Eurocrypt 2024

Paul Lou†, Nathan Manohar‡, Amit Sahai† Witness Semantic Security

†UCLA, Los Angeles, CA ‡IBM T.J. Watson Research Center, Yorktown Heights, NY

1

2

Public verifiability: Anyone (who trusts the Verifier) can use the first round message to verify the second round message!

- Implied by public-coin (i.e. Arthur-Merlin [AM] protocols).
- Typically allows the first message to be *reused for multiple proofs!*

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser' '86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

What kind of security can we guarantee?

$x \in L \in \mathsf{NP}$

"Convince me! I want mathematical proof, not witchcraft."

General Cryptographic Proof Systems for (Goldwasser, Micali, Rackoff '85, Goldreich, Micali, Widgerson, '86)

"I swear on Merlin's beard that *x* is in *L*."

> Goldreich, Oren '94, Barak, Lindell, Vadhan '04: At least three rounds of messaging is necessary for ZK.

$x \in L \in \mathsf{NP}$

"Convince me! I want mathematical proof, not witchcraft."

Security (Zero-knowledge):

Convinced but doesn't know more than the validity of the statement.

4

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser' ' 86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

What kind of security can we guarantee?

- Witness indistinguishability (WI) (Feige, Shamir 1990; Dwork, Naor 2000; Groth, Ostrovsky, Sahai 2006)
- **Mitness hiding (WH)** (Feige, Shamir 1990; Pass 2003; Bitansky, Khurana, Paneth 2019; Kuykendall, Zhandry 2020)
- Super-polynomial simulation (SPS) (Pass 2003)

5

What is the qualitative security guarantee?

- Witness indistinguishability (WI) (Feige, Shamir 1990; Dwork, Naor 2000; Groth, Ostrovsky, Sahai 2006)
- Witness hiding (WH) (Feige, Shamir 1990; Pass 2003; Bitansky, Khurana, Paneth 2019; Kuykendall, Zhandry 2020)
- Super-polynomial simulation (SPS) (Pass 2003)

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser ' 86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

Consider an encrypted signed document with three sensitive fields of information, e.g. social security number or month-bymonth financial transactions.

6

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser' ' 86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

What kind of security can we guarantee?

What is the qualitative security guarantee?

- W: meaningless if the encryption scheme has perfect correctness, i.e. unique witness : (
- WH: doesn't prevent partial information loss :(
- ▶ SPS: leaks information computable in super-polynomial time, not easy to interpret : (

Consider an encrypted signed document with three sensitive fields of information, e.g. social security number or month-bymonth financial transactions.

- Witness indistinguishability (WI) (Feige, Shamir 1990; Dwork, Naor 2000; Groth, Ostrovsky, Sahai 2006)
- Witness hiding (WH) (Feige, Shamir 1990; Pass 2003; Bitansky, Khurana, Paneth 2019; Kuykendall, Zhandry 2020)
- Super-polynomial simulation (SPS) (Pass 2003)

7

Can we have stronger qualitative guarantees?

- Witness indistinguishability (WI) (Feige, Shamir 1990; Dwork, Naor 2000; Groth, Ostrovsky, Sahai 2006)
- **Mitness hiding (WH)** (Feige, Shamir 1990; Pass 2003; Bitansky, Khurana, Paneth 2019; Kuykendall, Zhandry 2020)
- Super-polynomial simulation (SPS) (Pass 2003)

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser ' 86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

8

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser' '86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

What kind of security can we guarantee?

Can we have stronger qualitative guarantees?

Goldreich, Oren '94, Barak, Lindell, Vadhan '04: At least three rounds of messaging is necessary for ZK.

- Witness indistinguishability (WI) (Feige, Shamir 1990; Dwork, Naor 2000; Groth, Ostrovsky, Sahai 2006)
- Witness hiding (WH) (Feige, Shamir 1990; Pass 2003; Bitansky, Khurana, Paneth 2019; Kuykendall, Zhandry 2020)
- Super-polynomial simulation (SPS) (Pass 2003)

9

Can we have stronger qualitative guarantees?

- Witness indistinguishability (WI) (Feige, Shamir 1990; Dwork, Naor 2000; Groth, Ostrovsky, Sahai 2006)
- Witness hiding (WH) (Feige, Shamir 1990; Pass 2003; Bitansky, Khurana, Paneth 2019; Kuykendall, Zhandry 2020)
- Super-polynomial simulation (SPS) (Pass 2003)

Goldreich, Oren '94 (as noted by Bitansky, Khurana, Paneth '19): Even *weak zero-knowledge* (Dwork, Naor, Reingold, Stockmeyer '03)) is *impossible* in the two-round publicly-verifiable setting!

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser ' 86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

Can we have stronger qualitative guarantees?

There is a large gap in qualitative guarantees between the above and weak zero-knowledge.

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser ' 86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

Goldreich, Oren '94 (as noted by Bitansky, Khurana, Paneth '19): Even *weak zero-knowledge* (Dwork, Naor, Reingold, Stockmeyer '03)) is *impossible* in the two-round publicly-verifiable setting!

- Witness indistinguishability (WI) (Feige, Shamir 1990; Dwork, Naor 2000; Groth, Ostrovsky, Sahai 2006)
- **ø** Witness hiding (WH) (Feige, Shamir 1990; Pass 2003; Bitansky, Khurana, Paneth 2019; Kuykendall, Zhandry 2020)
- Super-polynomial simulation (SPS) (Pass 2003)

Can we have stronger qualitative guarantees?

Yes*! Addressing this gap…*

In this work:

- We introduce the notion of *Witness Semantic Security (WSS)*.
- subexponential hardness of LWE.

We construct a two-round publicly-verifiable cryptographic argument satisfying WSS from the

Goldreich, Oren '94 (as noted by Bitansky, Khurana, Paneth '19): Even *weak zero-knowledge* (Dwork, Naor, Reingold, Stockmeyer '03)) is *impossible* in the two-round publicly-verifiable setting!

- Witness indistinguishability (WI) (Feige, Shamir 1990; Dwork, Naor 2000; Groth, Ostrovsky, Sahai 2006)
- **Mitness hiding (WH)** (Feige, Shamir 1990; Pass 2003; Bitansky, Khurana, Paneth 2019; Kuykendall, Zhandry 2020)
- Super-polynomial simulation (SPS) (Pass 2003)

Two-round Publicly-verifiable Setting (Babai '85, Goldwasser, Sipser ' 86, Fortnow '87, Aiello, Hastad '87, Goldreich, Oren '94)

12

Intuition: Witness Semantic Security (WSS)

Encryption semantic security(Goldwasser, Micali '82): Information about the message that can be

*** Witness semantic security**: Information about the witness that can be computed given the

- computed given the ciphertext can also be computed without the ciphertext.
- proof can also be computed with only the statement.

Intuition: Witness Semantic Security (WSS)

- computed given the ciphertext can also be computed without the ciphertext.
- proof can also be computed with only the statement.

A witness semantic secure proof hides all non-trivial partial information about the witness.

* **Encryption semantic security** (Goldwasser, Micali '82): Information about the message that can be

*** Witness semantic security**: Information about the witness that can be computed given the

13

Definition (basic variant): A two-round interactive argument system (P,V) for an NP language L is WSS if for all polynomiallybounded probability ensembles D over

 $\{(x, w, aux, f, y) \mid y = f(w), (x, w) \in R_I, f$ deterministic

for all polynomial sized A_1, A_2 there exists a polynomial sized B and a negligible function $\mu(\ \cdot\)$ such that

 $\Pr\left[A_2(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux}) = y\right] \leq \Pr\left[B(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux})\right]$

14

$$
x) = y \Big] \le \Pr\left[B(1^{\lambda}, x, f, \text{aux}) = y\right] + \mu(\lambda).
$$

Definition is in the *delayed-input model* in the two-round setting, when the first round (honest & malicious) Verifier message is independent of the statement.

Definition (basic variant): A two-round interactive argument system (P,V) for an NP language L is WSS if for all polynomiallybounded probability ensembles D over

 $\{(x, w, aux, f, y) \mid y = f(w), (x, w) \in R_I, f$ deterministic

for all polynomial sized A_1, A_2 there exists a polynomial sized B and a negligible function $\mu(\ \cdot\)$ such that

 $\Pr\left[A_2(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux}) = y\right] \leq \Pr\left[B(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux})\right]$

WSS morally looks like zero-knowledge!

15

$$
x) = y \le \Pr\left[B(1^{\lambda}, x, f, aux) = y\right] + \mu(\lambda).
$$

Definition (basic variant): A two-round interactive argument system (P,V) for an NP language L is WSS if for all polynomiallybounded probability ensembles D over

 $\{(x, w, aux, f, y) \mid y = f(w), (x, w) \in R_I, f$ deterministic

for all polynomial sized A_1, A_2 there exists a polynomial sized B and a negligible function $\mu(\ \cdot\)$ such that

 $\Pr\left[A_2(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux}) = y\right] \leq \Pr\left[B(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux})\right]$

WSS morally looks like zero-knowledge!

16

So why does this definition not imply distributional ZK?

$$
x) = y \le \Pr\left[B(1^{\lambda}, x, f, aux) = y\right] + \mu(\lambda).
$$

Definition (basic variant): A two-round interactive argument system (P,V) for an NP language L is WSS if for all polynomiallybounded probability ensembles D over

 $\{(x, w, aux, f, y) | y = f(w), (x, w) \in R_I, f$ deterministic $\}$

for all polynomial sized A_1, A_2 there exists a polynomial sized B and a negligible function $\mu(\ \cdot\)$ such that

 $\Pr\left[A_2(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux}) = y\right] \leq \Pr\left[B(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux})\right]$

WSS morally looks like zero-knowledge!

17

So why does this definition not imply distributional ZK?

First observe that this definition only considers a specific witness w.

$$
\mathbf{y} = \mathbf{y} \le \Pr\left[B(1^{\lambda}, x, f, \mathsf{aux}) = \mathbf{y}\right] + \mu(\lambda).
$$

Verifiable Witness Semantic Secure (VWSS)

Definition [VWSS]: A two-round interactive argument system (P, V) for an NP language L is VWSS if for all polynomially-bounded probability ensembles D over

 w here aux contains $V_f(\,\cdot\,,\cdot\,)$ for all polynomial sized A_1,A_2 there exists a polynomial sized B and a negligible function $\mu(\,\cdot\,)$ such that

 $\Pr\left[A_2(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux}) = y : \exists \tilde{w}, y = f(\tilde{w}) \land (x, \tilde{w}) \in R_L\right]$

18

. \leq Pr $[B(1^{\lambda}, x, f, aux) = y : \exists \tilde{w}, y = f(\tilde{w}) \land (x, \tilde{w}) \in R_L] + \mu(\lambda)$

 $V_f(x, y) = 1 \iff \exists \tilde{w}, ((x, \tilde{w}) \in R_L) \land (f(\tilde{w}) = y)$

 $\{(x, w, aux, f) | (x, w) \in R_I, f$ deterministic and verifiable input/output}

Verifiable Witness Semantic Secure (VWSS)

Definition [VWSS]: A two-round interactive argument system (P,V) for an \sf{NP} language L is VWSS if for all polynomially-bounded probability ensembles D over

 $\{(x, w, \text{aux}, f) \mid (x, w) \in R_I, f \text{ deterministic and verifiable input/output}\}$

 w here aux contains $V_f(\,\cdot\,,\cdot\,)$ for all polynomial sized A_1,A_2 there exists a polynomial sized B and a negligible function $\mu(\,\cdot\,)$ such that

 $\Pr\left[A_2(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux}) = y : \exists \tilde{w}, y = f(\tilde{w}) \land (x, \tilde{w}) \in R_L\right]$

VWSS also morally looks like zero-knowledge! So what's different?

-
- \leq Pr $[B(1^{\lambda}, x, f, \text{aux}) = y : \exists \tilde{w}, y = f(\tilde{w}) \land (x, \tilde{w}) \in R_L] + \mu(\lambda)$.

20

- **Definition** [VWSS]: A two-round interactive argument system (P,V) for an \sf{NP} language L is VWSS if for all polynomially-bounded probability ensembles D over
	-
	- $\Pr\left[A_2(1^{\lambda}, x, f, \langle P(x, w), A_1(1^{\lambda})\rangle, \text{aux}) = y : \exists \tilde{w}, y = f(\tilde{w}) \land (x, \tilde{w}) \in R_L\right]$
		- \leq Pr $[B(1^{\lambda}, x, f, \text{aux}) = y : \exists \tilde{w}, y = f(\tilde{w}) \land (x, \tilde{w}) \in R_L] + \mu(\lambda)$.
	- VWSS also morally looks like zero-knowledge! So what's different?
	- **Observation**: Existing simulation-based definitions of ZK ensures the hiding of *all* non-trivial information of the transcript.
	- This prevents the Prover from revealing something non-trivial (possibly inefficiently computable) about the Verifier's first message that the Verifier itself does not know!!
		- WSS and VWSS **allows** this behavior (remember this, we'll revisit this)!

Verifiable Witness Semantic Secure (VWSS)

 $\{(x, w, \text{aux}, f) \mid (x, w) \in R_I, f \text{ deterministic and verifiable input/output}\}$

 w here aux contains $V_f(\,\cdot\,,\cdot\,)$ for all polynomial sized A_1,A_2 there exists a polynomial sized B and a negligible function $\mu(\,\cdot\,)$ such that

Witness Semantic Security (WSS)

Witness Semantic Security

Provably **separated**:

-
-

Witness Indistinguishability Witness Hiding

Verifiable Witness Semantic Security

* There are WI protocols that are not WSS (consider languages with unique witnesses) * There are WH protocols that are not VWSS (consider a language of two SAT instances)

Witness Semantic Security (WSS)

22

Witness Semantic Security

Provably **separated**:

-
-

Witness Indistinguishability Witness Hiding

Verifiable Witness Semantic Security

* There are WI protocols that are not WSS (consider languages with unique witnesses) * There are WH protocols that are not VWSS (consider a language of two SAT instances)

We'll soon show a security notion that implies both!

23

CRS-model Non-interactive Proof Systems

24

"Convince me! I want mathematical proof, not witchcraft."

*α*1

Another Viewpoint on Two-round Protocols: CRS-model Non-interactive Proof Systems

 $CRS \leftarrow \beta_1$

25

Another Viewpoint on Two-round Protocols: CRS-model Non-interactive Proof Systems

- A key difference b/w standard 2-round and NIZK is that the CRS is statement independent.
	- Instead, this corresponds to the *delayed-input model* in the two-round setting, when the first round (honest & malicious) Verifier message is independent of the statement.

Natural Application of Two-round Protocols: Malicious CRS Non-interactive Proof Systems

26

Even if the CRS is maliciously generated, the ZK* property of the two-round protocol preserves ZK* against a malicious V (no guarantees on soundness).

Natural Application of Two-round Protocols: Malicious CRS Non-interactive Proof Systems

27

- Even if the CRS is maliciously generated, the ZK* property of the two-round protocol preserves ZK* against a malicious V (no guarantees on soundness).
- Bellare, Fuchsbauer, Scafuro '16: If soundness holds in the malicious CRS setting, then zero-knowledge cannot hold even in the *honest* CRS setting.

This Work: New Notion of Simulation (NUZK)

 $\bf{Definition}$ (Standard Non-interactive Zero-Knowledge): There exists a PPT algorithm (S_1,S_2) such that for all PPT adversaries A , the following is indistinguishable to the real world:

- 1. CRS, $\tau \leftarrow S_1(1^{\prime}).$ $\tau \leftarrow S_1(1^{\lambda})$
- 2. $(x, w) \leftarrow \mathcal{A}(1^{\lambda}, \text{CRS}), (x, w) \in R_L$.
- 3. $\pi \leftarrow S_2(x, \tau)$.

Definition (Non-Uniform Zero-Knowledge [NUZK] with Auxiliary Input): The simulator now depends non-uniformly on the CRS. For all **CRS**, there exists a circuit S_{CRS} , such that for all (x, w, Aux) , $(x, CRS, Prove(CRS, x, w), Aux) \approx_c (x, CRS, S_{CRS}(x, Aux), Aux)$

This Work: New Notion of Simulation (NUZK)

Definition (Non-Uniform Zero-Knowledge [NUZK] with Auxiliary Input): The simulator now depends non-uniformly on the CRS. For all CRS, there exists a circuit S_{CRS} , such that for all (x, w, Aux) ,

 $(x, CRS, Prove(CRS, x, w), Aux) \approx_{c} (x, CRS, S_{CRS}(x, Aux), Aux)$

This Work: New Notion of Simulation (NUZK)

Definition (Non-Uniform Zero-Knowledge [NUZK] with Auxiliary Input): The simulator now depends non-uniformly on the CRS. For all **CRS**, there exists a circuit S_{CRS} , such that for all (x, w, Aux) ,

 $(x, CRS, Prove(CRS, x, w), Aux) \approx c(x, CRS, S_{CRS}(x, Aux), Aux)$

Recall: (V)WSS allows the Prover to potentially leak out interesting information about the first message (the CRS).

This is exactly captured by the Simulator's non-uniform dependence on the CRS!

The Simulator knows something about the CRS that even the malicious Verifier does not.

Our Main Construction

Two-round Public Coin (V)WSS Argument

Malicious Uniform Random String (URS) NUZK Argument

Subexponential Hardness of LWE

Main Theorem (Informal): Assuming the subexponential hardness of LWE, there exists a two-round public-coin argument system that satisfies *both* WSS and VWSS.

Main Technical Tool*:* We construct the first ZAP with computationally adaptive soundness from the subexponential hardness of LWE.

Requires the existence of a **Super-dense PKE** from LWE.

32

Density: The probability that a random string is a valid public key.

33

Strings for which a decryption key exists.

Public-key Space

Super-dense: *All* possible strings are valid public keys.

Previously unknown from LWE (Goyal, Jain, Jin, Malavolta '20; Badrinarayan, Fernando, Jain, Khurana, Sahai '20)

34

Dual Regev Encryption Scheme

Decryption key: $\begin{bmatrix} \mathbf{r}^{\mathsf{T}} & -1 \end{bmatrix}$.

A

Public key is of the form: $\begin{bmatrix} 1 \\ \mathbf{r}^\mathsf{T} \mathbf{A} \end{bmatrix}$ where **r** is a vector of small entries over \mathbb{F}_q . **r** \mathbf{r} **A**] where **r** is a vector of small entries over \mathbb{F}_q

$$
\text{Encryption of a bit } b: \qquad \mathbf{ct} = \begin{bmatrix} A \\ \mathbf{r}^\mathsf{T} A \end{bmatrix} \cdot \mathbf{s} + \mathbf{e} + \begin{bmatrix} 0 \\ b \cdot \lfloor q/2 \rfloor \end{bmatrix}.
$$

35

Dual Regev Encryption Scheme

To decrypt, compute

…and round!

$$
\begin{bmatrix} \mathbf{r}^{\mathsf{T}} & -1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{A} \\ \mathbf{r}^{\mathsf{T}} \mathbf{A} \end{bmatrix} \cdot \mathbf{s} + \mathbf{e} + \begin{bmatrix} \mathbf{0} \\ b \cdot \mathbf{q} \end{bmatrix}
$$

What makes a matrix a valid public key?

The existence of a short solution with a non-zero last coordinate. Certainly not true of many matrices, so dual Regev is not super-dense.

36

Our work: Super-dense Dual Regev Encryption

Modification:

i∈[*n*+1]

in the *i*th row

Super-density: For every A, there exists some non-zero short solution to A, which may not be of the form of the honestly generated secret keys, but allow for the same decryption guarantees. ˜ **A** ˜

Open Questions

- Can we obtain plain model *non-interactive* (V)WSS?
	- Related to the open standing question of plain model non-interactive witness hiding (NIWH).

37

