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f(x) = y,  for x, y ∈ 𝔽

• Cryptography goes here!
• Computational security
• We can achieve succinctness

We focus on this!
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3. Binding under (M)SIS 👋
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• Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

• ROM takes care of extraction and non-interactivity.

Special Sound 
Interactive Protocol

Fiat-Shamir  
Transform+ Knowledge Sound 

PCS=

• Use lattices to get succinctness in the interactive protocol.

• Open Question: ROM alone is sufficient for efficient PCS (e.g. STIR), can we 
gain by using lattices?
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• Need commitment | t | ≪ d
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• Need ’s running time to beV ≪ d
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• Common reference string is quadratic.

• Trusted setup

Can we do better?
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return  to ((A⋆
i , 𝖺𝗎𝗑i)i) 𝒜

 wins if it finds :


• 


•

𝒜 x

[A⋆
1 , …, A⋆

h ] ⋅ x = 0

0 < |x | ≤ β

For , if PRISIS  
is hard so is -PRISIS !

ℓ = O(1) ℓ
h ℓ
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How to check an opening

• Each layer has its own  for 𝖼𝗋𝗌j := (Aj, wj, Tj) j ∈ [h := log d]

• Check that all local openings are correct. I.e. check that, for :b ∈ {0,1}h

• And, of course, that all the openings  are short for sb b ∈ {0,1}≤h

• Binding: subtract two verification equation:

reduces to -PRISIS  i.e. MSIS!h ℓ

∑
j∈[h]

wbj
j Ajsb:j + fb ⋅ e = t
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• Commitment is succinct.

• Supports committing to messages of 
arbitrary size.

• Time to commit is quasi-linear.

• Common reference string is logarithmic.

• Binding under standard SIS assumption.

• Trusted setup

Merkle-PRISIS III

Can we do an efficient 
evaluation protocol?

Pros ✅ and Cons ❌
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Evaluation Protocol
FRI Inspired folding + CWSS
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Are we done?
• Apply protocol recursively  times and send final opening .log d O(1)

• Knowledge soundness follows from coordinate-wise special soundness.

• Commitment is succinct, verifier also succinct.

• Problem 🤔: Knowledge soundness error is .1/𝗉𝗈𝗅𝗒(λ)

• Can be made negligible by parallel repetition, but then no Fiat-Shamir!

• Change the challenge space?

• Non-subtractive challenge space => Blowup in extraction, cannot do more than 
 recursions => only quasi-polylogarithmic sizes. log log d

• Subtractive challenge space => Challenge space of size at most  [AL21]𝗉𝗈𝗅𝗒(λ)
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Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

• As in [FMN23], our protocol can be easily extended to deal with this.

f0,L

f0

Split

f1

f0,Lf0,L f0,R f1,L f1,R

g0

Fold

g1

[α0,L,0, α0,R,0, α1,L,0, α1,R,0
α0,L,1, α0,R,1, α1,L,1, α1,R,1] ∈ (𝒞r)2r

Randomness is now:

g0 := α0,L,0 f0,L + α0,R,0 f0,R + α1,L,0 f1,L + α1,R,0 f1,R

g1 := α0,L,1 f0,L + α0,R,1 f0,R + α1,L,1 f1,L + α1,R,1 f1,R

Folded polynomial:

 folds  
into 
αι,i,κ fι,i

gκ
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Claim bundling II
What did we gain?

• Now, protocol is  coordinate-wise special sound with challenge space of 
size roughly 

2r
𝗉𝗈𝗅𝗒(λ)r

• Setting  to be , we achieve negligible knowledge error!r 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

• Our protocol can now be made non-interactive using FS.

• To prove a single claim , simply set  and .f(u) = v f1, …, fr = f v1, …, vr = v
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👋 - SLAP
A non-interactive lattice-based 
polynomial commitment with succinct 
proofs and verification time, from 
standard lattice assumptions.
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gfenzi.io/papers/slap

ia.cr/2023/1469

Details here!

http://ia.cr/2023/1469
http://gfenzi.io/papers/slap
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• Succinct evaluation protocol for Merkle-PRISIS

• Boosting soundness via claim bundling
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