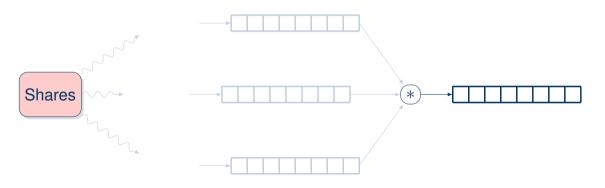
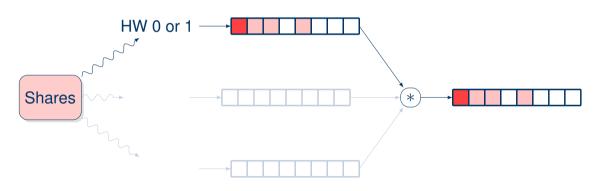
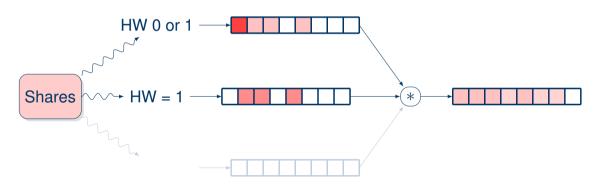


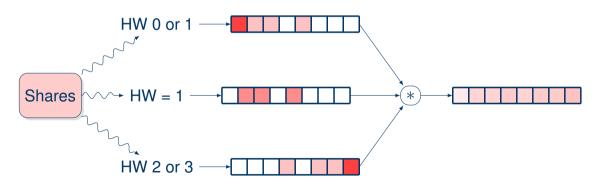
UCLouvain Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)

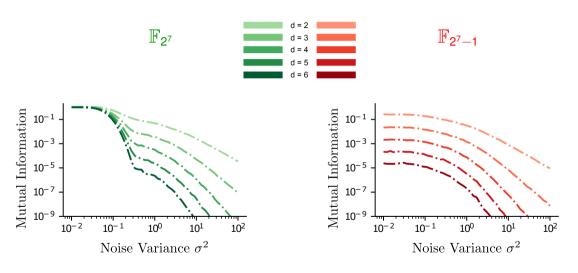

Generalized Feistel Ciphers for Efficient Prime Field Masking

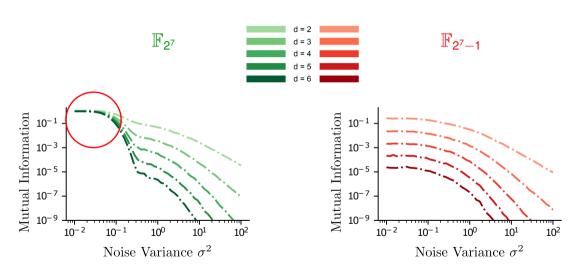
Lorenzo Grassi, Loïc Masure, Pierrick Méaux, Thorben Moos, François-Xavier Standaert


Ruhr University Bochum; University Montpellier, CNRS; Luxembourg University; UCLouvain

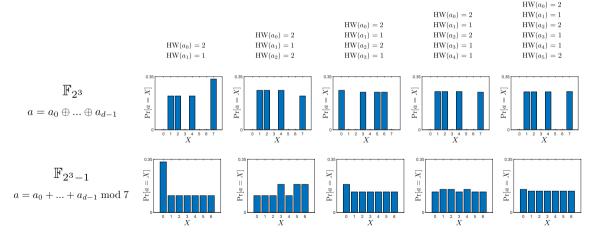








Always Reliable? Boolean vs. Prime-Field Masking


Always Reliable? Boolean vs. Prime-Field Masking

What Went Wrong?

Noise-Free Hamming Weight Leakage:

State of the Art

- Dziembowski et al., TCC 2016 [1]:
 - Masking in groups of prime order can amplify arbitrarily low noise levels (lack of subgroups)
 - Exponential security in the number of shares in presence of any non-injective leakage function
- Masure et al., Eurocrypt 2023 [2]:
 - Information theoretic evaluation of the properties of prime-field masking under common leakage models such as Hamming weight and bit leakage + first practical results
 - Toy AES-prime cipher based on a small Mersenne-prime and a bijective power map as S-box
- Cassiers et al., TCHES 2023 [3]:
 - Efficient arbitrary-order composable masked gadgets for *squaring*, half as costly as multipl.
- Faust et al., Eurocrypt 2024 [4]:
 - ullet For Hamming-weight-like leakage functions, security of prime-field masking is $pprox log(p)^d$

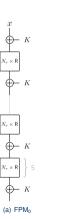
^[1] Dziembowski, Faust and Skórski, Optimal Amplification of Noisy Leakages, TCC 2016

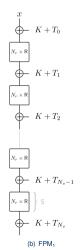
^[2] Masure, Méaux, Moos and Standaert, Effective and Efficient Masking with Low Noise using Small-Mersenne-Prime Ciphers, Eurocrypt 2023

^[3] Cassiers, Masure, Momin, Moos and Standaert, Prime-Field Masking in Hardware and its Soundness against Low-Noise SCA Attacks, TCHES 2023

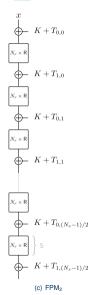
^[4] Faust et al, Connecting Leakage-Resilient Secret Sharing to Practice: Scaling Trends and Physical Dependencies of Prime Field Masking, Eurocrypt 2024

This work

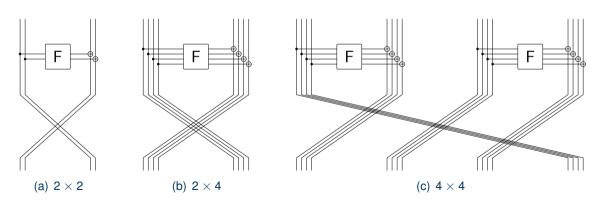

Missing so far? An efficient lightweight cryptographic primitive to demonstrate relevance and further study the potential advantages of prime-field masking.


We address this by

- introducing the FPM (Feistel for Prime Masking) family of tweakable block ciphers based on a generalized Feistel structure
- $oldsymbol{2}$ proposing a first instantiation of FPM which we denote as small pSquare
- \odot comparing small pSquare to SKINNY in terms of efficiency vs. security tradeoff

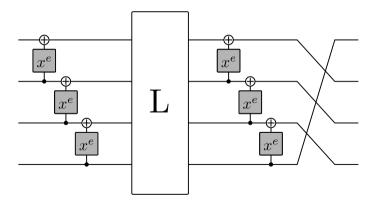

A new Family of Tweakable Block Ciphers: FPM_{τ}

Structure based on TWEAKEY framework and LED-like design to simplify related-tweak analysis.



Rounds R of FPM_⊤

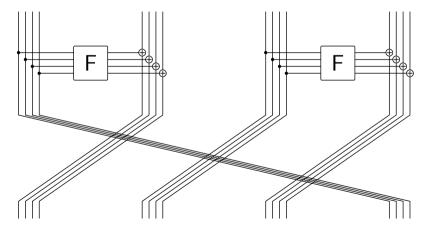
Type-II generalized Feistel to obtain tweakable block ciphers with cheap/efficient inverses. Defined by $b \cdot c$ where b is the number of branches and c the field elements per branch.


F-function of FPM_τ

F-function with two layers of non-linear power maps via Type-III generalized Feistel.

MDS matrix multiplication as linear layer in the middle.

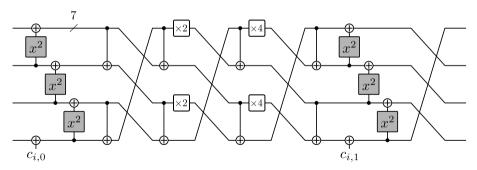
F shall be bijective (to avoid collisions) and provide full non-linear diffusion.


Section 1

First Instance of FPM $_{\tau}$: small — pSquare

Instance: small — pSquare **for Hardware**

State is defined by 4 branches of 4 \mathbb{F}_p elements each, with $p=2^7-1=127$ ("small-p"). State and key size are $4\cdot 4\cdot 7=112$ bit, tweak size is given by $\tau\cdot 112$ with $\tau\in\{0,1,2\}$



UCLouvain

FPM_{τ} F-function (small-pSquare)

- Invertible MDS matrix with low depth and number of additions [1].
- Square as the non-linear power map due to efficient masked gadgets [2].

$$M = \begin{bmatrix} 3 & 2 & 1 & 1 \\ 7 & 6 & 5 & 1 \\ 1 & 1 & 3 & 2 \\ 5 & 1 & 7 & 6 \end{bmatrix}$$

^[1] Duval and Leurent, MDS Matrices with Lightweight Circuits, ToSC 2018

^[2] Cassiers, Masure, Momin, Moos and Standaert, Prime-Field Masking in Hardware and its Soundness against Low-Noise SCA Attacks, TCHES 2023

UCLouvain

Hardware Cost when Masked

Comparison to Automated Tool (Serialized Pipelined) [1]

small-pSquare $\tau = 1$

SKINNY-128-256

Freq. <i>MHz</i>	d	Area <i>GE</i>	Power mW	Latency cyc/enc	Rand. bit/enc	Freq. <i>MHz</i>	d	Area <i>GE</i>	Power mW	Latency cyc/enc	Rand. bit/enc
100	2 3 4	20735.75 39958.75 59404.75	2.8794 5.5274 8.2398	256/2 256/2 256/2	11k 27k 65k	100	2 3 4	39016.25 57757.00 78243.00	9.1220 13.4186 17.9452	2160/9 2160/9 2160/9	8k 23k 46k
250	2 3 4	26823.25 48147.50 72245.00	3.5092 6.5390 9.9639	256/2 256/2 256/2	11k 27k 65k	250	2 3 4	39016.25 57757.00 78243.00	9.1220 13.4186 17.9452	2160/9 2160/9 2160/9	8k 23k 46k
500	2 3 4	33663.25 57478.75 86320.25	4.6977 8.3328 12.1962	640/5 640/5 640/5	11k 27k 65k	500	2 3 4	39016.25 57757.00 78243.00	9.1220 13.4186 17.9452	2160/9 2160/9 2160/9	8k 23k 46k
1000	2 3 4	46481.75 79853.25 117094.00	7.3055 12.3280 18.2342	1280/10 1280/10 1280/10	11k 27k 65k	1000	2 3 4	39256.75 58274.75 78972.25	9.1467 13.5388 18.1421	2160/9 2160/9 2160/9	8k 23k 46k

^[1] Knichel, Moradi, Müller and Sasdrich, Automated Generation of Masked Hardware, TCHES 2022

Hardware Cost when Masked

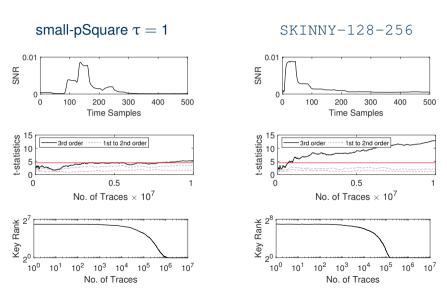
Comparison to Public Implementation (Serialized) [1]

small-pSquare $\tau = 1$

SKINNY-128-256

Freq. MHz	d	Area <i>GE</i>	Power mW	Latency cyc/enc	Rand. bit/enc	,	Freq. MHz	d	Area <i>GE</i>	Power mW	Latency cyc/enc	Rand. bit/enc
100	2 3 4	15332.25 27215.75 39237.50	1.9296 3.4077 4.9897	256/1 256/1 256/1	11k 27k 65k		100	2 3 4	18035.75 28740.75 41136.75	2.5276 4.1347 5.9918	288/1 288/1 288/1	9k 28k 55k
250	2 3 4	20471.00 34485.25 48511.25	2.4330 4.2527 6.1763	256/1 256/1 256/1	11k 27k 65k		250	2 3 4	18035.75 28740.75 41136.75	2.5276 4.1347 5.9918	288/1 288/1 288/1	9k 28k 55k
500	2 3 4	21186.50 34677.25 50638.25	2.3152 3.9515 5.9314	640/1 640/1 640/1	11k 27k 65k		500	2 3 4	18035.75 28775.50 41143.75	2.5361 4.1321 5.9978	288/1 288/1 288/1	9k 28k 55k
1000	2 3 4	24377.25 41025.75 58694.00	2.6962 4.7424 7.1102	1280/1 1280/1 1280/1	11k 27k 65k		1000	2 3 4	19077.50 29998.25 42781.25	2.5824 4.2289 6.1521	288/1 288/1 288/1	9k 28k 55k

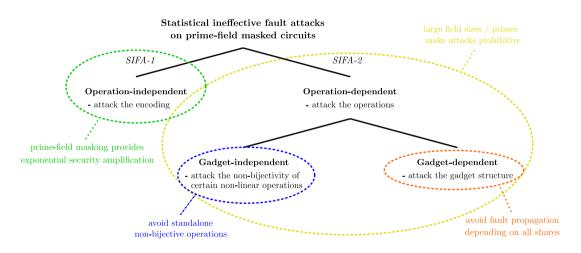
^[1] Verhamme, Cassiers and Standaert, Analyzing the Leakage Resistance of the NIST's Lightweight Crypto Competition's Finalists, CARDIS 2022



Cheap Inverse

Remember: We get decryption on top almost for free (single-digit percent overhead when masked). For SKINNY the overhead is $\approx 100\%$.

Side-Channel Security Comparison (3 Shares)


Source Code

- Currently 40 different implementations online (incl. 24 masked HW)
- Reference implementations in C and VHDL
- Optimized hardware implementations in VHDL
- Accepted as Eurocrypt 2024 artifact (Thanks for introducing this!)
- Good news: There is still room for improvement!
- https://github.com/uclcrypto/small-pSquare

Teaser: Fault Security

[1] Moos, Saha and Standaert, Prime Masking vs. Faults - Exponential Security Amplification against Selected Classes of Attacks, https://eprint.iacr.org/2024/147

Conclusion

- We introduced a general design strategy for tweakable block ciphers optimized for prime-field masking
- We successfully build a lightweight tweakable block cipher for hardware applications, called small-pSquare
- The design is competitive with state of the art binary ciphers, while delivering much better SCA (and potentially FI) security
- Next: FPM_τ instances with larger primes, e.g., for 32-bit platforms?

Prime ciphers optimized for the efficient application of additive masking appear to be promising candidates for physically secure implementations