Publicly Verifiable Secret Sharing over Class Groups and Applications to DKG and YOSO

<u>Ignacio Cascudo</u> Bernardo David

IMDEA Software Institute, Madrid IT University of Copenhagen

EUROCRYPT 24

Zürich, 29 May 2024

Secret sharing with publicly verifiable proofs of:

Secret sharing with publicly verifiable proofs of:

• Sharing correctness (by the *dealer*).

For Shamir Secret Sharing, "The shares are evaluations of a polynomial of degree ≤t"

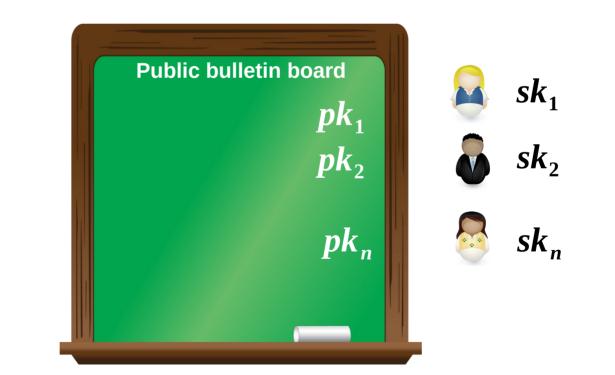
Secret sharing with publicly verifiable proofs of:

• Sharing correctness (by the *dealer*).

For Shamir Secret Sharing, "The shares are evaluations of a polynomial of degree ≤t"

• Correct reconstruction of secret (by *reconstructing parties*).

• Dealer delivers shares via PKE on a public bulletin board.

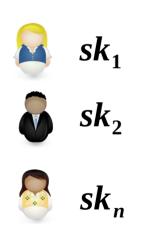


• Dealer delivers shares via PKE on a public bulletin board.

Secret: s

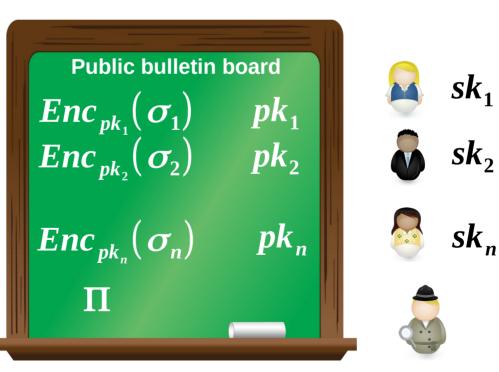
Shamir shares: $(\sigma_1,...,\sigma_n)$

Public bulletin board		
$Enc_{pk_1}(\sigma_1)$	pk ₁	
$Enc_{pk_2}(\sigma_2)$	pk ₂	
$Enc_{pk_n}(\sigma_n)$	pk _n	

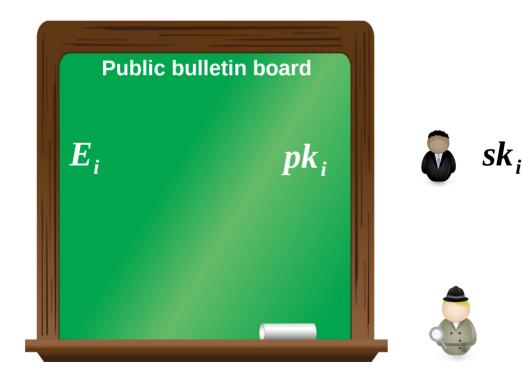


- Dealer delivers shares via PKE on a public bulletin board.
- Dealer publishes NIZK that plaintexts are a correct sharing.

Secret: **s** Shamir shares: $(\sigma_1,...,\sigma_n)$ Proof : $\Pi = NIZK(\exists f, deg f \leq t, f(\alpha_i) = \sigma_i, \forall i \in [n])$



• Parties proves correct opening of σ_i , given encryption and pk_i



• Parties proves correct opening of σ_i , given encryption and pk_i

Public b	ulletin board	
E	pk _i σ _i Π _i	sk_i Proof: $\Pi_i = \text{NIZK}(\sigma_i = \text{Dec}_{sk}(E_i))$

Several DL-based PVSS exist, e.g.:

Several DL-based PVSS exist, e.g.: Schoenmakers [Sch99], SCRAPE [CD17], ALBATROSS [CD20], YOLO YOSO [CDGK22]

Several DL-based PVSS exist, e.g.: Schoenmakers [Sch99], SCRAPE [CD17], ALBATROSS [CD20], YOLO YOSO [CDGK22]

Common features:

- Cyclic group **G** = **<g>** of prime order **q** with hard DL
- Parties get (after decryption) only g^{σ_i} (*not the Shamir shares* σ_i)
- Hence secret (they can reconstruct) is actually g^s

Several DL-based PVSS exist, e.g.: Schoenmakers [Sch99], SCRAPE [CD17], ALBATROSS [CD20], YOLO YOSO [CDGK22]

Common features:

- Cyclic group **G** = **<g>** of prime order **q** with hard DL
- Parties get (after decryption) only g^{σ_i} (*not the Shamir shares* σ_i)
- Hence secret (they can reconstruct) is actually g^s

Some applications:

- MPC linear functions with **small output**, e.g. elections [Sch99]
- Randomness beacons [SCRAPE, Albatross]
- Non-linear PVSS of \mathbf{r} in $\mathbb{Z}_{\mathbf{q}}$ [YOLO YOSO]:

Dealer PVSSs random g^s and broadcasts $r - H(g^s)$, (for $H: \mathbb{G} \to \mathbb{Z}_q$ random oracle)

Several DL-based PVSS exist, e.g.: Schoenmakers [Sch99], SCRAPE [CD17], ALBATROSS [CD20], YOLO YOSO [CDGK22]

Common features:

- Cyclic group **G** = **<g>** of prime order **q** with hard DL
- Parties get (after decryption) only g^{σ_i} (*not the Shamir shares* σ_i)
- Hence secret (they can reconstruct) is actually g^s

Several DL-based PVSS exist, e.g.: Schoenmakers [Sch99], SCRAPE [CD17], ALBATROSS [CD20], YOLO YOSO [CDGK22]

Common features:

- Cyclic group $G = \langle g \rangle$ of prime order **q** with hard DL
- Parties get (after decryption) only g^{σ_i} (*not the Shamir shares* σ_i)
- Hence secret (they can reconstruct) is actually g^s

Drawbacks:

Parties do not learn σ_i

- Bad for Distributed Key Generation (DKG).
- Bad for MPC.

Goal: Jointly compute **tpk** = **g**^{tsk}. Party i obtains Shamir share **tsk**_i of **tsk**

Goal: Jointly compute $tpk = g^{tsk}$. Party i obtains Shamir share tsk_i of tsk

Suppose PVSS where parties can recover Shamir shares σ_i of secret s.

Goal: Jointly compute $tpk = g^{tsk}$. Party i obtains Shamir share tsk_i of tskSuppose PVSS where parties can recover Shamir shares σ_i of secret s.

• Each party j PVSS $r^{(j)}$, shares $(\sigma^{(j)})_i$

Goal: Jointly compute $tpk = g^{tsk}$. Party i obtains Shamir share tsk_i of tskSuppose PVSS where parties can recover Shamir shares σ_i of secret s.

• Each party j PVSS $r^{(j)}$, shares $(\sigma^{(j)})_i$

Goal: Jointly compute $tpk = g^{tsk}$. Party i obtains Shamir share tsk_i of tskSuppose PVSS where parties can recover Shamir shares σ_i of secret s.

- Each party j PVSS $r^{(j)}$, shares $(\sigma^{(j)})_i$
- Parties determine set Q of correctly shared r^(j)
- Aggregate correct shares:

Goal: Jointly compute $tpk = g^{tsk}$. Party i obtains Shamir share tsk_i of tskSuppose PVSS where parties can recover Shamir shares σ_i of secret s.

- Each party j PVSS $r^{(j)}$, shares $(\sigma^{(j)})_i$
- Parties determine set Q of correctly shared r^(j)
- Aggregate correct shares:
 - Party i defines $tsk_i = \sum_{j \in Q} (\sigma^{(j)})_i$
 - Party i publishes $tpk_i = g^{tsk_i}$ and proof of correctness
 - Parties reconstruct tpk from correct tpk_i

• Using **class groups**, we construct a PVSS that allows parties to retrieve the field shares σ_i

- Using **class groups**, we construct a PVSS that allows parties to retrieve the field shares σ_i
- Same asymptotical costs as [CDGK22], although over class groups
 - Sharing requires to broadcast n+1 class group elements
 - Sharing proof constant size (3 integers of group size)

- Using **class groups**, we construct a PVSS that allows parties to retrieve the field shares σ_i
- Same asymptotical costs as [CDGK22], although over class groups
 - Sharing requires to broadcast n+1 class group elements
 - Sharing proof constant size (3 integers of group size)
- DKG:
 - **2-round DKG** with **unbiasable PK** (round optimal, [Katz23]) with roughly a 4.5-7x gain in communication wrt to Paillier [Katz23].
 - Also, **1-round DKG** with **biasable PK.**

- Using **class groups**, we construct a PVSS that allows parties to retrieve the field shares σ_i
- Same asymptotical costs as [CDGK22], although over class groups
 - Sharing requires to broadcast n+1 class group elements
 - Sharing proof constant size (3 integers of group size)
- DKG:
 - **2-round DKG** with **unbiasable PK** (round optimal, [Katz23]) with roughly a 4.5-7x gain in communication wrt to Paillier [Katz23].
 - Also, **1-round DKG** with **biasable PK.**
- Efficient YOSO MPC with transparent setup based on class groups.

Based on class groups.

 $G = G_q \times F$, where:

 $F = \langle f \rangle$ of order **q**, with **easy DL**. $G_q = \langle g_q \rangle$ cyclic of unknown order.

Based on class groups.

 $G = G_q \times F$, where:

 $F = \langle f \rangle$ of order q, with easy DL. $G_q = \langle g_q \rangle$ cyclic of unknown order.

El Gamal like encryption:

 $pk = g_q^{sk}$ $m \rightarrow (g_q^r, pk^r \cdot f^m)$, with randomness r

Based on class groups.

 $G = G_q \times F$, where:

 $F = \langle f \rangle$ of order q, with easy DL. $G_q = \langle g_q \rangle$ cyclic of unknown order.

El Gamal like encryption: $pk = g_q^{sk}$ $m \rightarrow (g_q^r, pk^r \cdot f^m)$, with randomness r

Decryptor recovers f^m as in El Gamal, **solves DL in F**, gets **m**.

PVSS based on Class Groups

PVSS based on Class Groups

 We revisit scheme DHPVSS from YOLO-YOSO [CDGK22] and observe that share encryption can be seen as El-Gamal "multi-encryption":

Dealer posts common $\mathbf{g}^{\mathbf{r}}$, and $(\mathbf{p}\mathbf{k}_i)^{\mathbf{r}} \cdot \mathbf{g}^{\sigma_i}$ for all i.

PVSS based on Class Groups

 We revisit scheme DHPVSS from YOLO-YOSO [CDGK22] and observe that share encryption can be seen as El-Gamal "multi-encryption": Dealer posts common g^r, and (pk_i)^r · g^o_i for all i.

 Natural idea: replace El Gamal by CL: Dealer posts common g^r, and encrypted shares (pk_i)^r · f^σ_i Now parties can retrieve σ_i !

PVSS based on Class Groups

 We revisit scheme DHPVSS from YOLO-YOSO [CDGK22] and observe that share encryption can be seen as El-Gamal "multi-encryption": Dealer posts common g^r, and (pk_i)^r • g^o_i for all i.

- Natural idea: replace El Gamal by CL: Dealer posts common g^r, and encrypted shares (pk_i)^r •f^σ_i Now parties can retrieve σ_i !
- Obstacle: We need to change our proof of sharing.

Sharing Correctness Proof in CDGK22

Sharing Correctness Proof in CDGK22

Sharing proof from [CDGK22] uses "SCRAPE trick" [CD17]: Linear check ($\sigma_1,...,\sigma_n$) is a Shamir sharing: Sample ($w_1,...,w_n$) uniformly in corresponding **dual code** Check $w_1\sigma_1 + ... + w_n\sigma_n = 0 \mod q$

Sharing Correctness Proof in CDGK22

Sharing proof from [CDGK22] uses "SCRAPE trick" [CD17]: Linear check ($\sigma_1,...,\sigma_n$) is a Shamir sharing: Sample ($w_1,...,w_n$) uniformly in corresponding **dual code** Check $w_1\sigma_1 + ... + w_n\sigma_n = 0 \mod q$

In [CDGK22], dealer publishes $\mathbf{R} = \mathbf{g}^{\mathbf{r}}$ and $\mathbf{B}_{i} = (\mathbf{p}\mathbf{k}_{i})^{\mathbf{r}} \cdot \mathbf{g}^{\mathbf{r}_{i}}$ Sharing proof uses SCRAPE to reduce to DL equality proof: Sample random $(\mathbf{w}_{1},...,\mathbf{w}_{n})$, prove $\Pi \mathbf{B}_{i}^{\mathbf{w}_{i}} = \Pi (\mathbf{p}\mathbf{k}_{i}^{\mathbf{w}_{i}})^{\mathbf{r}}$ for same \mathbf{r} s.t. $\mathbf{g}^{\mathbf{r}} = \mathbf{R}$

In this work, dealer publishes $\mathbf{R} = \mathbf{g}_q^r$ and $\mathbf{B}_i = (\mathbf{p}\mathbf{k}_i)^r \cdot \mathbf{f}^{\mathbf{q}_i}$

In this work, dealer publishes $\mathbf{R} = \mathbf{g}_q^r$ and $\mathbf{B}_i = (\mathbf{p}\mathbf{k}_i)^r \cdot \mathbf{f}^{\sigma_i}$

Some technical problems arise to use exact same strategies as CDGK22 because:

In this work, dealer publishes $\mathbf{R} = \mathbf{g}_q^r$ and $\mathbf{B}_i = (\mathbf{p}\mathbf{k}_i)^r \cdot \mathbf{f}^{\sigma_i}$

Some technical problems arise to use exact same strategies as CDGK22 because:

• <f> is of order q, but G is not. \rightarrow We need to rerandomize the w_i to $w_i + c_i q$ (for random "small" integers c_i)

In this work, dealer publishes $\mathbf{R} = \mathbf{g}_q^r$ and $\mathbf{B}_i = (\mathbf{p}\mathbf{k}_i)^r \cdot \mathbf{f}^{\mathbf{q}_i}$

Some technical problems arise to use exact same strategies as CDGK22 because:

- <f> is of order q, but G is not. \rightarrow We need to rerandomize the w_i to $w_i + c_i q$ (for random "small" integers c_i)
- DL-EQ PoKs are more expensive.

Alternatively we show we **can** use **sound** proofs for sharing and reconstruction correctness.

[BDO23] provides more efficient sound DL-EQ proofs

Comparison with [KMM+23]

Comparison with [KMM+23]

- Kate et al. [KMM+23] presented a PVSS with:
 - same sharing encryption as ours,
 - different sharing correctness proof
 - they also propose a 1-round DKG

Comparison with [KMM+23]

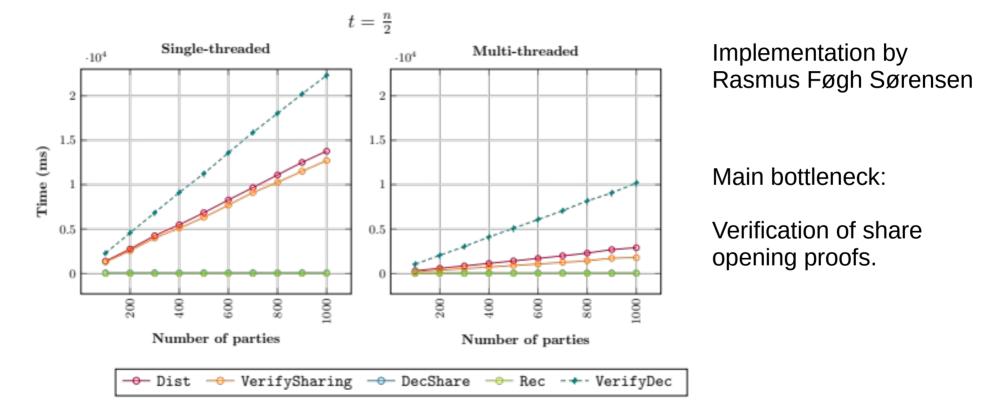
- Kate et al. [KMM+23] presented a PVSS with:
 - same sharing encryption as ours,
 - different sharing correctness proof
 - they also propose a 1-round DKG

Comparison:

- Our PVSS sharing is more communication-efficient and we achieve a stronger notion of security (they leak g^s).
- For 1-round DKG: Their scheme is more efficient than ours in communication and computation.

Implementation

Benchmark of single-threaded vs. multi-threaded $S_{qCLPVSS}$ algorithms



Conclusions

- We present an **efficient PVSS over class groups**, counterpart to CDGK22
- We present 2-round DKG (unbiasable key) and 1-round DKG
- We also instantiate MPC in the YOSO model based on our PVSS
- Implementation is fast, main bottleneck verification of (many) DLEQ proofs.

Thank you!

https://eprint.iacr.org/2023/1651

Funded by projects:

- SecuRing (grant no. PID2019-110873RJ-I00, MCIN/AEI)
- PRODIGY (grant no. TED2021-132464B-I00, MCIN/AEI and European Union NextGenerationEU/PRTR)
- CONFIDENTIAL-6G (GA 101096435, EU).
- Grant 0165-00079B (Independent Research Fund Denmark)