Practical Attack on All Parameters of the DME Signature Scheme

Pierre Briaud^{1,2}, joint work with Maxime Bros³, Ray Perlner³ and Daniel Smith-Tone^{3,4}

Eurocrypt 2024, May 30

¹Inria Paris ²Sorbonne Université ³NIST ⁴University of Louisville "New" signature candidate submitted to NIST

- Multivariate, ad hoc design
- Level I : sig size 32 B, pk size 1.5 kB + VERY efficient

"New" signature candidate submitted to NIST

- Multivariate, ad hoc design
- Level I : sig size 32 B, pk size 1.5 kB + VERY efficient

This talk

A practical key recovery attack

(< 1s for Level I, naive Magma script)

Description of DME

Multivariate signature scheme

Public key

$$\mathsf{P} = (p_1, \ldots, p_m) \in \mathbb{F}_q[x_1, \ldots, x_n]^m$$

Gives map $\mathbb{F}_q^n \to \mathbb{F}_q^m$

$$oldsymbol{\sigma} \in \mathbb{F}_q^n$$
 valid on message $oldsymbol{m} \in \mathbb{F}_q^m \Leftrightarrow P(oldsymbol{\sigma}) = oldsymbol{m}$

Multivariate signature scheme

Public key

$$\mathsf{P} = (p_1, \ldots, p_m) \in \mathbb{F}_q[x_1, \ldots, x_n]^m$$

Gives map $\mathbb{F}_q^n \to \mathbb{F}_q^m$

$$oldsymbol{\sigma} \in \mathbb{F}_q^n$$
 valid on message $oldsymbol{m} \in \mathbb{F}_q^m \Leftrightarrow P(oldsymbol{\sigma}) = oldsymbol{m}$

Standard multivariate

- P has high degree
- For λ -bit security, m = n = 8 and $q = 2^{\lambda/4}$

(quadratic P)

$$(m, n = f(\lambda), \text{ constant q})$$

We have $P \stackrel{def}{=} R_3 \circ R_2 \circ R_1 \circ R_0$, where

$$R_i \stackrel{def}{=} C_i \circ L_i \circ F_{\mathbf{A}_i},$$

and

- F_{A_i} : "exponential map"
- L_i : specific \mathbb{F}_q -linear map
- C_i : addition of constants

Sign : compute $P^{-1}(m)$ by inverting the rounds

Exponential map F_{A_i} (1)

Field extension $\mathbb{F}_{q^2}/\mathbb{F}_q$, $U \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ $(x, y) \in \mathbb{F}_q^2 \leftrightarrow x + Uy \in \mathbb{F}_{q^2}$ $\phi(x_1, \dots, x_8) \stackrel{def}{=} (x_1 + Ux_2, \dots, x_7 + Ux_8) \in \mathbb{F}_{q^2}^4$ Final map $\mathbb{F}_q^8 \to \mathbb{F}_q^8$

$$F_{\mathbf{A}} \stackrel{def}{=} \phi^{-1} \circ E_{\mathbf{A}} \circ \phi, \ E_{\mathbf{A}} : \mathbb{F}_{q^2}^4 \to \mathbb{F}_{q^2}^4$$

Big-field map E_A

 $\mathsf{Matrix}\; \boldsymbol{A} \stackrel{def}{=} (a_{ij}) \in \mathbb{Z}_{q^2-1}^{4 \times 4} \text{ contains exponents}$

$$E_{\mathbf{A}}(X_1,\ldots,X_4) \stackrel{def}{=} (X_1^{a_{11}}X_2^{a_{12}}X_3^{a_{13}}X_4^{a_{14}},\ldots,X_1^{a_{41}}X_2^{a_{42}}X_3^{a_{43}}X_4^{a_{44}})$$

Exponential map F_{Ai} (2)

$$\begin{array}{l} \forall \boldsymbol{A}, \ \boldsymbol{A}' \in \mathbb{Z}_{q^2-1}^{4 \times 4}, \ F_{\boldsymbol{A}} \circ F_{\boldsymbol{A}'} = F_{\boldsymbol{A}\boldsymbol{A}'} \\ \det\left(\boldsymbol{A}\right) \text{ invertible } \Rightarrow F_{\boldsymbol{A}}|_{\phi^{-1}\left((\mathbb{F}_{q^2} \setminus \{0\})^4\right)} \text{ bijective} \end{array}$$

Exponential map F_{A_i} (2)

$$\forall \boldsymbol{A}, \ \boldsymbol{A}' \in \mathbb{Z}_{q^2-1}^{4 \times 4}, \ F_{\boldsymbol{A}} \circ F_{\boldsymbol{A}'} = F_{\boldsymbol{A}\boldsymbol{A}'} \\ \det(\boldsymbol{A}) \text{ invertible } \Rightarrow F_{\boldsymbol{A}}|_{\phi^{-1}\left((\mathbb{F}_{q^2} \setminus \{0\})^4\right)} \text{ bijective }$$

DME matrices

We have $\mathbf{A}_0 = \mathbf{I}_4$ and

$$\mathbf{A}_{1} = \begin{bmatrix} 2^{a_{0}} & 0 & 0 & 0 \\ 2^{a_{1}} & 2^{a_{2}} & 0 & 0 \\ 0 & 0 & 2^{a_{3}} & 0 \\ 0 & 0 & 2^{a_{4}} & 2^{a_{5}} \end{bmatrix} \mathbf{A}_{2} = \begin{bmatrix} 2^{b_{0}} & 0 & 0 & 2^{b_{1}} \\ 0 & 2^{b_{2}} & 0 & 0 \\ 0 & 2^{b_{3}} & 2^{b_{4}} & 0 \\ 0 & 0 & 0 & 2^{b_{5}} \end{bmatrix} \mathbf{A}_{3} = \begin{bmatrix} 2^{c_{0}} & 2^{c_{1}} & 0 & 0 \\ 0 & 2^{c_{2}} & 0 & 2^{c_{3}} \\ 0 & 2^{c_{4}} & 0 & 2^{c_{5}} \\ 0 & 0 & 2^{c_{6}} & 2^{c_{7}} \end{bmatrix}$$

Direct sum of 4 maps
$$\mathbb{F}_q^2 \to \mathbb{F}_q^2$$

$$L_i(x_1, \dots, x_8) \stackrel{def}{=} (L_{i1}(x_1, x_2), \dots, L_{i4}(x_7, x_8)),$$
where $L_{ij} : \mathbb{F}_q^2 \to \mathbb{F}_q^2$ linear, det $(L_{ij}) \neq 0$

Also contributes to efficiency

Equivalent key recovery

Find $\widetilde{R_3} \circ \widetilde{R_2} \circ \widetilde{R_1} \circ \widetilde{R_0} = P$, $\widetilde{R_i} \neq R_i$

Unpeel rounds one by one, start from $\widetilde{R_3}$

Main ideas

Public key over \mathbb{F}_{q^2}

Lift to extension field

$$\widehat{P} \stackrel{def}{=} \phi \circ P \circ \phi^{-1} \in (\mathbb{F}_{q^2}[X_1, \dots, X_4] / \langle X_{\ell}^{q^2} - X_{\ell}, \ \ell \in \{1..4\} \rangle)^4$$

$$\begin{array}{c} \widehat{P} \\ \mathbb{F}_{q^2}^{k} \xrightarrow{\widehat{C}_0 \circ \widehat{L}_0} \mathbb{F}_{q^2}^{k} \xrightarrow{\mathbb{F}_{q^2}} E_{\mathbf{A}_1} \xrightarrow{\mathbb{F}_{q^2}^{k}} \widehat{C}_1 \circ \widehat{L}_1 \xrightarrow{\mathbb{F}_{q^2}^{k}} E_{\mathbf{A}_2} \xrightarrow{\mathbb{F}_{q^2}^{k}} \widehat{C}_2 \circ \widehat{L}_2 \xrightarrow{\mathbb{F}_{q^2}^{k}} E_{\mathbf{A}_3} \xrightarrow{\mathbb{F}_{q^2}^{k}} \widehat{C}_3 \circ \widehat{L}_3 \xrightarrow{\mathbb{F}_{q^2}^{k}} \widehat{C}_3 \circ \widehat{L}_3 \xrightarrow{\mathbb{F}_{q^2}^{k}} \xrightarrow{\mathbb{F}_{q^2}^{k}} \xrightarrow{\mathbb{F}_{q^2}^{k}} \widehat{C}_3 \circ \widehat{L}_3 \xrightarrow{\mathbb{F}_{q^2}^{k}} \xrightarrow{\mathbb{F}_$$

We can write $\widehat{P} = \widehat{R_3} \circ \widehat{R_2} \circ \widehat{R_1} \circ \widehat{R_0}$,

 $\widehat{R_{i}} \stackrel{def}{=} (\phi \circ C_{i} \circ \phi^{-1}) \circ (\phi \circ L_{i} \circ \phi^{-1}) \circ (\phi \circ \phi^{-1} \circ E_{\mathbf{A}_{i}} \circ \phi \circ \phi^{-1}) \stackrel{def}{=} \widehat{C_{i}} \circ \widehat{L_{i}} \circ E_{\mathbf{A}_{i}}$

Practical attack on the DME signature scheme

Recall that
$$L_i(x_1, \ldots, x_8) = (L_{i1}(x_1, x_2), \ldots)$$
 and $\phi(x_1, x_2, \ldots) = (x_1 + Ux_2, \ldots)$
 $\Rightarrow \widehat{L}_i = \phi \circ L_i \circ \phi^{-1} = (\widehat{L_{i1}}, \ldots, \widehat{L_{i4}})$, where $\widehat{L_{ij}} : \mathbb{F}_{q^2} \to \mathbb{F}_{q^2}$ is \mathbb{F}_q -linear

Expression of \widehat{L}_{ij} $X \mapsto A_{ij}X + B_{ij}X^q$, where $A_{ij}, B_{ij} \in \mathbb{F}_{q^2}$

(*q*-polynomial)

Recall that
$$L_i(x_1, \ldots, x_8) = (L_{i1}(x_1, x_2), \ldots)$$
 and $\phi(x_1, x_2, \ldots) = (x_1 + Ux_2, \ldots)$
 $\Rightarrow \widehat{L}_i = \phi \circ L_i \circ \phi^{-1} = (\widehat{L_{i1}}, \ldots, \widehat{L_{i4}})$, where $\widehat{L_{ij}} : \mathbb{F}_{q^2} \to \mathbb{F}_{q^2}$ is \mathbb{F}_q -linear

Expression of \widehat{L}_{ij} $X \mapsto A_{ij}X + B_{ij}X^{q}$, where $A_{ij}, B_{ij} \in \mathbb{F}_{q^2}$ (q-polynomial)

• Components only mixed within exponential maps $E_{\mathbf{A}_{i}}$

State after applying $\widehat{R_i}$: $(G_1^{(i)}, \ldots, G_4^{(i)})$

State after applying $\widehat{R_i}$: $(G_1^{(i)}, \ldots, G_4^{(i)})$

Orbit of
$$\mu \in \mathbb{F}_{q^2}[X_1, \dots, X_4]/\langle X_\ell^{q^2} - X_\ell, \ \ell \in \{1..4\}\rangle$$

All monomials obtained from μ by raising one or several variables to the power q

For
$$\mu = X_1 X_3^5 \rightarrow \{X_1^q X_3^5, X_1 X_3^{5q}, X_1^q X_3^{5q}, X_1 X_3^5\}$$

Lemma

For all *i*, *j*, the set of monomials present in $G_i^{(i)}$ is a union of orbits

Proof: true after
$$\widehat{R_0} = \widehat{C_0} \circ \widehat{L_0}$$
 on (X_1, \ldots, X_4) . Then preserved by +, ×, $X \mapsto X^{2^a}$ \square

Monomials in intermediate states (2)

Orbits are unknown

For
$$x \in \mathbb{Z}_{q^2-1}$$
, \bar{x} rep. $\in \{0..q^2-2\}$
$$\mu = X_1^{\alpha} X_2^{\beta} X_3^{\gamma} X_4^{\delta} \rightarrow (\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta})$$

Monomials in intermediate states (2)

Orbits are unknown

For
$$x \in \mathbb{Z}_{q^2-1}$$
, \bar{x} rep. $\in \{0..q^2-2\}$
$$\mu = X_1^{\alpha} X_2^{\beta} X_3^{\gamma} X_4^{\delta} \to (\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta})$$

Hamming weights of binary decompositions

 $HW(BinDec(\bar{\alpha})), HW(BinDec(\bar{\beta})), HW(BinDec(\bar{\gamma})), HW(BinDec(\bar{\delta}))$

(constant within one orbit)

$$\mathbf{A}_{1} = \begin{bmatrix} 2^{a_{0}} & 0 & 0 & 0 \\ 2^{a_{1}} & 2^{a_{2}} & 0 & 0 \\ 0 & 0 & 2^{a_{3}} & 0 \\ 0 & 0 & 2^{a_{4}} & 2^{a_{5}} \end{bmatrix} \quad \mathbf{A}_{2} = \begin{bmatrix} 2^{b_{0}} & 0 & 0 & 2^{b_{1}} \\ 0 & 2^{b_{2}} & 0 & 0 \\ 0 & 2^{b_{3}} & 2^{b_{4}} & 0 \\ 0 & 0 & 0 & 2^{b_{5}} \end{bmatrix} \quad \mathbf{A}_{3} = \begin{bmatrix} 2^{c_{0}} & 2^{c_{1}} & 0 & 0 \\ 0 & 2^{c_{2}} & 0 & 2^{c_{3}} \\ 0 & 2^{c_{4}} & 0 & 2^{c_{5}} \\ 0 & 0 & 2^{c_{6}} & 2^{c_{7}} \end{bmatrix}$$

Practical attack on the DME signature scheme

From $\widehat{P} = (G_1^{(3)}, \dots, G_4^{(3)})$ and known Hamming weights

- deduce monomials in $(G_1^{(2)}, \ldots, G_4^{(2)})$ + some info on E_{A_3} (exponent differences)
- coefficients in $(G_1^{(2)}, \ldots, G_4^{(2)})$ are still unknown

From $\widehat{P} = (G_1^{(3)}, \dots, G_4^{(3)})$ and known Hamming weights

- deduce monomials in $(G_1^{(2)}, \ldots, G_4^{(2)})$ + some info on E_{A_3} (exponent differences)
- coefficients in $(G_1^{(2)}, \ldots, G_4^{(2)})$ are still unknown

To find them, we solve polynomial systems (1 bilinear and 2 linear)

- variables : unknown coefficients
- scalars : known monomials

Bilinear system

Starting point

For
$$j \in \{1..4\}$$
, let $G_j = G_j^{(2)}$ (secret linear form)
 $\widehat{R}_3(G_1, G_2, G_3, G_4) = \widehat{P}$
 \widehat{P}
 $E_{A_3}(G_1, G_2, G_3, G_4) = \widehat{L_3}^{-1} \circ \widehat{C_3}^{-1}(P_1, P_2, P_3, P_4)$

Recall that

$$\mathbf{A}_{3} = \begin{bmatrix} * & * & 0 & 0 \\ 0 & 2^{\alpha} & 0 & 2^{\beta} \\ 0 & 2^{\gamma} & 0 & 2^{\delta} \\ 0 & 0 & * & * \end{bmatrix}$$

Exploit common pattern in rows 2 and 3

Components 2 and 3

We obtain

$$G_2^{2^{\alpha}} \times G_4^{2^{\beta}} = A_2 P_2 + B_2 P_2^q + D_2$$
$$G_2^{2^{\gamma}} \times G_4^{2^{\delta}} = A_3 P_3 + B_3 P_3^q + D_3$$

 $(G_2, G_4 \text{ linear forms})$

From partial information on E_{A_3} We can assume $G_A^{2^\beta} = G_A^{2^\delta}$

With
$$\overline{F} \stackrel{def}{=} G_2^{2^{\alpha}}$$
, $\overline{H} \stackrel{def}{=} G_2^{2^{\gamma}}$, $\overline{G} \stackrel{def}{=} G_4^{2^{\beta}} = G_4^{2^{\delta}}$, we get
 $\overline{F} \times \overline{G} = A_2 P_2 + B_2 P_2^q + D_2$
 $\overline{H} \times \overline{G} = A_3 P_3 + B_3 P_3^q + D_3$

Practical attack on the DME signature scheme

 $(A_i, B_i, D_i \in \mathbb{F}_{a^2})$

For each monomial, match the 2 secret coefficients

- bilinear equations (on the left, product of linear forms)
- the system is overdefined (common \overline{G} factor)

Level I

We have
$$\# \text{eqs} = 2 \times (25 - 1) = 48$$
 and $\# \text{vars} = \underbrace{5}_{\overline{F}} + \underbrace{5}_{\overline{G}} + \underbrace{5}_{\overline{H}} + 2 = 17$

Trivially solved by Gröbner bases

Practical attack on the DME signature scheme

For each monomial, match the 2 secret coefficients

- bilinear equations (on the left, product of linear forms)
- the system is overdefined (common \overline{G} factor)

Level I

We have
$$\#$$
eqs = 2 × (25 - 1) = 48 and $\#$ vars = $\underbrace{5}_{\overline{F}} + \underbrace{5}_{\overline{G}} + \underbrace{5}_{\overline{H}} + 2 = 17$

Trivially solved by Gröbner bases

Components 1 and 4 (+ solutions) \rightarrow 2 linear systems

- Same procedure applies for the previous rounds
- Attack not a lot more costly on the other levels (also m = n = 8)

In theory, DME can still be patched !