
SLAP 👋
Succinct Lattice-Based Polynomial Commitment
Schemes from Standard Assumptions
(2023/1469)

1

Giacomo Fenzi @ Joint work with:
Martin Albrecht
Ngoc Khanh Nguyen

Oleksandra Lapiha

Motivation
2

SNARKs

3

SNARKs
(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P V

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P V

(x, w) ∈ R

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P V

(x, w) ∈ R

x

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P Vπ

(x, w) ∈ R

x

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P Vπ
0/1

(x, w) ∈ R

x

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P Vπ
0/1

(x, w) ∈ R

x

Complete: if , accepts.(x, w) ∈ R V

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P Vπ
0/1

(x, w) ∈ R

x

Complete: if , accepts.(x, w) ∈ R V
Non-interactive: sends a single message.P

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P Vπ
0/1

(x, w) ∈ R

x

Complete: if , accepts.(x, w) ∈ R V
Non-interactive: sends a single message.P
Succinct: and verifier is fast.|π | ≪ |w |

(Succinct Non-Interactive ARguments of Knowledge)

3

SNARKs

P Vπ
0/1

(x, w) ∈ R

x

Complete: if , accepts.(x, w) ∈ R V
Non-interactive: sends a single message.P
Succinct: and verifier is fast.|π | ≪ |w |

Knowledge Sound: if
, can extract

such that
V(x, π) = 1 w

(x, w) ∈ R

(Succinct Non-Interactive ARguments of Knowledge)

3

Constructing SNARKs
The modular way™

4

Constructing SNARKs
The modular way™

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

4

Constructing SNARKs
The modular way™

P V

PIOP

• Oracles are polynomials

4

Constructing SNARKs
The modular way™

P V

PIOP

• Oracles are polynomials
• Security is information-theoretical

4

Constructing SNARKs
The modular way™

P V

PIOP

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)

4

Constructing SNARKs
The modular way™

P V

PIOP

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

f ∈ 𝔽≤d[𝖷]

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

f ∈ 𝔽≤d[𝖷]
𝖼𝗈𝗆𝗆𝗂𝗍 f

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

f ∈ 𝔽≤d[𝖷]
𝖼𝗈𝗆𝗆𝗂𝗍 f

Later, can prove that:

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

f ∈ 𝔽≤d[𝖷]
𝖼𝗈𝗆𝗆𝗂𝗍 f

Later, can prove that:

f(x) = y, for x, y ∈ 𝔽

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

f ∈ 𝔽≤d[𝖷]
𝖼𝗈𝗆𝗆𝗂𝗍 f

Later, can prove that:

f(x) = y, for x, y ∈ 𝔽

• Cryptography goes here!

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

f ∈ 𝔽≤d[𝖷]
𝖼𝗈𝗆𝗆𝗂𝗍 f

Later, can prove that:

f(x) = y, for x, y ∈ 𝔽

• Cryptography goes here!
• Computational security

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

f ∈ 𝔽≤d[𝖷]
𝖼𝗈𝗆𝗆𝗂𝗍 f

Later, can prove that:

f(x) = y, for x, y ∈ 𝔽

• Cryptography goes here!
• Computational security
• We can achieve succinctness

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

+
FS

f ∈ 𝔽≤d[𝖷]
𝖼𝗈𝗆𝗆𝗂𝗍 f

Later, can prove that:

f(x) = y, for x, y ∈ 𝔽

• Cryptography goes here!
• Computational security
• We can achieve succinctness

4

Constructing SNARKs
The modular way™

P V

PIOP PCS

• Oracles are polynomials
• Security is information-theoretical
• Proof length is (not succinct)Ω(n)
• Verifiers are very efficient

+
FS

f ∈ 𝔽≤d[𝖷]
𝖼𝗈𝗆𝗆𝗂𝗍 f

Later, can prove that:

f(x) = y, for x, y ∈ 𝔽

• Cryptography goes here!
• Computational security
• We can achieve succinctness

We focus on this!

4

Zoo of Polynomial Commitments
A very incomplete list…

5

Zoo of Polynomial Commitments
A very incomplete list…

5

Zoo of Polynomial Commitments
A very incomplete list…

“Structure”

“C
os

t”

5

Zoo of Polynomial Commitments
A very incomplete list…

“Structure”

“C
os

t”

PQ
 L

in
e

Practical

5

Zoo of Polynomial Commitments
A very incomplete list…

“Structure”

“C
os

t”

PQ
 L

in
e

Practical

Underlined: succinct verification

*: interactive (no FS)

(T): trusted setup

5

Zoo of Polynomial Commitments
A very incomplete list…

DLOGPairings Lattices ROM

“Structure”

“C
os

t”

PQ
 L

in
e

Practical

Underlined: succinct verification

*: interactive (no FS)

(T): trusted setup

5

Zoo of Polynomial Commitments
A very incomplete list…

DLOGPairings Lattices ROM

“Structure”

“C
os

t”

PQ
 L

in
e

Practical

KZG (T)
Bulletproofs

Dory

Underlined: succinct verification

*: interactive (no FS)

(T): trusted setup

5

Zoo of Polynomial Commitments
A very incomplete list…

DLOGPairings Lattices ROM

“Structure”

“C
os

t”

PQ
 L

in
e

Practical

KZG (T)
Bulletproofs

Lattice
Bulletproofs*,

[BCS23]*,

Dory

Underlined: succinct verification

*: interactive (no FS)

(T): trusted setup

5

Zoo of Polynomial Commitments
A very incomplete list…

DLOGPairings Lattices ROM

“Structure”

“C
os

t”

PQ
 L

in
e

Practical

KZG (T)
Bulletproofs

FRI

Lattice
Bulletproofs*,

[BCS23]*,

Dory

Ligero

Underlined: succinct verification

*: interactive (no FS)

(T): trusted setup

5

STIR 🥣

Zoo of Polynomial Commitments
A very incomplete list…

DLOGPairings Lattices ROM

“Structure”

“C
os

t”

PQ
 L

in
e

Practical

KZG (T)
Bulletproofs

FRI

Lattice
Bulletproofs*,

[BCS23]*,

Dory

Ligero

Underlined: succinct verification

*: interactive (no FS)

(T): trusted setup

Why is this
empty???

5

STIR 🥣

Our Results
6

👋
7

We construct a non-interactive lattice-based polynomial commitment with:

👋
7

We construct a non-interactive lattice-based polynomial commitment with:

1. Succinct proofs

👋
7

We construct a non-interactive lattice-based polynomial commitment with:

1. Succinct proofs

2. Succinct verification time

👋
7

We construct a non-interactive lattice-based polynomial commitment with:

1. Succinct proofs

2. Succinct verification time

3. Binding under (M)SIS 👋
7

Techniques
8

Lattice-Based SNARKs
How to get around [GW11]?

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling Knowledge -RI-SISk

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling Knowledge -RI-SISk

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling Knowledge -RI-SISk

9

Lattice-Based SNARKs
How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling Knowledge -RI-SISk

9

Lattice Assumptions ❤ ROM

10

Lattice Assumptions ❤ ROM
• Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

10

Lattice Assumptions ❤ ROM
• Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

• ROM takes care of extraction and non-interactivity.

10

Lattice Assumptions ❤ ROM
• Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

• ROM takes care of extraction and non-interactivity.

Special Sound
Interactive Protocol

10

Lattice Assumptions ❤ ROM
• Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

• ROM takes care of extraction and non-interactivity.

Special Sound
Interactive Protocol

Fiat-Shamir
Transform+

10

Lattice Assumptions ❤ ROM
• Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

• ROM takes care of extraction and non-interactivity.

Special Sound
Interactive Protocol

Fiat-Shamir
Transform+ Knowledge Sound

PCS=

10

Lattice Assumptions ❤ ROM
• Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

• ROM takes care of extraction and non-interactivity.

Special Sound
Interactive Protocol

Fiat-Shamir
Transform+ Knowledge Sound

PCS=

• Use lattices to get succinctness in the interactive protocol.

10

Lattice Assumptions ❤ ROM
• Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

• ROM takes care of extraction and non-interactivity.

Special Sound
Interactive Protocol

Fiat-Shamir
Transform+ Knowledge Sound

PCS=

• Use lattices to get succinctness in the interactive protocol.

• Open Question: ROM alone is sufficient for efficient PCS (e.g. STIR), can we
gain by using lattices?

10

Building succinct PCS

11

Building succinct PCS

Commitment Scheme

11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

• Need commitment | t | ≪ d

11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

• Need commitment | t | ≪ d

• Must be binding for of arbitrary
norm

f
11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

Evaluation Protocol

• Need commitment | t | ≪ d

• Must be binding for of arbitrary
norm

f
11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

V

t, u, v
Evaluation Protocol

• Need commitment | t | ≪ d

• Must be binding for of arbitrary
norm

f
11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

V

t, u, v

P

f, s

Evaluation Protocol

• Need commitment | t | ≪ d

• Must be binding for of arbitrary
norm

f
11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

V

t, u, v

P

f, s

Evaluation Protocol

• Need commitment | t | ≪ d

• Must be binding for of arbitrary
norm

f
11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

V

t, u, v

P

f, s

“I know such that and an
opening for to ”

f f(u) = v
s f := 𝖼𝗈𝖾𝖿𝖿(f) t

Evaluation Protocol

• Need commitment | t | ≪ d

• Must be binding for of arbitrary
norm

f
11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

V

t, u, v

P

f, s

“I know such that and an
opening for to ”

f f(u) = v
s f := 𝖼𝗈𝖾𝖿𝖿(f) t

Evaluation Protocol

• Need commitment | t | ≪ d

• Must be binding for of arbitrary
norm

f
• Need ’s running time to beV ≪ d

11

Building succinct PCS

Commitment Scheme

• Commit to a vector f ∈ ℛd
q

• Commitment , opening t s

• Binding under lattice assumption

V

t, u, v

P

f, s

“I know such that and an
opening for to ”

f f(u) = v
s f := 𝖼𝗈𝖾𝖿𝖿(f) t

Evaluation Protocol

• Need commitment | t | ≪ d

• Must be binding for of arbitrary
norm

f
• Need ’s running time to beV ≪ d

• Need communication complexity ≪ d
11

PRISIS Commitments I
A starting point [FMN23]

12

PRISIS Commitments I
A starting point [FMN23]

Given and trapdoor for B :=
w0A … −G

⋱
… wℓ−1A −G

T B

12

PRISIS Commitments I
A starting point [FMN23]

Given and trapdoor for B :=
w0A … −G

⋱
… wℓ−1A −G

T B

Use to sample short such that: T s0, …, sℓ−1, ̂t

12

PRISIS Commitments I
A starting point [FMN23]

Given and trapdoor for B :=
w0A … −G

⋱
… wℓ−1A −G

T B

Use to sample short such that: T s0, …, sℓ−1, ̂t

B

s0
⋮

sℓ−1

̂t

=
−f0w0e1

⋮
−fℓ−1wℓ−1e1

12
targetpreimage

PRISIS Commitments I
A starting point [FMN23]

Given and trapdoor for B :=
w0A … −G

⋱
… wℓ−1A −G

T B

Use to sample short such that: T s0, …, sℓ−1, ̂t

B

s0
⋮

sℓ−1

̂t

=
−f0w0e1

⋮
−fℓ−1wℓ−1e1

The commitment is and the
openings are .

t := G ̂t
(si)i

12
targetpreimage

PRISIS Commitments I
A starting point [FMN23]

Given and trapdoor for B :=
w0A … −G

⋱
… wℓ−1A −G

T B

Use to sample short such that: T s0, …, sℓ−1, ̂t

B

s0
⋮

sℓ−1

̂t

=
−f0w0e1

⋮
−fℓ−1wℓ−1e1

The commitment is and the
openings are .

t := G ̂t
(si)i

To open check that

12
targetpreimage

PRISIS Commitments I
A starting point [FMN23]

Given and trapdoor for B :=
w0A … −G

⋱
… wℓ−1A −G

T B

Use to sample short such that: T s0, …, sℓ−1, ̂t

B

s0
⋮

sℓ−1

̂t

=
−f0w0e1

⋮
−fℓ−1wℓ−1e1

The commitment is and the
openings are .

t := G ̂t
(si)i

To open check that

 and shortAsi + fie1 = w−it si
12

targetpreimage

Pros ✅ and Cons ❌
PRISIS Commitments II

13

Pros ✅ and Cons ❌

• Commitment is succinct.

PRISIS Commitments II

13

Pros ✅ and Cons ❌

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

PRISIS Commitments II

13

Pros ✅ and Cons ❌

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Algebraic structure enables efficient
evaluation protocol.

PRISIS Commitments II

13

Pros ✅ and Cons ❌

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Algebraic structure enables efficient
evaluation protocol.

• Binding under non-standard PRISIS
assumption.

PRISIS Commitments II

13

Pros ✅ and Cons ❌

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Algebraic structure enables efficient
evaluation protocol.

• Binding under non-standard PRISIS
assumption.

• Time to commit is quadratic.

PRISIS Commitments II

13

Pros ✅ and Cons ❌

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Algebraic structure enables efficient
evaluation protocol.

• Binding under non-standard PRISIS
assumption.

• Time to commit is quadratic.

• Common reference string is quadratic.

PRISIS Commitments II

13

Pros ✅ and Cons ❌

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Algebraic structure enables efficient
evaluation protocol.

• Binding under non-standard PRISIS
assumption.

• Time to commit is quadratic.

• Common reference string is quadratic.

• Trusted setup

PRISIS Commitments II

13

Pros ✅ and Cons ❌

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Algebraic structure enables efficient
evaluation protocol.

• Binding under non-standard PRISIS
assumption.

• Time to commit is quadratic.

• Common reference string is quadratic.

• Trusted setup

Can we do better?

PRISIS Commitments II

13

Small-Dimension PRISIS

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

Multi-Instance BASIS

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

Multi-Instance BASIS
-instance BASIS Gameh

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

Multi-Instance BASIS
-instance BASIS Gameh

A⋆
1 , …, A⋆

h ← ℛm×n
q

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

Multi-Instance BASIS
-instance BASIS Gameh

A⋆
1 , …, A⋆

h ← ℛm×n
q

 for 𝖺𝗎𝗑i ← 𝖲𝖺𝗆𝗉(A⋆
i) i ∈ [h]

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

Multi-Instance BASIS
-instance BASIS Gameh

A⋆
1 , …, A⋆

h ← ℛm×n
q

 for 𝖺𝗎𝗑i ← 𝖲𝖺𝗆𝗉(A⋆
i) i ∈ [h]

return to ((A⋆
i , 𝖺𝗎𝗑i)i) 𝒜

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

Multi-Instance BASIS
-instance BASIS Gameh

A⋆
1 , …, A⋆

h ← ℛm×n
q

 for 𝖺𝗎𝗑i ← 𝖲𝖺𝗆𝗉(A⋆
i) i ∈ [h]

return to ((A⋆
i , 𝖺𝗎𝗑i)i) 𝒜

 wins if it finds :

•

•

𝒜 x

[A⋆
1 , …, A⋆

h] ⋅ x = 0

0 < |x | ≤ β

14

Small-Dimension PRISIS
[FMN23]: reduces to MSISℓ = 2

Multi-Instance BASIS
-instance BASIS Gameh

A⋆
1 , …, A⋆

h ← ℛm×n
q

 for 𝖺𝗎𝗑i ← 𝖲𝖺𝗆𝗉(A⋆
i) i ∈ [h]

return to ((A⋆
i , 𝖺𝗎𝗑i)i) 𝒜

 wins if it finds :

•

•

𝒜 x

[A⋆
1 , …, A⋆

h] ⋅ x = 0

0 < |x | ≤ β

For , if PRISIS
is hard so is -PRISIS !

ℓ = O(1) ℓ
h ℓ

14

Merkle-PRISIS I
Example with d = 8

15

Merkle-PRISIS I

f000

Example with d = 8

15

Merkle-PRISIS I

f000 f001

Example with d = 8

15

Merkle-PRISIS I

f000 f001 f010 f011 f100 f101 f110 f111

Example with d = 8

15

Merkle-PRISIS I

f000 f001 f010 f011 f100 f101 f110 f111

Example with d = 8

15

Merkle-PRISIS I

f000 f001 f010 f011 f100 f101 f110 f111

t00

Example with d = 8

15

Merkle-PRISIS I

f000 f001 f010 f011 f100 f101 f110 f111

t00

s000, s001

Example with d = 8

15

Merkle-PRISIS I

f000 f001 f010 f011 f100 f101 f110 f111

t00

s000, s001

t01 t10 t11

s010, s011 s100, s101 s110, s111

Example with d = 8

15

Merkle-PRISIS I

f000 f001 f010 f011 f100 f101 f110 f111

t00

s000, s001

t0 t0

s0, s1s00, s01 s10, s11

t01 t10 t11

s010, s011 s100, s101 s110, s111

Example with d = 8

15

Merkle-PRISIS I

f000 f001 f010 f011 f100 f101 f110 f111

t

t00

s000, s001

t0 t0

s0, s1s00, s01 s10, s11

t01 t10 t11

s010, s011 s100, s101 s110, s111

Example with d = 8

15

Merkle-PRISIS II
How to check an opening

16

Merkle-PRISIS II
How to check an opening

• Each layer has its own for 𝖼𝗋𝗌j := (Aj, wj, Tj) j ∈ [h := log d]

16

Merkle-PRISIS II
How to check an opening

• Each layer has its own for 𝖼𝗋𝗌j := (Aj, wj, Tj) j ∈ [h := log d]

• Check that all local openings are correct. I.e. check that, for :b ∈ {0,1}h

16

Merkle-PRISIS II
How to check an opening

• Each layer has its own for 𝖼𝗋𝗌j := (Aj, wj, Tj) j ∈ [h := log d]

• Check that all local openings are correct. I.e. check that, for :b ∈ {0,1}h

∑
j∈[h]

wbj
j Ajsb:j + fb ⋅ e = t

16

Merkle-PRISIS II
How to check an opening

• Each layer has its own for 𝖼𝗋𝗌j := (Aj, wj, Tj) j ∈ [h := log d]

• Check that all local openings are correct. I.e. check that, for :b ∈ {0,1}h

• And, of course, that all the openings are short for sb b ∈ {0,1}≤h

∑
j∈[h]

wbj
j Ajsb:j + fb ⋅ e = t

16

Merkle-PRISIS II
How to check an opening

• Each layer has its own for 𝖼𝗋𝗌j := (Aj, wj, Tj) j ∈ [h := log d]

• Check that all local openings are correct. I.e. check that, for :b ∈ {0,1}h

• And, of course, that all the openings are short for sb b ∈ {0,1}≤h

• Binding: subtract two verification equation:

∑
j∈[h]

wbj
j Ajsb:j + fb ⋅ e = t

16

Merkle-PRISIS II
How to check an opening

• Each layer has its own for 𝖼𝗋𝗌j := (Aj, wj, Tj) j ∈ [h := log d]

• Check that all local openings are correct. I.e. check that, for :b ∈ {0,1}h

• And, of course, that all the openings are short for sb b ∈ {0,1}≤h

• Binding: subtract two verification equation:

reduces to -PRISIS i.e. MSIS!h ℓ

∑
j∈[h]

wbj
j Ajsb:j + fb ⋅ e = t

16

Merkle-PRISIS III
Pros ✅ and Cons ❌

17

• Commitment is succinct.

Merkle-PRISIS III
Pros ✅ and Cons ❌

17

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

Merkle-PRISIS III
Pros ✅ and Cons ❌

17

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Time to commit is quasi-linear.

Merkle-PRISIS III
Pros ✅ and Cons ❌

17

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Time to commit is quasi-linear.

• Common reference string is logarithmic.

Merkle-PRISIS III
Pros ✅ and Cons ❌

17

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Time to commit is quasi-linear.

• Common reference string is logarithmic.

• Binding under standard SIS assumption.

Merkle-PRISIS III
Pros ✅ and Cons ❌

17

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Time to commit is quasi-linear.

• Common reference string is logarithmic.

• Binding under standard SIS assumption.

• Trusted setup

Merkle-PRISIS III
Pros ✅ and Cons ❌

17

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Time to commit is quasi-linear.

• Common reference string is logarithmic.

• Binding under standard SIS assumption.

• Trusted setup

Merkle-PRISIS III
Pros ✅ and Cons ❌

17

• Commitment is succinct.

• Supports committing to messages of
arbitrary size.

• Time to commit is quasi-linear.

• Common reference string is logarithmic.

• Binding under standard SIS assumption.

• Trusted setup

Merkle-PRISIS III

Can we do an efficient
evaluation protocol?

Pros ✅ and Cons ❌

17

Evaluation Protocol
FRI Inspired folding + CWSS

18

Are we done?

19

Are we done?
• Apply protocol recursively times and send final opening .log d O(1)

19

Are we done?
• Apply protocol recursively times and send final opening .log d O(1)

• Knowledge soundness follows from coordinate-wise special soundness.

19

Are we done?
• Apply protocol recursively times and send final opening .log d O(1)

• Knowledge soundness follows from coordinate-wise special soundness.

• Commitment is succinct, verifier also succinct.

19

Are we done?
• Apply protocol recursively times and send final opening .log d O(1)

• Knowledge soundness follows from coordinate-wise special soundness.

• Commitment is succinct, verifier also succinct.

• Problem 🤔: Knowledge soundness error is .1/𝗉𝗈𝗅𝗒(λ)

19

Are we done?
• Apply protocol recursively times and send final opening .log d O(1)

• Knowledge soundness follows from coordinate-wise special soundness.

• Commitment is succinct, verifier also succinct.

• Problem 🤔: Knowledge soundness error is .1/𝗉𝗈𝗅𝗒(λ)

• Can be made negligible by parallel repetition, but then no Fiat-Shamir!

19

Are we done?
• Apply protocol recursively times and send final opening .log d O(1)

• Knowledge soundness follows from coordinate-wise special soundness.

• Commitment is succinct, verifier also succinct.

• Problem 🤔: Knowledge soundness error is .1/𝗉𝗈𝗅𝗒(λ)

• Can be made negligible by parallel repetition, but then no Fiat-Shamir!

• Change the challenge space?

19

Are we done?
• Apply protocol recursively times and send final opening .log d O(1)

• Knowledge soundness follows from coordinate-wise special soundness.

• Commitment is succinct, verifier also succinct.

• Problem 🤔: Knowledge soundness error is .1/𝗉𝗈𝗅𝗒(λ)

• Can be made negligible by parallel repetition, but then no Fiat-Shamir!

• Change the challenge space?

• Non-subtractive challenge space => Blowup in extraction, cannot do more than
 recursions => only quasi-polylogarithmic sizes. log log d

19

Are we done?
• Apply protocol recursively times and send final opening .log d O(1)

• Knowledge soundness follows from coordinate-wise special soundness.

• Commitment is succinct, verifier also succinct.

• Problem 🤔: Knowledge soundness error is .1/𝗉𝗈𝗅𝗒(λ)

• Can be made negligible by parallel repetition, but then no Fiat-Shamir!

• Change the challenge space?

• Non-subtractive challenge space => Blowup in extraction, cannot do more than
 recursions => only quasi-polylogarithmic sizes. log log d

• Subtractive challenge space => Challenge space of size at most [AL21]𝗉𝗈𝗅𝗒(λ)

19

Claim bundling I
Let’s prove something harder!

f0,L f0,L

20

Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

f0,L f0,L

20

Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

• As in [FMN23], our protocol can be easily extended to deal with this.

f0,L f0,L

20

Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

• As in [FMN23], our protocol can be easily extended to deal with this.

f0,L

f0

Split

f1

f0,L

20

Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

• As in [FMN23], our protocol can be easily extended to deal with this.

f0,L

f0

Split

f1

f0,Lf0,L f0,R f1,L f1,R

20

Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

• As in [FMN23], our protocol can be easily extended to deal with this.

f0,L

f0

Split

f1

f0,Lf0,L f0,R f1,L f1,R

[α0,L,0, α0,R,0, α1,L,0, α1,R,0
α0,L,1, α0,R,1, α1,L,1, α1,R,1] ∈ (𝒞r)2r

Randomness is now:

20

Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

• As in [FMN23], our protocol can be easily extended to deal with this.

f0,L

f0

Split

f1

f0,Lf0,L f0,R f1,L f1,R

[α0,L,0, α0,R,0, α1,L,0, α1,R,0
α0,L,1, α0,R,1, α1,L,1, α1,R,1] ∈ (𝒞r)2r

Randomness is now:

 folds
into
αι,i,κ fι,i

gκ

20

Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

• As in [FMN23], our protocol can be easily extended to deal with this.

f0,L

f0

Split

f1

f0,Lf0,L f0,R f1,L f1,R

g0

Fold

g1

[α0,L,0, α0,R,0, α1,L,0, α1,R,0
α0,L,1, α0,R,1, α1,L,1, α1,R,1] ∈ (𝒞r)2r

Randomness is now:

 folds
into
αι,i,κ fι,i

gκ

20

Claim bundling I
Let’s prove something harder!

• Instead of proving , show that, for , f(u) = v ι ∈ [r] fι(u) = vι

• As in [FMN23], our protocol can be easily extended to deal with this.

f0,L

f0

Split

f1

f0,Lf0,L f0,R f1,L f1,R

g0

Fold

g1

[α0,L,0, α0,R,0, α1,L,0, α1,R,0
α0,L,1, α0,R,1, α1,L,1, α1,R,1] ∈ (𝒞r)2r

Randomness is now:

g0 := α0,L,0 f0,L + α0,R,0 f0,R + α1,L,0 f1,L + α1,R,0 f1,R

g1 := α0,L,1 f0,L + α0,R,1 f0,R + α1,L,1 f1,L + α1,R,1 f1,R

Folded polynomial:

 folds
into
αι,i,κ fι,i

gκ

20

Claim bundling II
What did we gain?

21

Claim bundling II
What did we gain?

• Now, protocol is coordinate-wise special sound with challenge space of
size roughly

2r
𝗉𝗈𝗅𝗒(λ)r

21

Claim bundling II
What did we gain?

• Now, protocol is coordinate-wise special sound with challenge space of
size roughly

2r
𝗉𝗈𝗅𝗒(λ)r

• Setting to be , we achieve negligible knowledge error!r 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

21

Claim bundling II
What did we gain?

• Now, protocol is coordinate-wise special sound with challenge space of
size roughly

2r
𝗉𝗈𝗅𝗒(λ)r

• Setting to be , we achieve negligible knowledge error!r 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

• Our protocol can now be made non-interactive using FS.

21

Claim bundling II
What did we gain?

• Now, protocol is coordinate-wise special sound with challenge space of
size roughly

2r
𝗉𝗈𝗅𝗒(λ)r

• Setting to be , we achieve negligible knowledge error!r 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

• Our protocol can now be made non-interactive using FS.

• To prove a single claim , simply set and .f(u) = v f1, …, fr = f v1, …, vr = v

21

Conclusion
22

👋 - SLAP
A non-interactive lattice-based
polynomial commitment with succinct
proofs and verification time, from
standard lattice assumptions.

23

There is more!
What we did not talk about

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

• Folding more at each step

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

• Folding more at each step

• Coordinate-wise special soundness

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

• Folding more at each step

• Coordinate-wise special soundness

• Honest-verifier zero knowledge for our PCS

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

• Folding more at each step

• Coordinate-wise special soundness

• Honest-verifier zero knowledge for our PCS

• Transforming PCS for in those for (efficient packing)ℛq ℤq

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

• Folding more at each step

• Coordinate-wise special soundness

• Honest-verifier zero knowledge for our PCS

• Transforming PCS for in those for (efficient packing)ℛq ℤq

• Twin- - -ISIS is no easier than - -ISISk M 2k M

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

• Folding more at each step

• Coordinate-wise special soundness

• Honest-verifier zero knowledge for our PCS

• Transforming PCS for in those for (efficient packing)ℛq ℤq

• Twin- - -ISIS is no easier than - -ISISk M 2k M

• Setting concrete parameters

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

• Folding more at each step

• Coordinate-wise special soundness

• Honest-verifier zero knowledge for our PCS

• Transforming PCS for in those for (efficient packing)ℛq ℤq

• Twin- - -ISIS is no easier than - -ISISk M 2k M

• Setting concrete parameters

• Reductions… all the reductions

24

There is more!
What we did not talk about
• Succinct evaluation protocol for Merkle-PRISIS

• Folding more at each step

• Coordinate-wise special soundness

• Honest-verifier zero knowledge for our PCS

• Transforming PCS for in those for (efficient packing)ℛq ℤq

• Twin- - -ISIS is no easier than - -ISISk M 2k M

• Setting concrete parameters

• Reductions… all the reductions

24

gfenzi.io/papers/slap

ia.cr/2023/1469

Details here!

http://ia.cr/2023/1469
http://gfenzi.io/papers/slap

Open Questions 🔬

25

Open Questions 🔬
• Can we get succinct lattice-based polynomial commitments under 100KB?

25

Open Questions 🔬
• Can we get succinct lattice-based polynomial commitments under 100KB?

• Can we get knowledge error in one-shot (no claim bundling)?negl(λ)

25

Open Questions 🔬
• Can we get succinct lattice-based polynomial commitments under 100KB?

• Can we get knowledge error in one-shot (no claim bundling)?negl(λ)

• Is PRISIS with still secure?ℓ ℓ > 2

25

Open Questions 🔬
• Can we get succinct lattice-based polynomial commitments under 100KB?

• Can we get knowledge error in one-shot (no claim bundling)?negl(λ)

• Is PRISIS with still secure?ℓ ℓ > 2

25

Thank you!
26

Extra slides
27

Evaluation Protocol I
Strategy

28

Evaluation Protocol I
Strategy

P

28

Evaluation Protocol I
Strategy

Prover knows:

P

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

P

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t
• Claim: and f(u) = v

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌, t, f, (sb)b) = 1

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t
• Claim: and f(u) = v

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌, t, f, (sb)b) = 1

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t
• Claim: and f(u) = v

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌, t, f, (sb)b) = 1

Prover now knows:

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t
• Claim: and f(u) = v

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌, t, f, (sb)b) = 1

Prover now knows:
• Polynomial and

openings
g ∈ ℛ<d/2

q [X]
(zb)b

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t
• Claim: and f(u) = v

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌, t, f, (sb)b) = 1

Prover now knows:
• Polynomial and

openings
g ∈ ℛ<d/2

q [X]
(zb)b

Verifier now knows:

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t
• Claim: and f(u) = v

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌, t, f, (sb)b) = 1

Prover now knows:
• Polynomial and

openings
g ∈ ℛ<d/2

q [X]
(zb)b

Verifier now knows:
• Common reference string 𝖼𝗋𝗌′￼

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t
• Claim: and f(u) = v

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌, t, f, (sb)b) = 1

Prover now knows:
• Polynomial and

openings
g ∈ ℛ<d/2

q [X]
(zb)b

Verifier now knows:
• Common reference string 𝖼𝗋𝗌′￼

• Commitment t′￼

P V

28

Evaluation Protocol I
Strategy

Prover knows:
• Polynomial and

openings
f ∈ ℛ<d

q [X]
(sb)b

Verifier knows:
• Common reference string 𝖼𝗋𝗌
• Commitment t
• Claim: and f(u) = v

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌, t, f, (sb)b) = 1

Prover now knows:
• Polynomial and

openings
g ∈ ℛ<d/2

q [X]
(zb)b

Verifier now knows:
• Common reference string 𝖼𝗋𝗌′￼

• Commitment t′￼

• New claim: and g(u′￼) = v′￼

𝖮𝗉𝖾𝗇(𝖼𝗋𝗌′￼, t′￼, g, (zb)b) = 1

P V

28

Evaluation Protocol II
Split and fold (Evaluations)

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

Split f(X) = fL(X2) + X ⋅ fR(X2)

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

Split f(X) = fL(X2) + X ⋅ fR(X2)

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

Split f(X) = fL(X2) + X ⋅ fR(X2)

V
α0, α1

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

Split f(X) = fL(X2) + X ⋅ fR(X2)

V
α0, α1

Fold

g(X) = α0 fL(X) + α1 fR(X)

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

g ∈ ℛ<d/2
q [X]

Split f(X) = fL(X2) + X ⋅ fR(X2)

V
α0, α1

Fold

g(X) = α0 fL(X) + α1 fR(X)

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

g ∈ ℛ<d/2
q [X]

Split f(X) = fL(X2) + X ⋅ fR(X2)

V
α0, α1

Fold

g(X) = α0 fL(X) + α1 fR(X)

Ask prover to send . Check z0 = fL(u2), z1 = fR(u2) z0 + uz1 = z

29

Evaluation Protocol II
Split and fold (Evaluations)

f ∈ ℛ<d
q [X]

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

g ∈ ℛ<d/2
q [X]

Split f(X) = fL(X2) + X ⋅ fR(X2)

V
α0, α1

Fold

g(X) = α0 fL(X) + α1 fR(X)

Ask prover to send . Check z0 = fL(u2), z1 = fR(u2) z0 + uz1 = z

If , then .f(u) = v g(u2) = α0z0 + α1z1
29

Evaluation Protocol III
Split and fold (Openings)

30

Evaluation Protocol III
Split and fold (Openings)

f ∈ ℛ<d
q [X]

f0 f1 f2 f3 f4 f5 f6 f7

30

Evaluation Protocol III
Split and fold (Openings)

f ∈ ℛ<d
q [X]

f0 f1 f2 f3 f4 f5 f6 f7

Split

30

Evaluation Protocol III
Split and fold (Openings)

f ∈ ℛ<d
q [X]

f0 f1 f2 f3 f4 f5 f6 f7

f6f0 f2 f4 f1 f3 f5 f7

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

Split

30

Evaluation Protocol III
Split and fold (Openings)

f ∈ ℛ<d
q [X]

f0 f1 f2 f3 f4 f5 f6 f7

f6f0 f2 f4 f1 f3 f5 f7

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

Split

Fold

30

Evaluation Protocol III
Split and fold (Openings)

f ∈ ℛ<d
q [X]

f0 f1 f2 f3 f4 f5 f6 f7

f6f0 f2 f4 f1 f3 f5 f7

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

Split

g ∈ ℛ<d/2
q [X]

α0 f0 + α1 f1 α0 f2 + α1 f3 α0 f4 + α1 f5 α0 f5 + α1 f6

Fold

30

Evaluation Protocol III
Split and fold (Openings)

f ∈ ℛ<d
q [X]

f0 f1 f2 f3 f4 f5 f6 f7

s0, s1s00, s01 s10, s11

s000, s001 s010, s011 s100, s101 s110, s111

f6f0 f2 f4 f1 f3 f5 f7

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

Split

g ∈ ℛ<d/2
q [X]

α0 f0 + α1 f1 α0 f2 + α1 f3 α0 f4 + α1 f5 α0 f5 + α1 f6

Fold

30

Evaluation Protocol III
Split and fold (Openings)

f ∈ ℛ<d
q [X]

f0 f1 f2 f3 f4 f5 f6 f7

s0, s1s00, s01 s10, s11

s000, s001 s010, s011 s100, s101 s110, s111

f6f0 f2 f4 f1 f3 f5 f7

fL ∈ ℛ<d/2
q [X] fR ∈ ℛ<d/2

q [X]

α0s000 + α1s100,
α0s001 + α1s101

α0s010 + α1s110,
α0s011 + α1s111

α0s00 + α1s10, α0s01 + α1s11

Split

g ∈ ℛ<d/2
q [X]

α0 f0 + α1 f1 α0 f2 + α1 f3 α0 f4 + α1 f5 α0 f5 + α1 f6

Fold

30

Evaluation Protocol IV
Split and fold (Commitment)

31

Evaluation Protocol IV
Split and fold (Commitment)

• We have shown how to compute new evaluations and openings

31

Evaluation Protocol IV
Split and fold (Commitment)

• We have shown how to compute new evaluations and openings

• If are short, the new openings also are.αi

31

Evaluation Protocol IV
Split and fold (Commitment)

• We have shown how to compute new evaluations and openings

• If are short, the new openings also are.αi

• How does the verifier compute new commitment? With some magic:

31

Evaluation Protocol IV
Split and fold (Commitment)

• We have shown how to compute new evaluations and openings

• If are short, the new openings also are.αi

• How does the verifier compute new commitment? With some magic:

∑
j∈[h−1]

wb1+j
1+j A1+jsb:1+j + gbe = α0 ⋅ (t − w0

1A1s0) + α1 ⋅ (t − w1
1A1s1)

31

Evaluation Protocol IV
Split and fold (Commitment)

• We have shown how to compute new evaluations and openings

• If are short, the new openings also are.αi

• How does the verifier compute new commitment? With some magic:

• Prover reveals . Verifier sets RHS as new updated commitment.s0, s1

∑
j∈[h−1]

wb1+j
1+j A1+jsb:1+j + gbe = α0 ⋅ (t − w0

1A1s0) + α1 ⋅ (t − w1
1A1s1)

31

BASIS-👪
[WW23]

32

BASIS-👪
[WW23] BASIS Game

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

𝖲𝖺𝗆𝗉𝖡𝖠𝖲𝖨𝖲,ℓ(A⋆)

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

𝖲𝖺𝗆𝗉𝖡𝖠𝖲𝖨𝖲,ℓ(A⋆)

Sample a, A2, …Aℓ

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

𝖲𝖺𝗆𝗉𝖡𝖠𝖲𝖨𝖲,ℓ(A⋆)

Sample a, A2, …Aℓ

, A1 := [a⊤

A⋆] B :=
A1 … −G

⋱
… Ad −G

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

𝖲𝖺𝗆𝗉𝖡𝖠𝖲𝖨𝖲,ℓ(A⋆)

Sample a, A2, …Aℓ

, A1 := [a⊤

A⋆] B :=
A1 … −G

⋱
… Ad −G

return (a, (Ai)i, B−1(G))
32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

𝖲𝖺𝗆𝗉𝖡𝖠𝖲𝖨𝖲,ℓ(A⋆)

Sample a, A2, …Aℓ

, A1 := [a⊤

A⋆] B :=
A1 … −G

⋱
… Ad −G

return (a, (Ai)i, B−1(G))

𝖲𝖺𝗆𝗉𝖯𝖱𝖨𝖲𝖨𝖲,ℓ(A⋆)

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

𝖲𝖺𝗆𝗉𝖡𝖠𝖲𝖨𝖲,ℓ(A⋆)

Sample a, A2, …Aℓ

, A1 := [a⊤

A⋆] B :=
A1 … −G

⋱
… Ad −G

return (a, (Ai)i, B−1(G))

𝖲𝖺𝗆𝗉𝖯𝖱𝖨𝖲𝖨𝖲,ℓ(A⋆)

Sample a, w

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

𝖲𝖺𝗆𝗉𝖡𝖠𝖲𝖨𝖲,ℓ(A⋆)

Sample a, A2, …Aℓ

, A1 := [a⊤

A⋆] B :=
A1 … −G

⋱
… Ad −G

return (a, (Ai)i, B−1(G))

𝖲𝖺𝗆𝗉𝖯𝖱𝖨𝖲𝖨𝖲,ℓ(A⋆)

Sample a, w

, A := [a⊤

A⋆] B :=
w0A … −G

⋱
… wℓ−1A −G

32

BASIS-👪
[WW23] BASIS Game

A⋆ ← ℛm×n
q

𝖺𝗎𝗑 ← 𝖲𝖺𝗆𝗉(A⋆)

return to (A⋆, 𝖺𝗎𝗑) 𝒜

return

𝖲𝖺𝗆𝗉𝖲𝖨𝖲(A⋆)

⊥

 wins if it finds :

•

•

𝒜 x

A⋆x = 0

0 < |x | ≤ β

𝖲𝖺𝗆𝗉𝖡𝖠𝖲𝖨𝖲,ℓ(A⋆)

Sample a, A2, …Aℓ

, A1 := [a⊤

A⋆] B :=
A1 … −G

⋱
… Ad −G

return (a, (Ai)i, B−1(G))

𝖲𝖺𝗆𝗉𝖯𝖱𝖨𝖲𝖨𝖲,ℓ(A⋆)

Sample a, w

, A := [a⊤

A⋆] B :=
w0A … −G

⋱
… wℓ−1A −G

return (a, w, B−1(G))
32

Recap:
What we talked about

33

Recap:
What we talked about

• PRISIS and Merkle-PRISIS commitments

33

Recap:
What we talked about

• PRISIS and Merkle-PRISIS commitments

• Multi-instance PRISIS assumptions

33

Recap:
What we talked about

• PRISIS and Merkle-PRISIS commitments

• Multi-instance PRISIS assumptions

• -PRISIS reduces to MSISh 2

33

Recap:
What we talked about

• PRISIS and Merkle-PRISIS commitments

• Multi-instance PRISIS assumptions

• -PRISIS reduces to MSISh 2

• Succinct evaluation protocol for Merkle-PRISIS

33

Recap:
What we talked about

• PRISIS and Merkle-PRISIS commitments

• Multi-instance PRISIS assumptions

• -PRISIS reduces to MSISh 2

• Succinct evaluation protocol for Merkle-PRISIS

• Boosting soundness via claim bundling

33

Trapdoors [MP12]

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

• Can sample such that , with short.(A, R) AR = G R

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

• Can sample such that , with short.(A, R) AR = G R

Λ⊥(A)
“Not nice”

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

• Can sample such that , with short.(A, R) AR = G R
Λ⊥(G)
“Nice”

Λ⊥(A)
“Not nice”

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

• Can sample such that , with short.(A, R) AR = G R
Λ⊥(G)
“Nice”

Λ⊥(A)
“Not nice”

R

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

• Can sample such that , with short.(A, R) AR = G R

• Given , can sample short such that .A, R, v s As = v Λ⊥(G)
“Nice”

Λ⊥(A)
“Not nice”

R

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

• Can sample such that , with short.(A, R) AR = G R

• Given , can sample short such that .A, R, v s As = v

Trapdoor Resampling [WW23]

Λ⊥(G)
“Nice”

Λ⊥(A)
“Not nice”

R

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

• Can sample such that , with short.(A, R) AR = G R

• Given , can sample short such that .A, R, v s As = v

Trapdoor Resampling [WW23]
• Given , can sample new trapdoor for some matrix “related” to (A, R) T B A

Λ⊥(G)
“Nice”

Λ⊥(A)
“Not nice”

R

34

Trapdoors [MP12]
• Let be a “gadget matrix”G

• Can sample such that , with short.(A, R) AR = G R

• Given , can sample short such that .A, R, v s As = v

Trapdoor Resampling [WW23]
• Given , can sample new trapdoor for some matrix “related” to (A, R) T B A

• BASIS style assumption say:

“Given , hard to find short for ”A, B, T x Ax = 0

Λ⊥(G)
“Nice”

Λ⊥(A)
“Not nice”

R

34

