Bulletproofs++
 Next Generation Confidential Transactions via Reciprocal Set Membership Arguments

Liam Eagen ${ }^{1,2}$ Sanket Kanjalkar ${ }^{2}$ Jonas Nick ${ }^{2}$ Tim Ruffing ${ }^{2}$
${ }^{1}$ Alpen Labs
${ }^{2}$ Blockstream Research

May 30, 2024

Motivation

Blockchains

- Blockchains allow decentralizing payments

Motivation

Blockchains

- Blockchains allow decentralizing payments
- Users broadcast transactions, which are added to a global ledger

Motivation

Blockchains

- Blockchains allow decentralizing payments
- Users broadcast transactions, which are added to a global ledger
- Everyone can see all transactions

Motivation

Blockchains

- Blockchains allow decentralizing payments
- Users broadcast transactions, which are added to a global ledger
- Everyone can see all transactions
- Problem: there is no privacy!

Motivation

Adding Privacy to Blockchains

- How can we recover privacy?

Motivation

Adding Privacy to Blockchains

- How can we recover privacy?
- Instead of broadcasting a transaction, broadcast a proof of knowledge of a transaction

Motivation

Adding Privacy to Blockchains

- How can we recover privacy?
- Instead of broadcasting a transaction, broadcast a proof of knowledge of a transaction
- Replace all "coins" with hiding commitments to their value

Motivation

Adding Privacy to Blockchains

- How can we recover privacy?
- Instead of broadcasting a transaction, broadcast a proof of knowledge of a transaction
- Replace all "coins" with hiding commitments to their value
- Can hide information about transactions by making proofs zero knowledge

Related Work

- Large body of work on adding private payments to blockchains

Related Work

- Large body of work on adding private payments to blockchains
- Roughly breaks into two levels

Related Work

- Large body of work on adding private payments to blockchains
- Roughly breaks into two levels
(1) Confidential transactions (CT) that just hide "internal transaction information

Related Work

- Large body of work on adding private payments to blockchains
- Roughly breaks into two levels
(1) Confidential transactions (CT) that just hide "internal transaction information
(2) Fully private transactions that hide relations betweeen transactions

Related Work

- Large body of work on adding private payments to blockchains
- Roughly breaks into two levels
(1) Confidential transactions (CT) that just hide "internal transaction information
(2) Fully private transactions that hide relations betweeen transactions
- Former includes original CT protocol of Maxwell and Bulletproofs

Related Work

- Large body of work on adding private payments to blockchains
- Roughly breaks into two levels
(1) Confidential transactions (CT) that just hide "internal transaction information
(2) Fully private transactions that hide relations betweeen transactions
- Former includes original CT protocol of Maxwell and Bulletproofs
- Latter includes original ZeroCash protocol, Zcash, Monero, etc.

Related Work

- Large body of work on adding private payments to blockchains
- Roughly breaks into two levels
(1) Confidential transactions (CT) that just hide "internal transaction information
(2) Fully private transactions that hide relations betweeen transactions
- Former includes original CT protocol of Maxwell and Bulletproofs
- Latter includes original ZeroCash protocol, Zcash, Monero, etc.
- Private transaction more powerful, but also more expensive to prove

This Work

- In this work, focus on confidential transactions

This Work

- In this work, focus on confidential transactions
- Want to hide amounts and types of assets

This Work

- In this work, focus on confidential transactions
- Want to hide amounts and types of assets
- Aim to achieve concretely small proof size, efficient verifier, without a trusted setup

This Work

- In this work, focus on confidential transactions
- Want to hide amounts and types of assets
- Aim to achieve concretely small proof size, efficient verifier, without a trusted setup
- Four main contributions

This Work

- In this work, focus on confidential transactions
- Want to hide amounts and types of assets
- Aim to achieve concretely small proof size, efficient verifier, without a trusted setup
- Four main contributions
(1) A new generalization of multiset equality arguments called the "reciprocal argument"

This Work

- In this work, focus on confidential transactions
- Want to hide amounts and types of assets
- Aim to achieve concretely small proof size, efficient verifier, without a trusted setup
- Four main contributions
(1) A new generalization of multiset equality arguments called the "reciprocal argument"
(2) An arithmetization incorporating the reciprocal argument

This Work

- In this work, focus on confidential transactions
- Want to hide amounts and types of assets
- Aim to achieve concretely small proof size, efficient verifier, without a trusted setup
- Four main contributions
(1) A new generalization of multiset equality arguments called the "reciprocal argument"
(2) An arithmetization incorporating the reciprocal argument
(3) A variant of the Bulletproof inner product argument for self-inner products called a "norm argument"

This Work

- In this work, focus on confidential transactions
- Want to hide amounts and types of assets
- Aim to achieve concretely small proof size, efficient verifier, without a trusted setup
- Four main contributions
(1) A new generalization of multiset equality arguments called the "reciprocal argument"
(2) An arithmetization incorporating the reciprocal argument
(3) A variant of the Bulletproof inner product argument for self-inner products called a "norm argument"
(9) Protocols for range proofs and CTs

Reciprocal Argument

Recap: Multiset equality arguments

- Recall a multiset equality argument checks $\left(a_{i}\right)$ and $\left(b_{i}\right)$ represent the same multiset

Reciprocal Argument

Recap: Multiset equality arguments

- Recall a multiset equality argument checks $\left(a_{i}\right)$ and $\left(b_{i}\right)$ represent the same multiset
- That is there exists permutation σ such that $a_{i}=b_{\sigma(i)}$

Reciprocal Argument

Recap: Multiset equality arguments

- Recall a multiset equality argument checks $\left(a_{i}\right)$ and $\left(b_{i}\right)$ represent the same multiset
- That is there exists permutation σ such that $a_{i}=b_{\sigma(i)}$
- Simple protocol due to Groth and Bayer
(1) Commit to $\left(a_{i}\right),\left(b_{i}\right)$
(2) Choose random challenge β
(3) Check $\prod_{i}\left(\beta+a_{i}\right)=\prod_{i}\left(\beta+b_{i}\right)$

Reciprocal Argument

Recap: Multiset equality arguments

- Recall a multiset equality argument checks $\left(a_{i}\right)$ and $\left(b_{i}\right)$ represent the same multiset
- That is there exists permutation σ such that $a_{i}=b_{\sigma(i)}$
- Simple protocol due to Groth and Bayer
(1) Commit to $\left(a_{i}\right),\left(b_{i}\right)$
(2) Choose random challenge β
(3) Check $\prod_{i}\left(\beta+a_{i}\right)=\prod_{i}\left(\beta+b_{i}\right)$
- Completeness follows from commutativity of multiplication

Reciprocal Argument

Recap: Multiset equality arguments

- Recall a multiset equality argument checks $\left(a_{i}\right)$ and $\left(b_{i}\right)$ represent the same multiset
- That is there exists permutation σ such that $a_{i}=b_{\sigma(i)}$
- Simple protocol due to Groth and Bayer
(1) Commit to $\left(a_{i}\right),\left(b_{i}\right)$
(2) Choose random challenge β
(3) Check $\prod_{i}\left(\beta+a_{i}\right)=\prod_{i}\left(\beta+b_{i}\right)$
- Completeness follows from commutativity of multiplication
- Can we use addition instead of multiplication?

Reciprocal Argument

- Instead of products of $\beta+a_{i}$ use sums of $1 /\left(\beta+a_{i}\right)$

Reciprocal Argument

- Instead of products of $\beta+a_{i}$ use sums of $1 /\left(\beta+a_{i}\right)$
- This is the "logarithmic derivative" of the Groth Bayer check

Reciprocal Argument

- Instead of products of $\beta+a_{i}$ use sums of $1 /\left(\beta+a_{i}\right)$
- This is the "logarithmic derivative" of the Groth Bayer check
- Reciprocal argument generalizes multiset argument to include multiplicities

Reciprocal Argument

- Instead of products of $\beta+a_{i}$ use sums of $1 /\left(\beta+a_{i}\right)$
- This is the "logarithmic derivative" of the Groth Bayer check
- Reciprocal argument generalizes multiset argument to include multiplicities
- Given a sequence $\left(a_{i}, m_{i}\right)$ check all multiplicities for same a_{i} sum to zero

Reciprocal Argument

- Instead of products of $\beta+a_{i}$ use sums of $1 /\left(\beta+a_{i}\right)$
- This is the "logarithmic derivative" of the Groth Bayer check
- Reciprocal argument generalizes multiset argument to include multiplicities
- Given a sequence $\left(a_{i}, m_{i}\right)$ check all multiplicities for same a_{i} sum to zero
(1) Commit to $\left(a_{i}, m_{i}\right)$

Reciprocal Argument

- Instead of products of $\beta+a_{i}$ use sums of $1 /\left(\beta+a_{i}\right)$
- This is the "logarithmic derivative" of the Groth Bayer check
- Reciprocal argument generalizes multiset argument to include multiplicities
- Given a sequence $\left(a_{i}, m_{i}\right)$ check all multiplicities for same a_{i} sum to zero
(1) Commit to $\left(a_{i}, m_{i}\right)$
(2) Random β

Reciprocal Argument

- Instead of products of $\beta+a_{i}$ use sums of $1 /\left(\beta+a_{i}\right)$
- This is the "logarithmic derivative" of the Groth Bayer check
- Reciprocal argument generalizes multiset argument to include multiplicities
- Given a sequence $\left(a_{i}, m_{i}\right)$ check all multiplicities for same a_{i} sum to zero
(1) Commit to $\left(a_{i}, m_{i}\right)$
(2) Random β
(3) Commit to $r_{i}=m_{i} /\left(\beta+a_{i}\right)$

Reciprocal Argument

- Instead of products of $\beta+a_{i}$ use sums of $1 /\left(\beta+a_{i}\right)$
- This is the "logarithmic derivative" of the Groth Bayer check
- Reciprocal argument generalizes multiset argument to include multiplicities
- Given a sequence $\left(a_{i}, m_{i}\right)$ check all multiplicities for same a_{i} sum to zero
(1) Commit to $\left(a_{i}, m_{i}\right)$
(2) Random β
(3) Commit to $r_{i}=m_{i} /\left(\beta+a_{i}\right)$
(9) Check $\sum_{i} r_{i}=0$ and $\left(\beta+a_{i}\right) r_{i}=m_{i}$

Reciprocal Argument

Applications

- We use the reciprocal argument in two ways

Reciprocal Argument

Applications

- We use the reciprocal argument in two ways
- First to build a lookup argument

Reciprocal Argument

Applications

- We use the reciprocal argument in two ways
- First to build a lookup argument
- Use this to build more efficient range proofs

Reciprocal Argument

Applications

- We use the reciprocal argument in two ways
- First to build a lookup argument
- Use this to build more efficient range proofs
- Second to build multi-asset confidential transactions

Reciprocal Argument

Applications

- We use the reciprocal argument in two ways
- First to build a lookup argument
- Use this to build more efficient range proofs
- Second to build multi-asset confidential transactions
- This keeps both amounts and kinds of tokens private

Lookup Argument

- A lookup relation requires every x_{i} belong to a table t_{j}

Lookup Argument

- A lookup relation requires every x_{i} belong to a table t_{j}
- That is, $\forall i: \exists j: x_{i}=t_{j}$

Lookup Argument

- A lookup relation requires every x_{i} belong to a table t_{j}
- That is, $\forall i: \exists j: x_{i}=t_{j}$
- Define m_{j} to be the number of times t_{j} occurs in x_{i}

Lookup Argument

- A lookup relation requires every x_{i} belong to a table t_{j}
- That is, $\forall i: \exists j: x_{i}=t_{j}$
- Define m_{j} to be the number of times t_{j} occurs in x_{i}
- Apply reciprocal argument to sequence $\left(\left(-1, x_{i}\right)\right) \cup\left(\left(m_{j}, t_{j}\right)\right)$

Lookup Argument

- A lookup relation requires every x_{i} belong to a table t_{j}
- That is, $\forall i: \exists j: x_{i}=t_{j}$
- Define m_{j} to be the number of times t_{j} occurs in x_{i}
- Apply reciprocal argument to sequence $\left(\left(-1, x_{i}\right)\right) \cup\left(\left(m_{j}, t_{j}\right)\right)$
- Must have number of items smaller than field characteristic

Lookup Argument

- A lookup relation requires every x_{i} belong to a table t_{j}
- That is, $\forall i: \exists j: x_{i}=t_{j}$
- Define m_{j} to be the number of times t_{j} occurs in x_{i}
- Apply reciprocal argument to sequence $\left(\left(-1, x_{i}\right)\right) \cup\left(\left(m_{j}, t_{j}\right)\right)$
- Must have number of items smaller than field characteristic
- Use this to build range proof with larger bases

Lookup Argument

- A lookup relation requires every x_{i} belong to a table t_{j}
- That is, $\forall i: \exists j: x_{i}=t_{j}$
- Define m_{j} to be the number of times t_{j} occurs in x_{i}
- Apply reciprocal argument to sequence $\left(\left(-1, x_{i}\right)\right) \cup\left(\left(m_{j}, t_{j}\right)\right)$
- Must have number of items smaller than field characteristic
- Use this to build range proof with larger bases
- $x \in\left[0, b^{n}\right) \Longleftrightarrow \exists d_{i} \in[0, b), x=\sum_{i} d_{i} b^{i}$

Multi-Asset Confidential Transactions

- List of inputs $/$ and outputs O

Multi-Asset Confidential Transactions

- List of inputs I and outputs O
- Each is a pair of an amount a and a type t

Multi-Asset Confidential Transactions

- List of inputs I and outputs O
- Each is a pair of an amount a and a type t
- Want that the amount of each type in I equals that in O

Multi-Asset Confidential Transactions

- List of inputs I and outputs O
- Each is a pair of an amount a and a type t
- Want that the amount of each type in I equals that in O
- Apply reciprocal argument to sequence $\left(\left(a_{i}, t_{i}\right) \in I\right) \cup\left(\left(-a_{i}, t_{i}\right) \in O\right)$

Multi-Asset Confidential Transactions

- List of inputs I and outputs O
- Each is a pair of an amount a and a type t
- Want that the amount of each type in I equals that in O
- Apply reciprocal argument to sequence $\left(\left(a_{i}, t_{i}\right) \in I\right) \cup\left(\left(-a_{i}, t_{i}\right) \in O\right)$
- Must also verify amounts are small compared to characteristic

Multi-Asset Confidential Transactions

- List of inputs I and outputs O
- Each is a pair of an amount a and a type t
- Want that the amount of each type in I equals that in O
- Apply reciprocal argument to sequence $\left(\left(a_{i}, t_{i}\right) \in I\right) \cup\left(\left(-a_{i}, t_{i}\right) \in O\right)$
- Must also verify amounts are small compared to characteristic
- More fundamental advantage of reciprocal argument

What I Have Not Discussed

- Norm argument

What I Have Not Discussed

- Norm argument
- Arithmetic circuits

What I Have Not Discussed

- Norm argument
- Arithmetic circuits
- Incorporating reciprocal argument into arithmetic circuits

What I Have Not Discussed

- Norm argument
- Arithmetic circuits
- Incorporating reciprocal argument into arithmetic circuits
- How to build MACT protocol

Questions?
 ia.cr/2022/510

