

FHE Beyond IND-CCA1 Security

Mark Manulis and Jérôme Nguyen

Universität der Bundeswehr, München

Eurocrypt 2024

Selected history of FHE : Early days

Selected history of FHE : Early days

- Research mainly focused on functionalities/efficiency
- Security guarantees: Chosen-plaintext attack (CPA)

Selected history of FHE : Early days

- Research mainly focused on functionalities/efficiency
- Security guarantees: Chosen-plaintext attack (CPA)

Reasonable start:

- FHE was too inefficient to be used in practice
- Applications seemed fine without stronger notions
- (FHE seems inherently vulnerable to chosen-ciphertext attacks)

No!

No! (It depends)

No! (It depends)

• Attacks on approximate FHE (CPA^D)[LM21]

No! (It depends)

- Attacks on approximate FHE (CPA^D)[LM21]
- Ciphertext validity attacks (CCVA) [CGG16]

No! (It depends)

- Attacks on approximate FHE (CPA^D)[LM21]
- Ciphertext validity attacks (CCVA) [CGG16]
- Client-aided outsourcing attacks (FuncCPA) [AGHV22]

No! (It depends)

3

- Attacks on approximate FHE (CPA^D)[LM21]
- Ciphertext validity attacks (CCVA) [CGG16]

• …

• Client-aided outsourcing attacks (FuncCPA) [AGHV22]

No! (It depends)

- Attacks on approximate FHE (CPA^D)[LM21]
- Ciphertext validity attacks (CCVA) [CGG16]

• …

• Client-aided outsourcing attacks (FuncCPA) [AGHV22]

What security notion should we aim for?

For "regular" encryption schemes : CCA2

CCA2: Impossible!

• FHE cannot be CCA2

$$
\begin{array}{ccc}\n\text{Enc}_{pk}(m_b) & \text{Enc}_{pk}(0) \\
\downarrow & \downarrow & \\
c^* & \leftarrow & c_0 & \longrightarrow & c' & \longrightarrow & \text{Dec}_{sk} \\
m_b & & & & \\
\end{array}
$$

Security for FHE schemes : CCA1

• Positive results for general FHE (or leveled) [BSW12, CRRV17, YKT18]

- Positive results for general FHE (or leveled) [BSW12, CRRV17, YKT18]
- (Folklore) Bootstrapping schemes cannot be CCA1

- Positive results for general FHE (or leveled) [BSW12, CRRV17, YKT18]
- (Folklore) Bootstrapping schemes cannot be CCA1

Bootstrapping key is public

- Positive results for general FHE (or leveled) [BSW12, CRRV17, YKT18]
- (Folklore) Bootstrapping schemes cannot be CCA1

Bootstrapping key is public

$$
\begin{array}{ccc}\n\text{Enc}_{pk}(sk) & & \\
\downarrow & & \\
\text{bk} & & \text{bk} & \longrightarrow & \text{Dec}_{sk} \\
& & & & \downarrow \\
& & & & s & \\
& & & & s & \\
& & & & & \n\end{array}
$$

Questions

- Is it possible to relax CCA2 for FHE?
- Can bootstrapping schemes be stronger than CPA?

- Define a new security notion: IND-vCCA
	- Strictly between CCA1 & CCA2
	- Strongest among the (known) achievable notions for FHE
	- Equivalent formulation as "non-malleability definition": TNM-vCCA

- Achievable in the ROM for (bootstrapping-based) FHE schemes from:
	- Passively secure FHE (CPA/CPA^D)
	- General CCA2 transformation
	- Succinct non-interactive argument of knowledge (SNARK)

$$
Eval(f, c_1 \ldots, c_l) \to \hat{c}
$$

$$
\mathrm{Eval}(f, c_1 \ldots, c_l) \to \hat{c}
$$

Define Extract such that:

$$
\mathrm{Eval}(f, c_1 \ldots, c_l) \to \hat{c}
$$

Define Extract such that:

$$
Extract(\hat{c}) \rightarrow (f, c_1, \ldots, c_l)
$$

$$
\mathrm{Eval}(f, c_1 \ldots, c_l) \to \hat{c}
$$

Define Extract such that:

$$
Extract(\hat{c}) \rightarrow (f, c_1, \ldots, c_l)
$$

• $(c_1, ..., c_l)$ are fresh ciphertexts

$$
\mathrm{Eval}(f, c_1 \ldots, c_l) \to \hat{c}
$$

Define Extract such that:

$$
Extract(\hat{c}) \rightarrow (f, c_1, \ldots, c_l)
$$

- $(c_1, ..., c_l)$ are fresh ciphertexts
- Soundness:

$$
\mathrm{Eval}(f, c_1 \ldots, c_l) \to \hat{c}
$$

Define Extract such that:

$$
Extract(\hat{c}) \rightarrow (f, c_1, \ldots, c_l)
$$

- $(c_1, ..., c_l)$ are fresh ciphertexts
- Soundness:

$$
\mathrm{Dec}_{sk}(\hat{c}) = f(\mathrm{Dec}_{sk}(c_1), \dots, \mathrm{Dec}_{sk}(c_l))
$$

The vCCA oracle

Define a new oracle using the extraction algorithm:

$$
\mathcal{O}_{\text{vCCA}}(\hat{c}):
$$

1) Extract(
$$
\hat{c}
$$
) \rightarrow ($f, c_1, ..., c_l$
2) If $c^* \notin (c_1, ..., c_l)$
Return Dec_{sk}(\hat{c})

IND-vCCA

vCCA: Simplified relationship graph

New results

Achieving vCCA: The CCA2 transform

• First step: Lose the homomorphism! Embed the FHE scheme in a CCA2 encryption scheme

Achieving vCCA: The CCA2 transform

- First step: Lose the homomorphism! Embed the FHE scheme in a CCA2 encryption scheme
- Let CCA2(m) be a generic CCA2 transform such that:

Achieving vCCA: The CCA2 transform

- First step: Lose the homomorphism! Embed the FHE scheme in a CCA2 encryption scheme
- Let CCA2(m) be a generic CCA2 transform such that:

$$
CCA2(m) \rightarrow c = (c', t)
$$

With

$$
Enc_{pk}(m) \longrightarrow c'
$$

Achieving vCCA: Example CCA2 transform

Symmetric FHE

- Encrypt-then-MAC: $(c', MAC(c'))$
- Encrypt-then-Sign: $(c', Sign(c'))$

Asymmetric FHE

- Naor-Yung: Double encryption & NIZK
- $(c_1, c_2, \text{Proof}(c_1, c_2, m))$
- Fujisaki-Okamoto

Achieving vCCA: Handling bootstrapping

If the scheme uses a bootstrapping key $bk = Enc(sk)$:

- Do NOT release CCA2(sk)
- The bootstrapping key remains $bk not$ a valid CCA2 ciphertext

Achieving vCCA: The SNARK

Use SNARK to prove:

- Computation of the evaluation algorithm
- Knowledge of corresponding valid CCA2 ciphertexts

$$
c_1 = (c'_1, t_1)
$$
Prove
Prove

$$
c_l = (c'_l, t_l)
$$

$$
Eval(f, c'_1, ..., c'_l) = \hat{c}
$$

$$
c_l = (c'_l, t_l)
$$

Achieving vCCA: The SNARK properties

The SNARK must be:

- Non-rewinding
- Simulation-extractable (non-malleable)
- Black-box

Suitable SNARKs exist in the random oracle model

$$
\begin{array}{ccc}\n\text{CCA2}_{pk}(m_1) \rightarrow c_1 = (c'_1, t_1) & & \\
& \xrightarrow{\hspace{2cm}} & \text{Eval}(f, c'_1 \dots, c'_l) \rightarrow \hat{c} & \xrightarrow{\hspace{2cm}} & \text{Dec}_{sk}(\hat{c}) \rightarrow Attackvector \\
\text{CCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & \text{CCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & \xrightarrow{\hspace{2cm}} & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \xrightarrow{\hspace{2cm}} & & & & \text{DCCA2}_{pk}(m_l) \rightarrow c_l = (c'_l, t_l) & & \\
& \x
$$

Theorem: This construction is IND-vCCA secure.

Proof Idea: Reduce to CCA2 security. Answer decryption queries by extracting each query.

Conclusion

Proposed new security notion for FHE schemes: IND-vCCA It is:

- Achievable through generic transformation in the ROM
- The strongest achievable security notion known for FHE
- Allows for bootstrapping

Thank You!