
Ignacio Cascudo 
Bernardo David 

IMDEA Software Institute, Madrid 
IT University of Copenhagen

Publicly Verifiable Secret Sharing over 
Class Groups

 and Applications to DKG and YOSO

EUROCRYPT 24

Zürich, 29 May 2024



Publicly Verifiable Secret Sharing (PVSS)



Secret sharing with publicly verifiable proofs of:

Publicly Verifiable Secret Sharing (PVSS)



Secret sharing with publicly verifiable proofs of:
 Sharing correctness (by the dealer). 

For Shamir Secret Sharing, “The shares are evaluations of a 
polynomial of degree ≤t”

Publicly Verifiable Secret Sharing (PVSS)



Secret sharing with publicly verifiable proofs of:
 Sharing correctness (by the dealer). 

For Shamir Secret Sharing, “The shares are evaluations of a 
polynomial of degree ≤t”

 Correct reconstruction of secret (by reconstructing 
parties).
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● Dealer delivers shares via PKE on a public bulletin board.

Secret: s

Shamir shares: (s1,...,sn)
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Enc pk1(σ 1)
Enc pk2(σ 2)

Enc pkn(σ n)Proof : 
P=NIZK(∃ f , deg f ≤ t, 
          f(ai)=si , ∀i ∊ [n]) 
 

Π

● Dealer publishes NIZK that plaintexts are a correct sharing.
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● Parties proves correct opening of si, given encryption and pki

Publicly Verifiable Secret Sharing (PVSS)

sk ipk i

Public bulletin board

Ei

Π i

σ i Proof : 
Pi = NIZK(si = Decsk(Ei))  
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Common features:
● Cyclic group G = <g> of prime order q with hard DL
● Parties get (after decryption) only gsi (not the Shamir shares si)
● Hence secret (they can reconstruct) is actually gs  
Some applications:
● MPC linear functions with small output, e.g. elections [Sch99]
● Randomness beacons [SCRAPE, Albatross]
● Non-linear PVSS of r in Zq [YOLO YOSO]:
 Dealer PVSSs random gs and broadcasts r - H(gs), (for H: G → Zq random oracle )
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DL-based PVSS

Common features:
● Cyclic group G = <g> of prime order q with hard DL
● Parties get (after decryption) only gsi (not the Shamir shares si)
● Hence secret (they can reconstruct) is actually gs  

Drawbacks:
Parties do not learn si
● Bad for Distributed Key Generation (DKG).
● Bad for MPC.

Several DL-based PVSS exist, e.g.:
Schoenmakers [Sch99],  SCRAPE [CD17], ALBATROSS [CD20], 
YOLO YOSO [CDGK22] 
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Goal: Jointly compute tpk = gtsk. Party i obtains Shamir share tski of 
tsk
Suppose PVSS where parties can recover Shamir shares si of secret s.

● Each party j PVSS r(j) , shares (s(j))i

● Parties determine set Q of correctly shared r(j)

● Aggregate correct shares:
● Party i defines tski = Sj∊Q(s(j))i
● Party i publishes tpki = gtski and proof of correctness 
● Parties reconstruct tpk from correct tpki

DKG (for DL Key Pairs) via PVSS
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● Using class groups, we construct a PVSS that allows parties to 
retrieve the field shares si

● Same asymptotical costs as [CDGK22], although over class groups
● Sharing requires to broadcast n+1 class group elements
● Sharing proof constant size (3 integers of group size)

● DKG: 
● 2-round DKG with unbiasable PK (round optimal, [Katz23]) with 

roughly a 4.5-7x gain in communication wrt to Paillier [Katz23].
● Also, 1-round DKG with biasable PK.

● Efficient YOSO MPC with transparent setup based on class groups.  

Contributions
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Based on class groups.
G = Gq x F, where:

F = <f> of order q, with easy DL. 
Gq = <gq> cyclic of unknown order.

El Gamal like encryption:
        pk = gqsk

        m → (gqr, pkr · fm), with randomness r

Decryptor recovers fm as in El Gamal, solves DL in F, gets m.

Castagnos-Laguillaumie Framework
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• We revisit scheme DHPVSS from YOLO-YOSO [CDGK22] and observe 
that share encryption can be seen as El-Gamal “multi-encryption”:
Dealer posts common grr, and (pki)rr ·gsi  for all i.

 
• Natural idea: replace El Gamal by CL:

Dealer posts common grr, and encrypted shares (pki)rr ·fsi

Now parties can retrieve si !

• Obstacle: We need to change our proof of sharing.

PVSS based on Class Groups
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Sharing proof from [CDGK22] uses “SCRAPE trick” [CD17]:
Linear check (s1,...,sn) is a Shamir sharing:
Sample (w1,...,wn) uniformly in corresponding dual code 
Check w1s1 + ... + wnsn = 0 mod q

In [CDGK22], dealer publishes R = grr and Bi = (pki)rr ·gsi 
Sharing proof uses SCRAPE to reduce to DL equality proof:
Sample random (w1,...,wn), prove P Biwi = P (pkiwi)rr for same rr s.t. 
grr = R 

Sharing Correctness Proof in CDGK22 
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 Modifications in our Work 
In this work, dealer publishes R = gqrr and Bi = (pki)rr ·fsi 

Some technical problems arise to use exact same strategies as 
CDGK22 because:

● <f> is of order q, but G is not. → We need to rerandomize the 
wi to wi + ci q (for random “small” integers ci)

● DL-EQ PoKs are more expensive.
Alternatively we show we can use sound proofs for sharing  
and reconstruction correctness.
[BDO23] provides more efficient sound DL-EQ proofs
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 Kate et al. [KMM+23] presented a PVSS with:
● same sharing encryption as ours, 
● different sharing correctness proof
● they also propose a 1-round DKG

Comparison with [KMM+23] 

Comparison:
● Our PVSS sharing is more communication-efficient and we achieve a 

stronger notion of security (they leak gs).
● For 1-round DKG: Their scheme is more efficient than ours in 

communication and computation.



Implementation by 
Rasmus Føgh Sørensen 

Main bottleneck:

Verification of share 
opening proofs.

 Implementation 



● We present an efficient PVSS over class groups, counterpart to 
CDGK22

● We present 2-round DKG (unbiasable key) and 1-round DKG

● We also instantiate MPC in the YOSO model based on our PVSS

● Implementation is fast, main bottleneck verification of (many) DLEQ 
proofs.

 Conclusions 
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