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o Conversely, if:

deg() = H L

i=1
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o Conversely, if:
deg(p HE

@ Then, we can decompose ¢ = p, 00 1.
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o Conversely, if:
deg(p HE

@ Then, we can decompose ¢ = p, 00 1.
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e Knowing ker(¢), ¢ can be computed in polynomial time.
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Quaternions and supersingular elliptic curves

Definition (Quaternion algebra)

@ Let p be a prime =3 mod 4. The quaternion algebra ramifying at
p and oo is:

Bp,oo :Q®Q1®Q/@QU7

with 2 = —1, j2= —p, ijj = —ji.
e An order O C B,  is a rank 4 lattice which is also a subring.
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Quaternions and supersingular elliptic curves

Definition (Quaternion algebra)

@ Let p be a prime =3 mod 4. The quaternion algebra ramifying at
p and oo is:

Bp,oo :Q®Q1®QI@QU7

with 2 = —1, j2= —p, ijj = —ji.
e An order O C B,  is a rank 4 lattice which is also a subring.

Definition (Endomorphism ring)

Let E be an elliptic curve, the endomorphism ring of E is:

End(E) = {lsogenies ¢ : E — E} U {0}
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Quaternions and supersingular elliptic curves

Definition (Quaternion algebra)
@ Let p be a prime =3 mod 4. The quaternion algebra ramifying at
p and oo is:
Bp,oo = Q®QI®Q/@QU7
with 2 = -1, j2 = —p, ij = —ji.
e An order O C B,  is a rank 4 lattice which is also a subring.

\,

Definition (Endomorphism ring)

Let E be an elliptic curve, the endomorphism ring of E is:
End(E) = {lsogenies ¢ : E — E} U {0}

Definition (Supersingular elliptic curve)

An elliptic curve E defined over I, is supersingular if End(E) is
isomorphic to a maximal order of B, .. (maximal for the inclusion).

.
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Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular O = End(E) maximal order in B,
p:E— F left O-ideal and right O’-ideal I,
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J(E) or j(E)P supersingular O = End(E) maximal order in B,

p:E— F left O-ideal and right O’-ideal I,
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¢ I
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Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular O = End(E) maximal order in B,

p:E— F left O-ideal and right O’-ideal I,
o) E— E/ Iy~ Ly (Iy = loct, @ € Bpoo)
¢ I
po Ly - 1y

deg(¢) nrd(ly) = /[0 - 1]
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Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

o Let F; and E; of known endomorphism rings Oy = End(E;) and
0, 2 End(E).

o Compute a connecting ideal | between O; and O, (left O;-ideal and
right Op-ideal).

e Compute J ~ | of smooth norm via [KLPT14].

@ Translate J into an isogeny ¢, : Ey — Ej.
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o Compute a connecting ideal | between O; and O, (left O;-ideal and
right Op-ideal).

e Compute J ~ | of smooth norm via [KLPT14].

@ Translate J into an isogeny ¢, : Ey — Ej.

v" Takes polynomial time.

v' Becomes hard when End(E;) or End(Ey) is unknown.
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Computing isogenies via the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

@ Let E; and E; of known endomorphism rings O1 = End(E;) and
0, 2 End(E).

e Compute a connecting ideal / between O; and O, (left O;-ideal and
right O,-ideal).

e Compute J ~ [ of smooth norm via [KLPT14].

@ Translate J into an isogeny ¢, : E; — E».

V' Takes polynomial time.
v" Becomes hard when End(E;) or End(Ez) is unknown.

X Slow in practice because of the red steps.
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Kani's embedding lemma

Theorem (Robert, 2022)

Let o : Ey —» Ep such that deg(o) + a? + a3 = 2°. Then:
@ 0 : E; — E; can be represented by the dimension 4 isogeny:

a1 dn o 0
L —as ai 0 o 2 2
Fi=| 0 0 s —a | €EndE xED)
0 —0 ar dai

@ F can be computed by evaluating o on E;[2¢].

Context: This idea comes from the attacks against SIDH [CD23; MM22;
Rob23].
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More on Robert’s theorem:

@ ker(F) can be computed with o(E1[2°]).
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Kani's embedding lemma

More on Robert’s theorem:

@ ker(F) can be computed with o(E1[2°]).

@ F can be decomposed into a chain of "smaller" dimension 4
isogenies:

F F F.
E2xE} — My —s My - Aeq—— E2x E2

@ Using theta coordinates, this chain can be computed with
O(elog(e)) finite field operations.
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Effective Deuring correspondence and higher dimensional isogenies

Kani's embedding lemma

More on Robert’s theorem:

@ ker(F) can be computed with o(E1[2°]).

@ F can be decomposed into a chain of "smaller" dimension 4
isogenies:

Fi Fa F.
E2x B2 — v Ay —rdy o+ Aeg— E2 x E2

@ Using theta coordinates, this chain can be computed with
O(elog(e)) finite field operations.

@ We have:
F(P,0,0,0) = ([a1]P, —[a2] P, —c(P),0)

so we can evaluate o by evaluating F.
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Kani's embedding lemma

Corollary (Robert, 2022)
Let o : Ey — E; of degree q < 2¢ such that 2¢ — q is a prime = 1
mod 4. There exists a polynomial time algorithm with:
o Input: (c(P1),0(P2)), where (P1, P,) is a basis of E1[2°] and
QRek (]sz).
e Output: 7(Q).

P. Dartois, A. Leroux, D. Robert and B. Wesolowski SQlsignHD



Effective Deuring correspondence and higher dimensional isogenies

A new algorithm for effective Deuring correspondence

Problem: Given QZ5I E1 — E2, /¢, 01 = End(El) and 02 = End(Eg)
(secret), find another isogeny o : E; — E;.

P. Dartois, A. Leroux, D. Robert and B. Wesolowski SQIsignHD



Effective Deuring correspondence and higher dimensional isogenies

A new algorithm for effective Deuring correspondence

Problem: Given QZ5I E1 — E2, /¢, 01 = End(El) and 02 = End(Eg)
(secret), find another isogeny o : E; — E;.

In SQlsign [DFKLPW20]

© Compute / ~ 5 random of
smooth norm ~ p'%/% via
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© Compute / ~ 5 random of © Compute / ~ Iy random of norm
smooth norm ~ p'%/% via q ~ /p such that 2° — g is a prime
[KLPT14]. =1 mod 4.
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A new algorithm for effective Deuring correspondence

Problem: Given QZ5I E1 — E2, /¢, 01 = End(El) and 02 = End(Eg)
(secret), find another isogeny o : E; — E;.

In SQIsign [DFKLPW20] In SQIsignHD (this work)
© Compute / ~ 5 random of © Compute / ~ Iy random of norm
smooth norm ~ p'%/% via q ~ /p such that 2° — g is a prime
[KLPT14]. =1 mod 4.
© Translate / into @ Evaluate o : E; — E, associated
o: EE — BE. to I on E1[2¢], using ¢.

@ (g,0(E1[2°])), is sufficient to
represent o.

Q Compute F € End(E? x E3)
embedding o.
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The SQIsignHD identification scheme

-
Eo Ex Prover Verifier
Statement : | know 7
public
Prover's secret

published by Verifier
published by Prover
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The protocol
SQIsignHD Performance and security

The SQIsignHD identification scheme

.
Eo Ea Prover Verifier
Statement : | know 7
1 P
Commitment: E;

o Challenge: ¢

Ey — E
. Response: o

—— public
E— Prov'er s secret 3 Accept if
——— published by Verifier o is correct

published by Prover
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The SQIsignHD identification scheme

E T E Response: (q,0(P1),0(P2)),
0 A where:
@ (P1, P>) is a basis of E1[2°] ;
b 0 e g :=deg(o).
o

public

Prover's secret
published by Verifier
published by Prover
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The SQIsignHD identification scheme

E T £ Response: (q,0(P1),0(P2)),
0 A where:
@ (P, P>) is a basis of E1[2°] ;
" o e g :=deg(o).
Very fast | 28 ms in C.
o

public

Prover's secret
published by Verifier
published by Prover
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The SQIsignHD identification scheme

Response: (q,0(P1),o(P>)),

Eo Ea where:
@ (P, P>) is a basis of E1[2°] ;
" o e g :=deg(o).
Very fast | 28 ms in C.
E v E Verification: Compute the
el = , > 5
embedding F € End(E] x E5) of 0.
public

Prover's secret
published by Verifier
published by Prover
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The protocol

SQIsignHD Performance and security

The SQIsignHD identification scheme

Response: (q,0(P1),o(P>)),

Fo Ea where:
@ (P, P>) is a basis of E1[2°] ;
" o e g :=deg(o).

Very fast | 28 ms in C.

E v E Verification: Compute the

1 2 : 2 2
embedding F € End(E] x E5) of 0.
public Proof of concept.

. 600 ms in sagemath.
Prover's secret

published by Verifier
published by Prover
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SQlsignHD Performance and security

Comparison of SQIlsignHD with SQlsign

SQlsign SQIsignHD
Security Ad-hoc heuristic: v Simpler heuristics:
e Distribution of o. e Oracle (RUGDIO);
o Distribution of E;.
Scalability [T, tlp* —1 Vp=c-2f.3" 1
Signing time | X 400 ms for NIST-1 v 28 ms for NIST-1

Signature size | v' 204 bytes for NIST-1 v 109 bytes for NIST-1
Verification | v* Fast (6 ms for NIST-1) 600 ms for NIST-1

in sagemath
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