIVE
	ASSUMPTION	FUNCTIONALITY	# ROUNDS	-	ORRUPTION
	Ó₩F	n . € {0,1} ^m	O(# porties)	standolone	?
	coin tossing with identifiable abort	ony m <i>R</i>	O(# porties)	it depends	it depends
•	DDH/Billier/groups	ony m R€ {0,1} ^m	1	UC + reusolle CRS	NO
	LWE with $w(\lambda^{e_3})$ modulus-noise ratio	ony m <i>R</i> \$ {0,1} ^m	1	υς	YES
	iO + indistinguisholility preserving distributed samplers	R ← D(1 [×])	1	UC + newsolke CRS	NO
	LOWER: R-round statistical CTE with black-box BOUND : simulation has O(R·log >) stretch!				
		r entropy sources $S(1^*) \stackrel{\sharp}{\rightarrow} (x_{i_1}, \dots, x_{i_n})$ PPT As s.t. $x_i \stackrel{\sharp}{\leftarrow} \{q,1\}^{L} (x_j)_{j\neq i} \stackrel{\sharp}{\leftarrow} A_{J}(1^*, x_i)$			