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X

| T Vv

0/1
Complete: if (x, w) € R, V accepts.
Knowledge Sound: if
Non-interactive: P sends a single message. V(x, 7) = 1, can extract w

Succinct: | 7| << |w|and verifier is fast. such that (x, w) € R
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 Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

« ROM takes care of extraction and non-interactivity.

Special Sound Fiat-Shamir Knowledge Sound

Interactive Protocol Transform PCS

 Use lattices to get succinctness in the interactive protocol.

 Open Question: ROM alone is sufficient for efficient PCS (e.g. STIR), can we
gain by using lattices?
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Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

Multi-Instance BASIS

h-instance BASIS Game

AT’ “"Alj - L%Zszn of wins if it finds X:
- [AT,..,AT]-x=0
s O0< x| <P

For £ = O(1), if PRISIS,

aux; < Samp(A¥) fori € [A] is hard so is h-PRISIS !

return (A, aux;),) to &/
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How to check an opening
. Each layer has its own crs; := (Aj, w;, T;) forj € [h = logd]

. Check that all local openings are correct. |.e. check that, for b € {0,1}"
by
Z WIAS,; + e =t
JELA]
» And, of course, that all the openings S, are short for be {01 }Sh

* Binding: subtract two verification equation:

reduces to h-PRISIS, i.e. MSIS!
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e Supports committing to messages of

a rb It ra ry S I Ze . Polynomial Commitments from Lattices: Post-Quantum Security, Fast
Verification and Transparent Setup
- . . - - Valerio Cini!, Giulio Malavolta?, Ngoc Khanh Nguyen?, and Hoeteck Wee!l
* Time to commit is quasi-linear. ookt

L NTT Research, Sunnyvale, CA, USA
2 Bocconi University, Milan, Italy

3 King’s College London, London, UK
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« Commitment is succinct. * Trusted setup

e Supports committing to messages of
a rb itra ry S i Ze . Polynomial Commitments from Lattices: Post-Quantum Security, Fast

Verification and Transparent Setup

® Ti m e tO C O m m it i S q u a s i - I i n ea r . Valerio Cini', Giulio MalavoltaZ, Ngoc Khanh Nguyen?®, and Hoeteck Wee'!

L NTT Research, Sunnyvale, CA, USA
2 Bocconi University, Milan, Italy
3 King’s College London, London, UK

« Common reference string is logarithmic.

* Binding under standard SIS assumption.
Can we do an efficient

evaluation protocol?
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Evaluation Protocol
FRI Inspired folding + CWSS

Basic J/’-Protocol

Prover Verifier
F(X) = fo(X*) + Xf1(X?)
z; = fi(u?) for i € Zy ?0,%1,80,51  Check: zg + uz; =7 z; Check: sg,s; short
g(X) = agfo(X) + a3 f1(X) < &0, &1 g, o0 — { X :i€Z}
._ <h-1  g,(zb)b = (A
Zb ‘= O0Sb,0 T X1Sb,1 for b € Zg > Crs .= ( 1+ty Wi14t, T1—|—t)t€[h—1]

t/ — QO - (t — wcl)AlsO) + Q- (t — ’w%Alsl)
w=u 2 =g 20+ ag - 2
Check: g(u') = 2’

Check: Open(crs’,t’, g, (zp)p) = 1

18
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» Apply protocol recursively log d times and send final opening O(1).

Knowledge soundness follows from coordinate-wise special soundness.

Commitment is succinct, verifier also succinct.

Problem ©): Knowledge soundness error is 1/poly(A).

Can be made negligible by parallel repetition, but then no Fiat-Shamir!

Change the challenge space?

* Non-subtractive challenge space => Blowup In extraction, cannot do more than
log log d recursions => only quasi-polylogarithmic sizes.

» Subtractive challenge space => Challenge space of size at most poly(4) [AL21]
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Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

* Asin [FMNZ23], our protocol can be easily extended to deal with this.

Randomness IS now:

A7 0.0 oo Xp 70 O
0.L.0° %0.R.0° X1.1.0> X1 RO - (Cg,,)z,, O‘zichdds f”,
Q.11 X R1>A1.L.1> X1.R.1 into g

K

Folded polynomial:

Fold
“ l - g0 = Ay rofor+ Arofor T X rofiLt X roSiR
81

g1 = 1Jor Tt drifor T 0 in T X riSiR

20
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Claim bundling Il

What did we gain?

« Now, protocol is 27 coordinate-wise special sound with challenge space of
size roughly poly(4)”

» Setting r to be polylog(4), we achieve negligible knowledge error!

* QOur protocol can now be made non-interactive using FS.

» To prove a single claim f(u) = v, simply set f, ....f. =fand v, ...,v. = V.

21



Conclusion



SO\

A non-interactive lattice-based
olynomial commitment with succinct
roofs and verification time, from

stangard lattice assumptions.
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There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS
* Folding more at each step
 Coordinate-wise special soundness

* Honest-verifier zero knowledge for our PCS
 Transforming PCS for &£ g in those for Z g (efficient packing)
» Twin-k-M-ISIS is no easier than 2k-M-ISIS

» Setting concrete parameters

e Reductions... all the reductions
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Th er e i S m Or e! SLAP: Succinct Latglc;]j:jgdAislllﬁ;i?;ils Commitments from

Martin R. Albrecht Giacomo Fenzi
martin.albrecht@{kcl.ac.uk,sandboxaq.com} giacomo.fenzi@epfl.ch
What we did not talk about
Oleksandra Lapiha Ngoc Khanh Nguyen

sasha.lapiha.2021@live.rhul.ac.uk khanh.nguyen@epfl.ch

® SUCCinCt evaluatiOn prOtOCOI for Merkle_PRISIS Royal Holloway, University of London EPFL

* Folding more at each step ia.cr/2023/1469

 Coordinate-wise special soundness

* Honest-verifier zero knowledge for our PCS Details here!

 Transforming PCS for &£ g in those for Z g (efficient packing)

SLAP: Succinct Lattice-Based Polynomial

« Twin-k-M-ISIS is no easier than 2k-M-ISIS Commitments from Standard Assumptions

September 2023 - Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, Ngoc Khanh
Nguyen - EUROCRYPT 2024 - ePrint: 2023/1469

® S ett i n g CO n C rete p a ra m ete rS This blog-post is a short introduction to our new work: “SLAP: Succinct Lattice-Based

Polynomial Commitments from Standard Assumptions”. This is joint work with Martin

Albrecht, Oleksandra Lapiha and Ngoc Khanh Nguyen, and the full version is available on
ePrint . Here are also some slides that might be helpful.

e Reductions... all the reductions o
afenzi.io/papers/slap
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Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

Verifier now knows:

Prover now knows: » Common reference string crs’
« Polynomial g € %;d/z[X] and

openings (zy)y,

e Commitment t’
* New claim: g(u') = v’ and
Open(crs, t', g, (zy),,) = 1
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Split and fold (Evaluations)

Split fX) = f,(X%) + X - fo(X?)

X, A n

800 = o, (X) + ayfeX)

Ask prover to send 7 = f;(1?%), z; = fo(u?). Check zy + uz; = z

If f(u) = v, then g(u?) = ayzy + ;2.
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S, S
S00> 501 oo
f € R;X]
f S010> S011

$100> 5101 511005111

-

apSo1 T+ X181

Jo | | L

\ f4 ]ps f6 ][7 S000° 5001 i
l Split
fo| b h| | fi|h |55 -

n

ApSoo0 T 215100 ApSo10 T X1S110>

l Fold
<2y XpSp01 T A15101
g€ F,

XpSo11 T A18111
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Evaluation Protocol IV
Split and fold (Commitment)

* We have shown how to compute new evaluations and openings

» If a; are short, the new openings also are.

 How does the verifier compute new commitment? With some magic:

by
« Prover reveals S, S,. Verifier sets RHS as new updated commitment.
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[WW23] BASIS Game
A* %?Xn 2/ wins if it finds X;
¢« A*'x =0
SampSIS(A*) aux <« SamP(A*) - 0<|x|<p
return L return (A*, aux) to &f
Sampg s AA™) Samppeyers AA™)

Sample a, w
-G wiA .. -G
A = [a ] B =
A* _
A, -G w/TlIA -G

return (a, w, B~1(G))
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Recap:
What we talked about

e PRISIS and Merkle-PRISIS commitments

 Multi-instance PRISIS assumptions

» h-PRISIS, reduces to MSIS

e Succinct evaluation protocol for Merkle-PRISIS

* Boosting soundness via claim bundling
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A+ (A)
 Let G be a “gadget matrix”
R
« Can sample (A, R) such that AR = G, with R short.
. AH(G)
« Given A, R, v, can sample short S such that As = v. Nice”

Trapdoor Resampling [WW23]

« Given (A, R), can sample new trapdoor T for some matrix B “related” to A

 BASIS style assumption say:

“Given A, B, T, hard to find short x for Ax = ()”
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