

Succinct Lattice-Based Polynomial Commitment Schemes from Standard Assumptions (2023/1469)

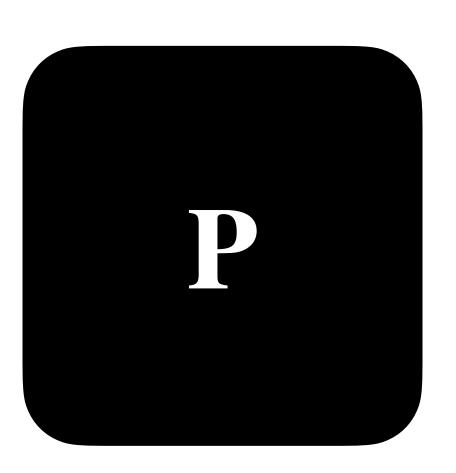
Giacomo Fenzi @ EPFL

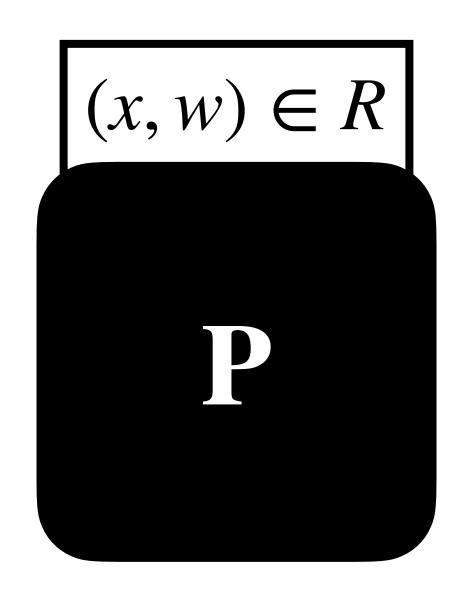
Joint work with: Martin Albrecht Ngoc Khanh Nguyen

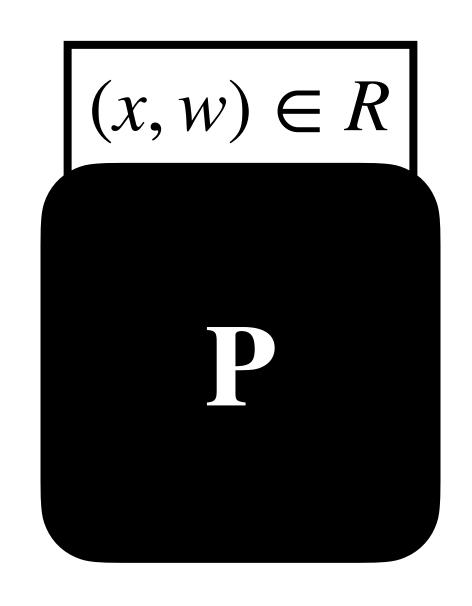
Oleksandra Lapiha

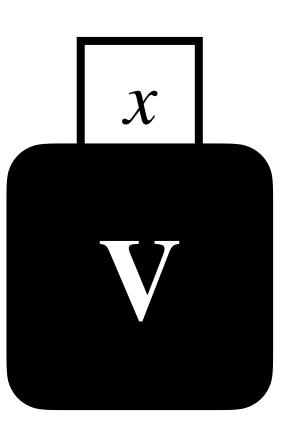
Motivation

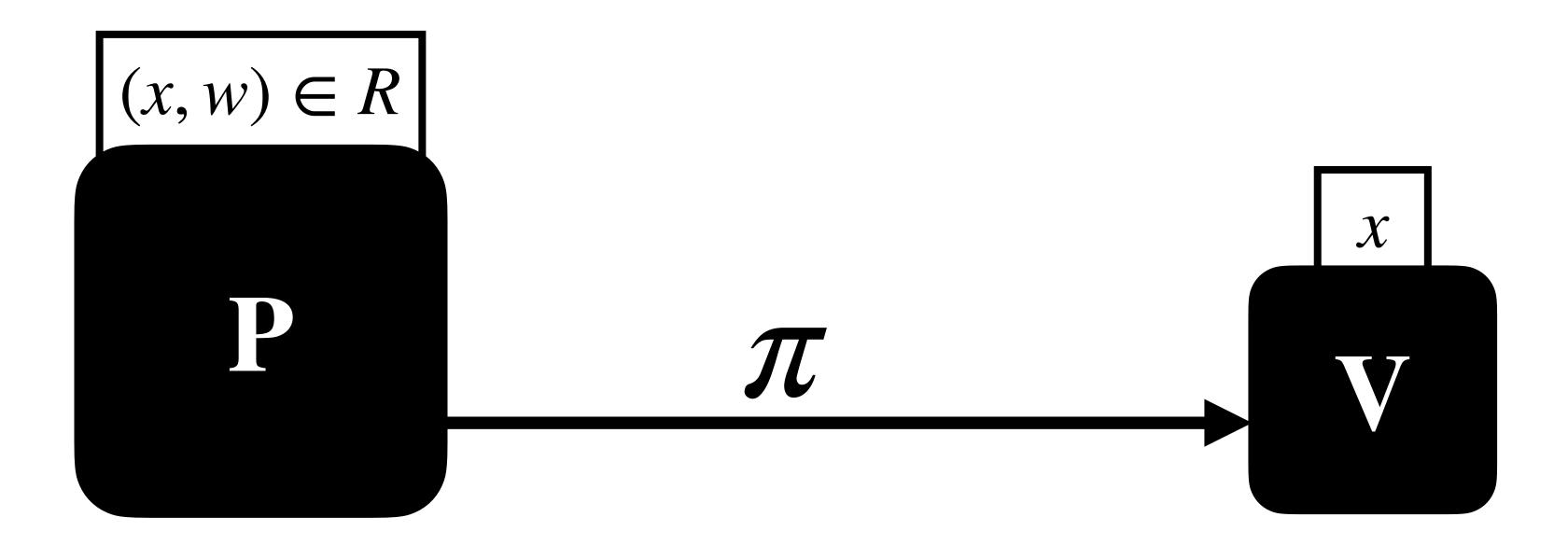


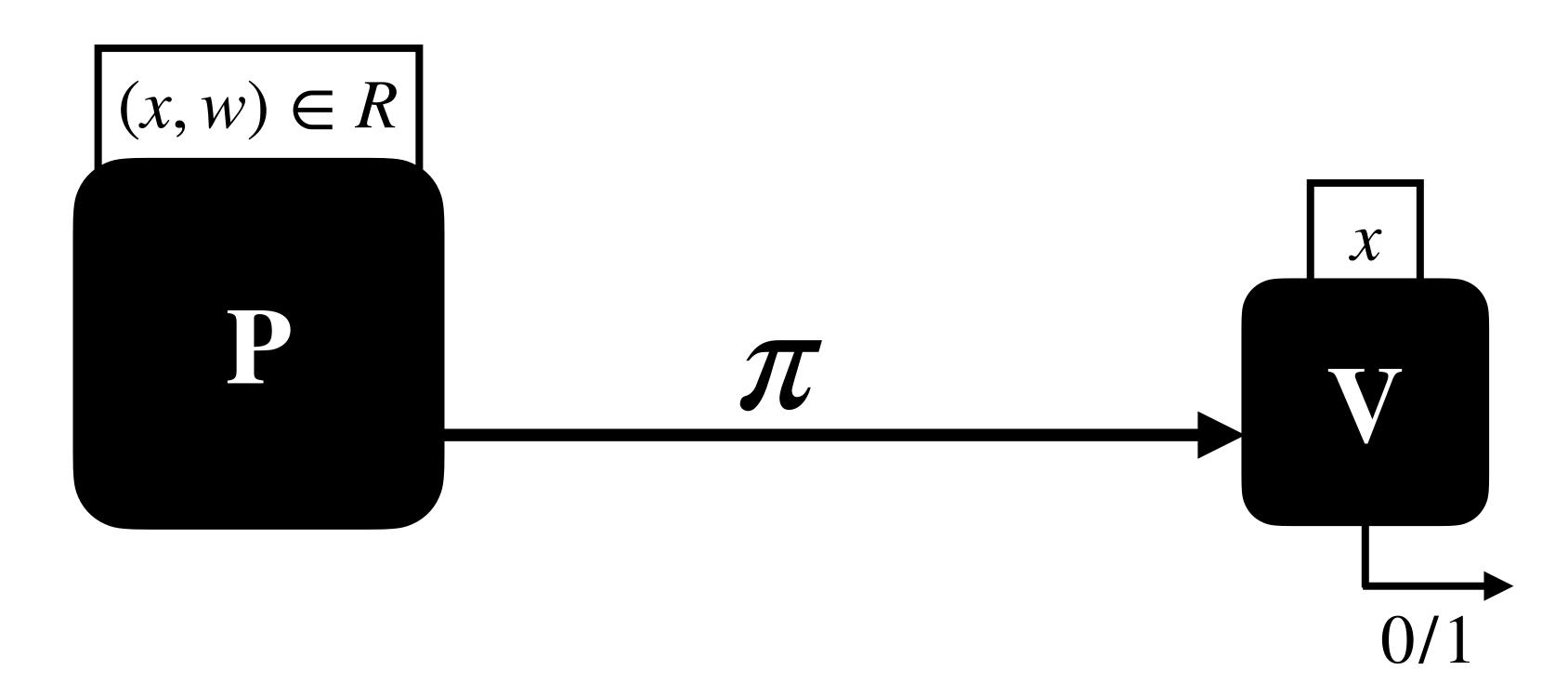




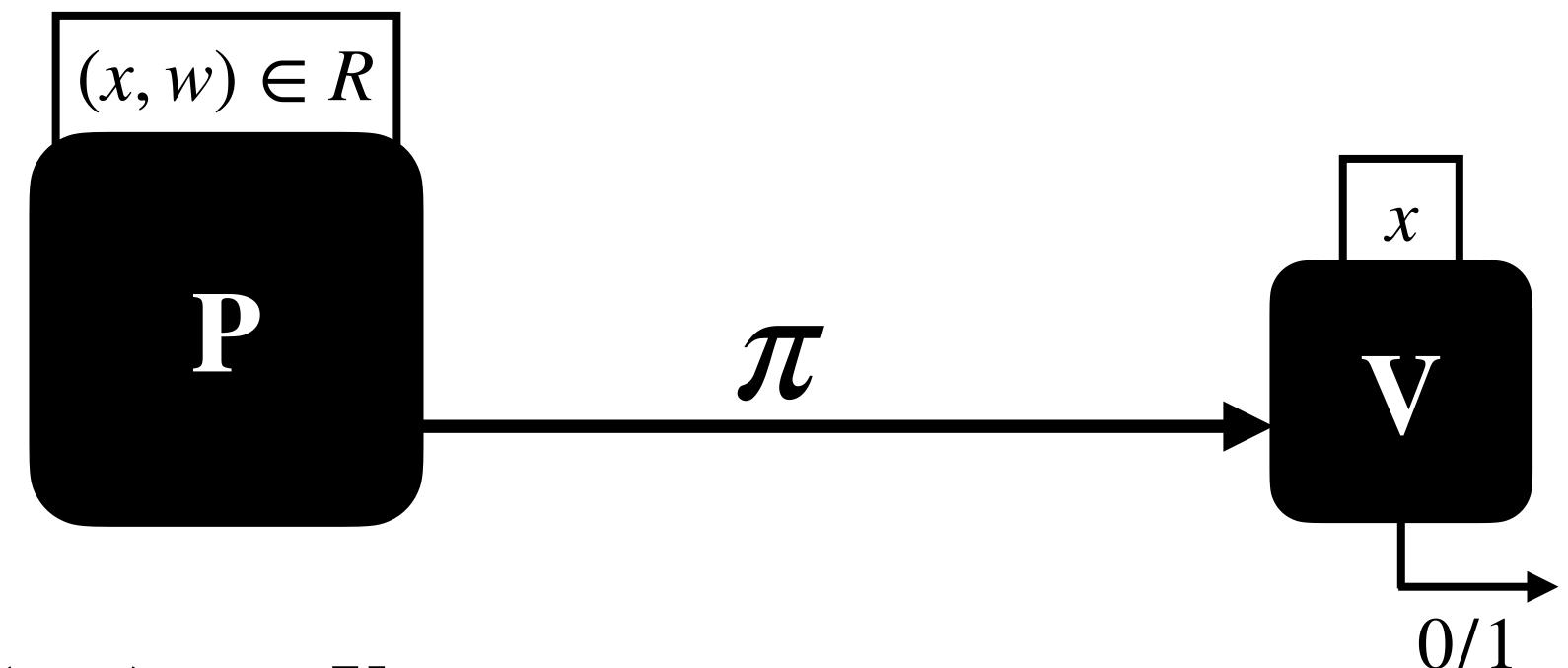






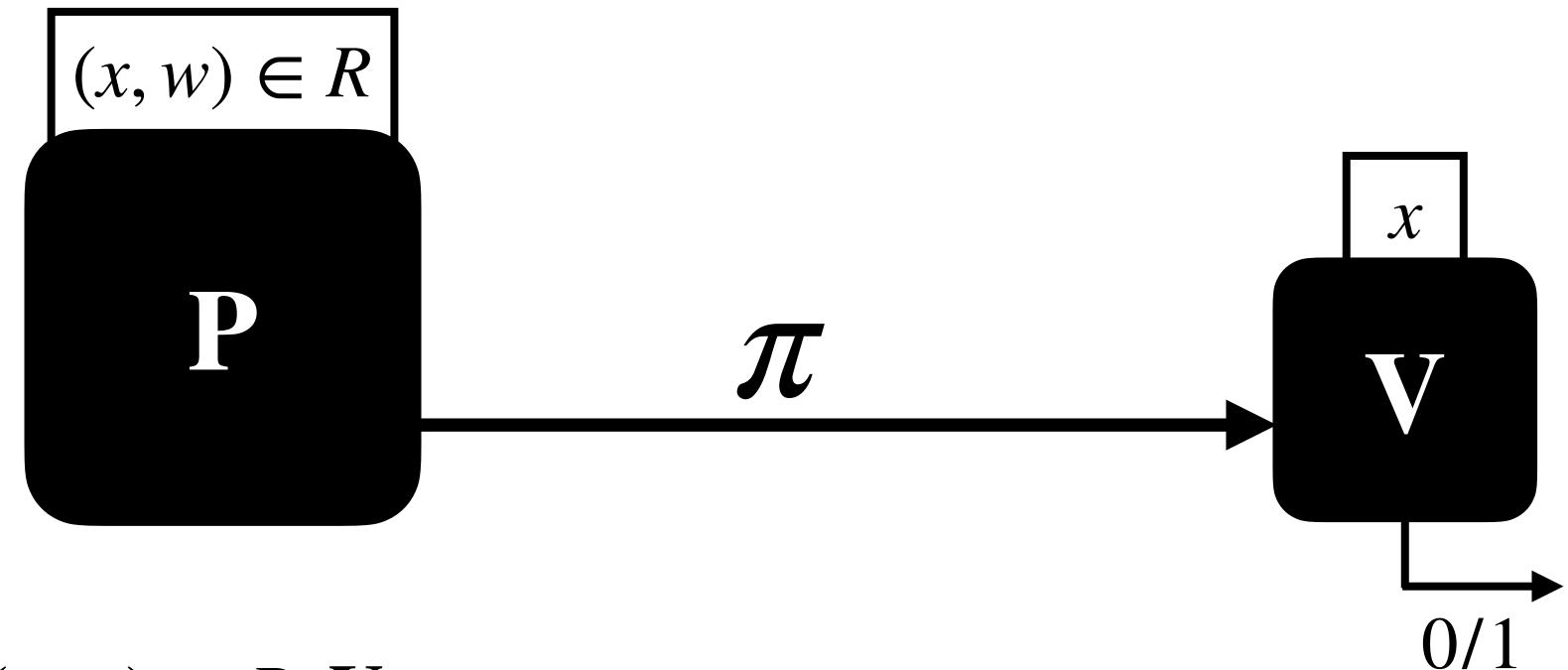


(Succinct Non-Interactive ARguments of Knowledge)



Complete: if $(x, w) \in R$, V accepts.

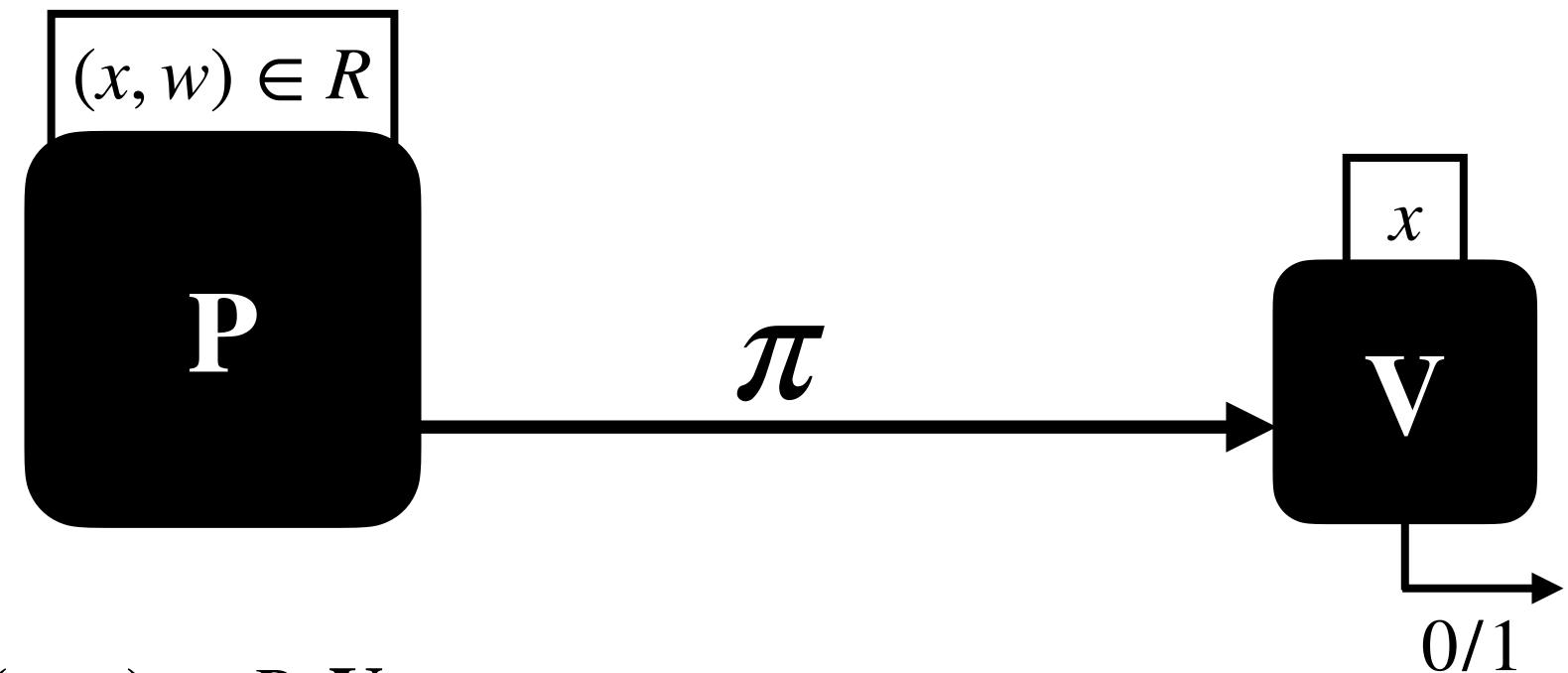
(Succinct Non-Interactive ARguments of Knowledge)



Complete: if $(x, w) \in R$, V accepts.

Non-interactive: P sends a single message.

(Succinct Non-Interactive ARguments of Knowledge)

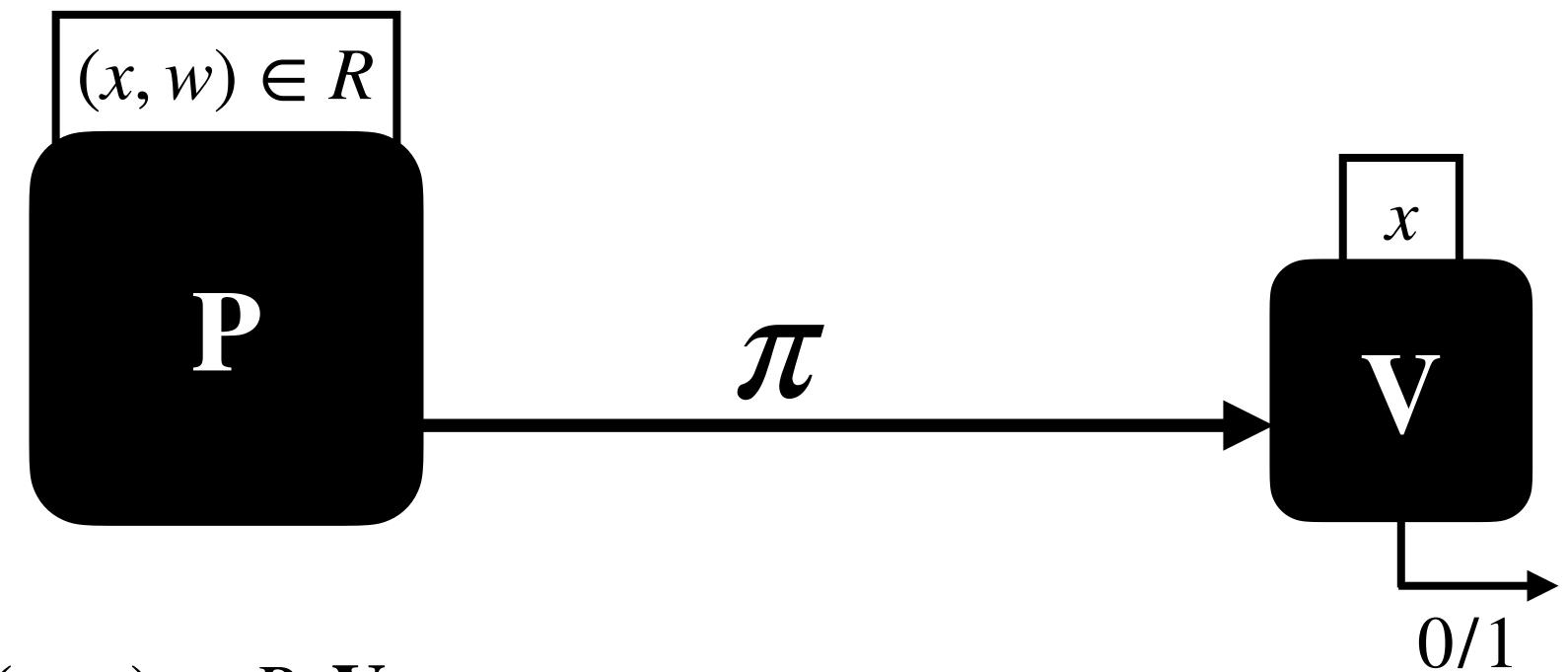


Complete: if $(x, w) \in R$, V accepts.

Non-interactive: P sends a single message.

Succinct: $|\pi| \ll |w|$ and verifier is fast.

(Succinct Non-Interactive ARguments of Knowledge)



Complete: if $(x, w) \in R$, V accepts.

Non-interactive: P sends a single message.

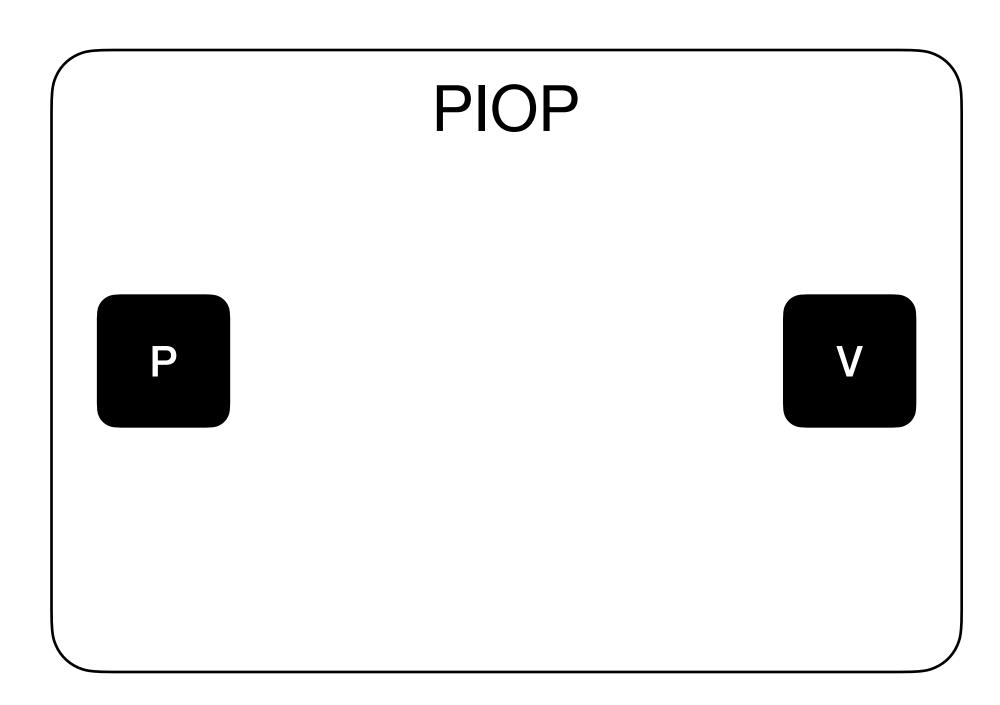
Succinct: $|\pi| \ll |w|$ and verifier is fast.

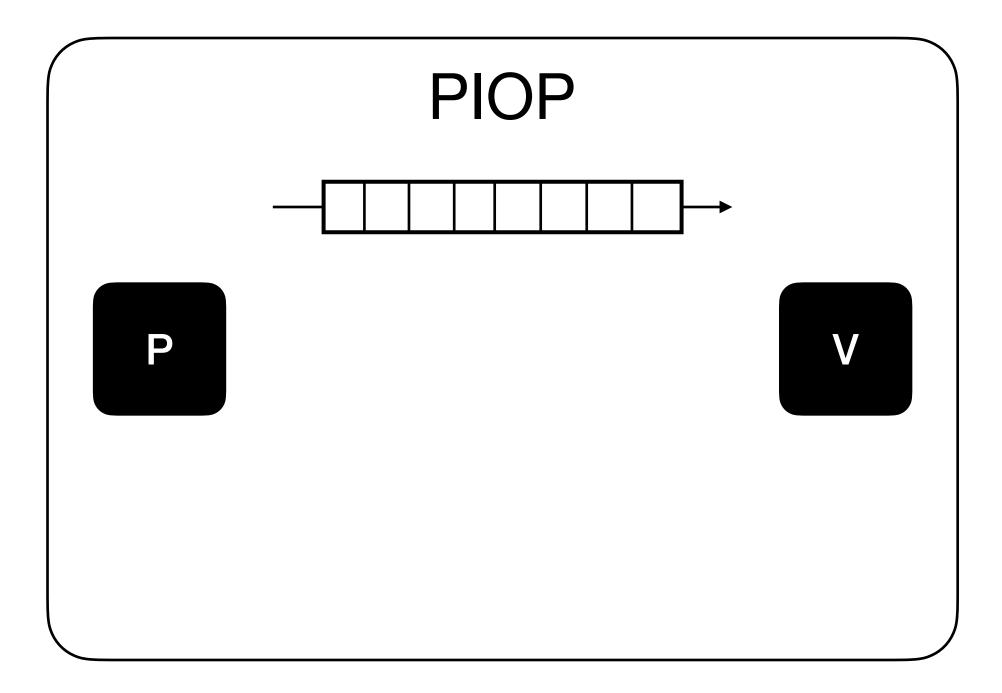
Knowledge Sound: if $V(x, \pi) = 1$, can extract w such that $(x, w) \in R$

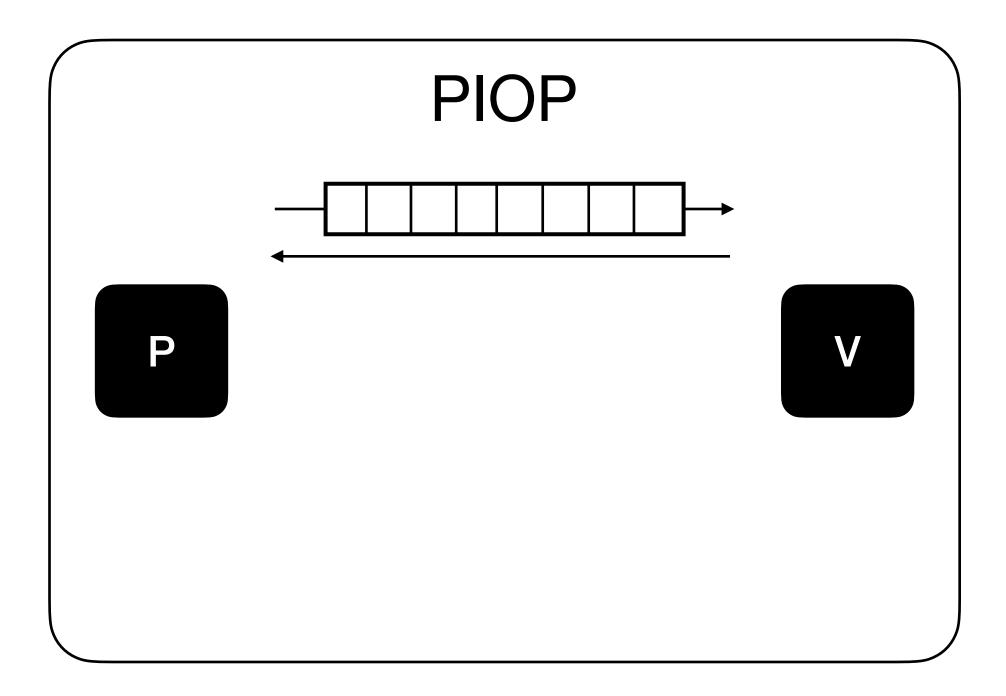
Constructing SNARKs The modular way™

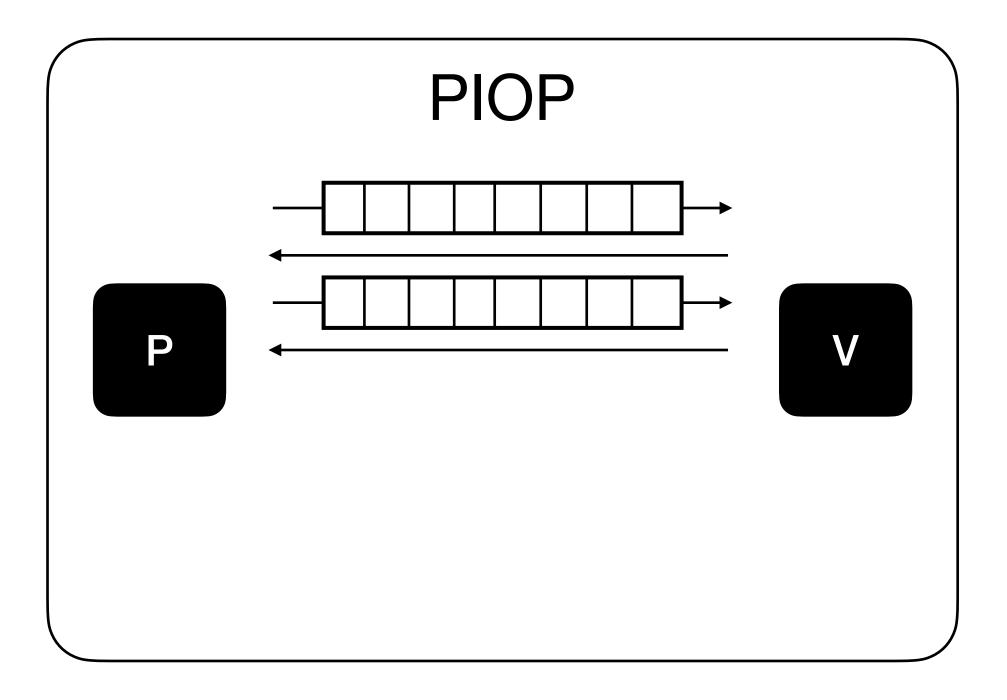
The modular wayTM

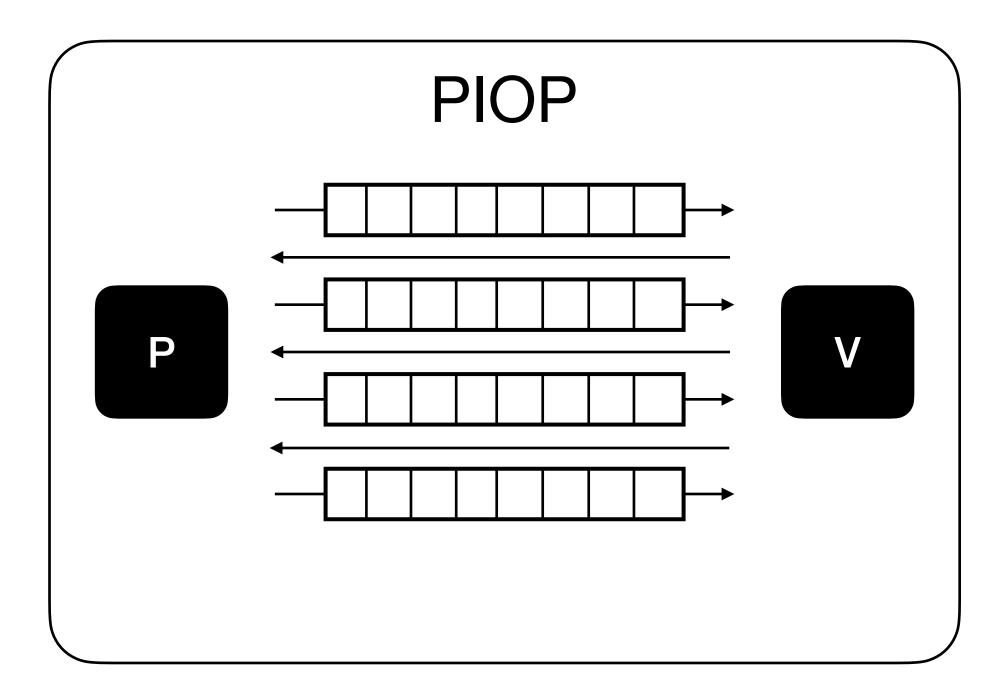
PIOP

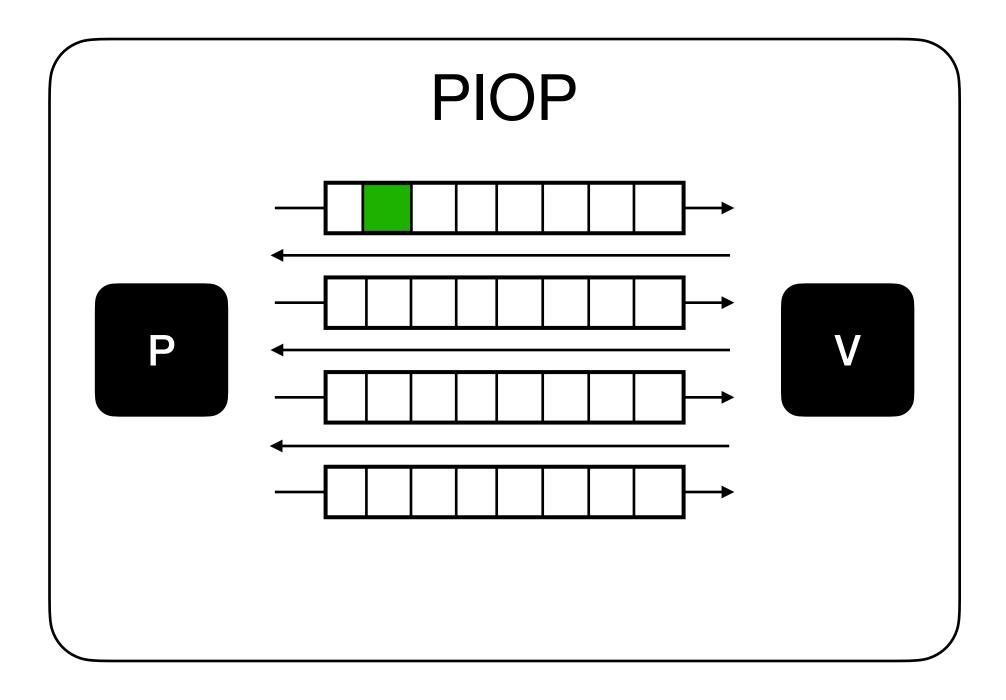


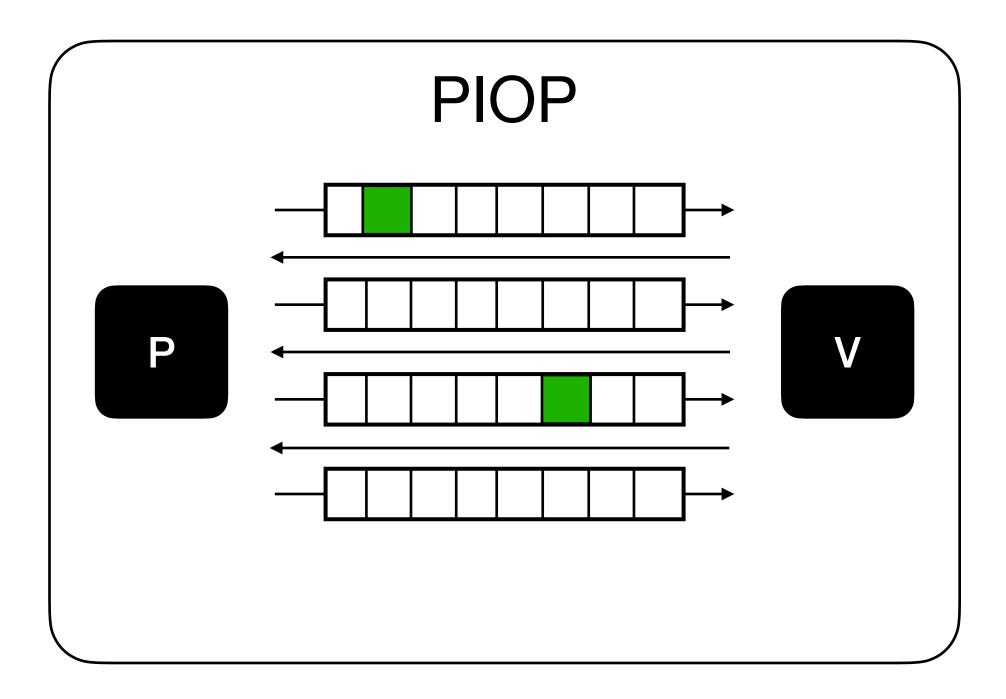


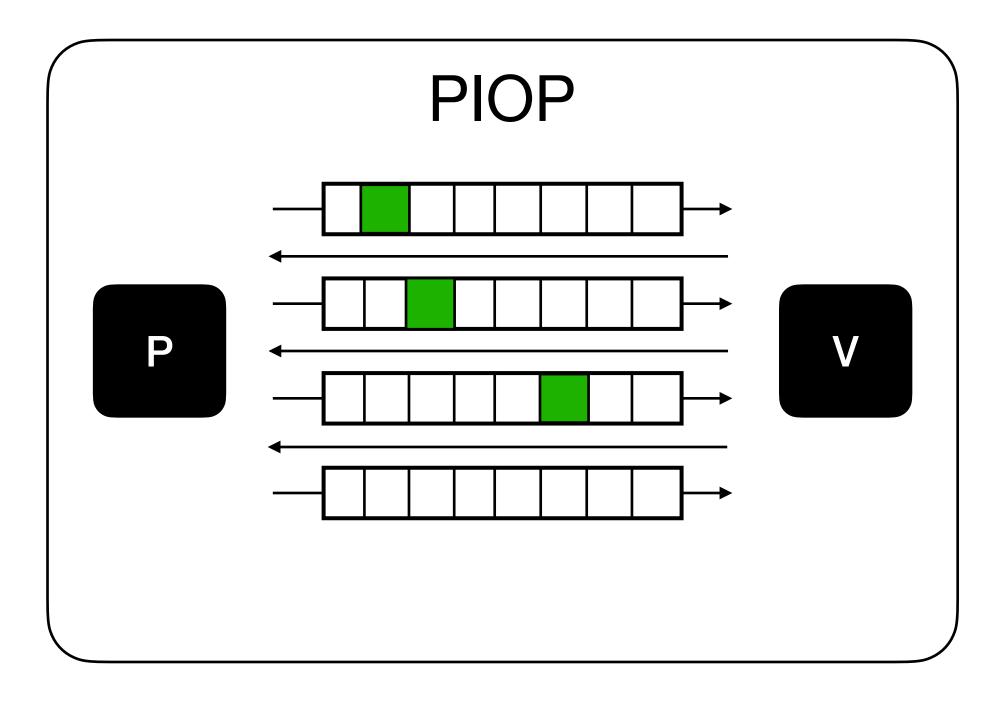


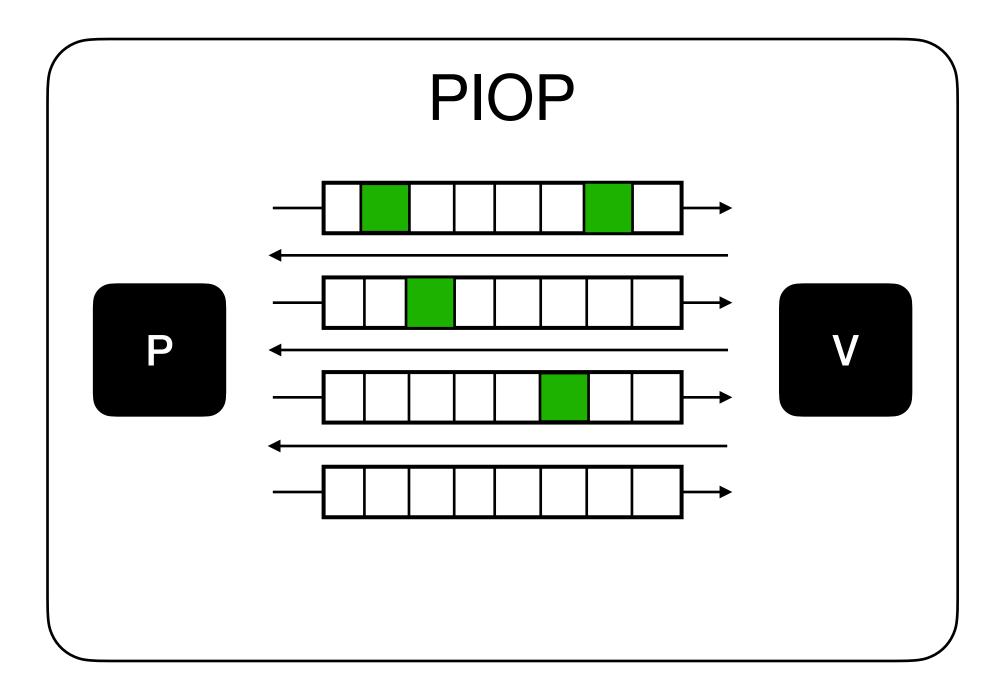


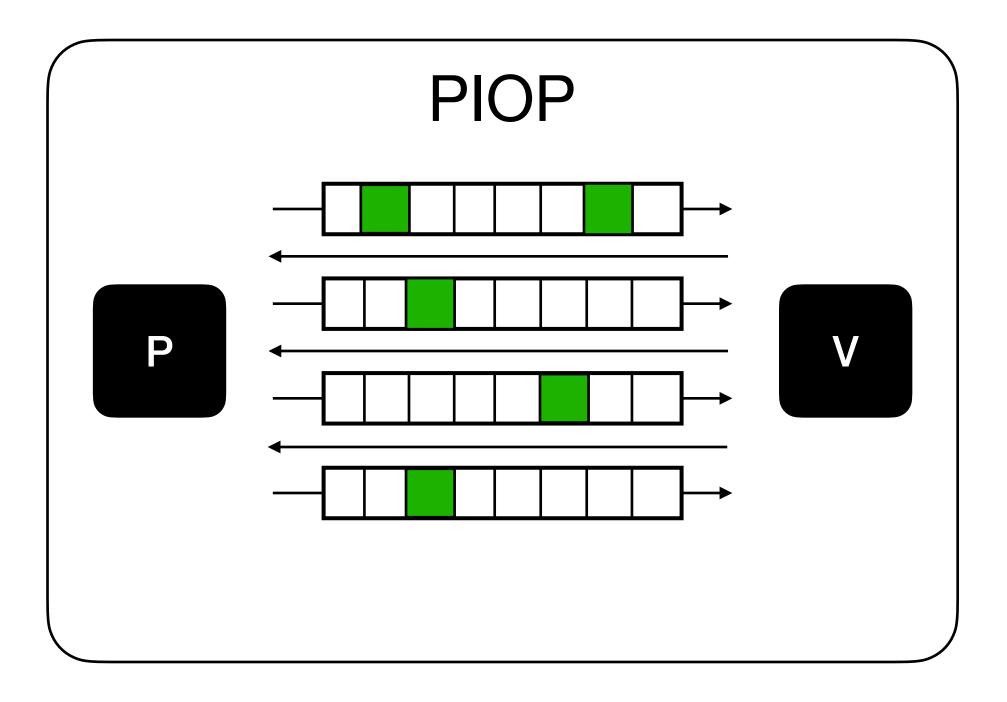




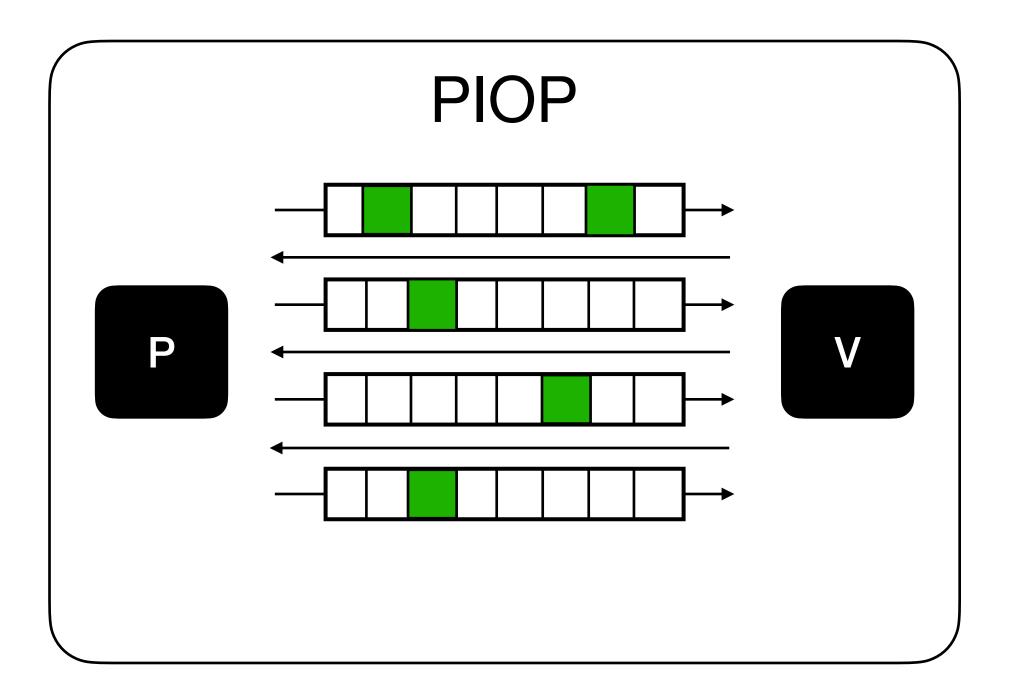




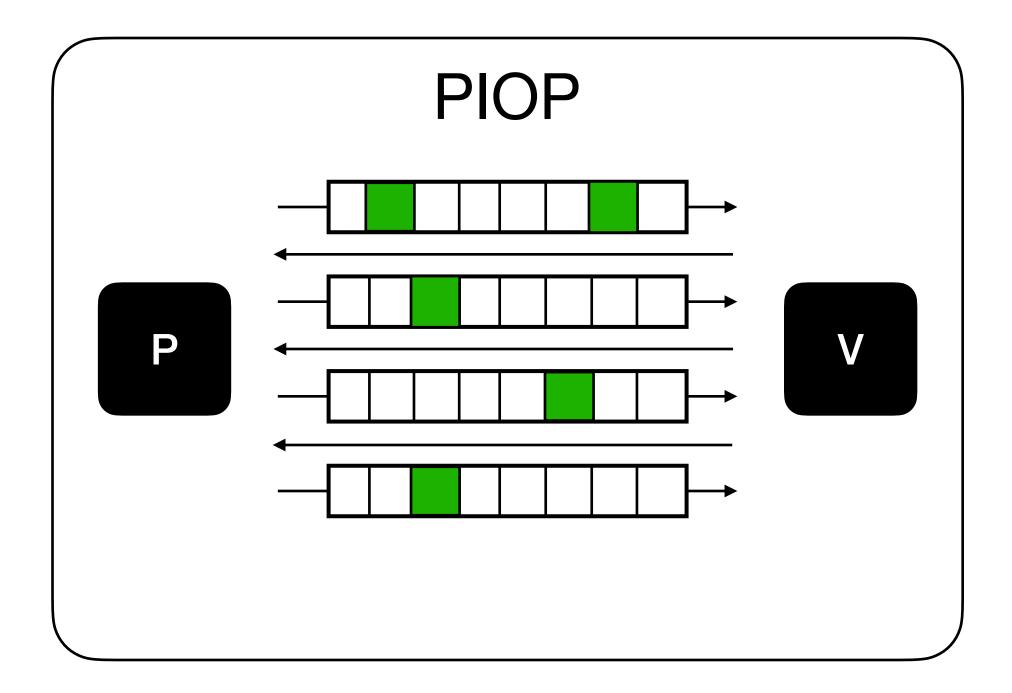




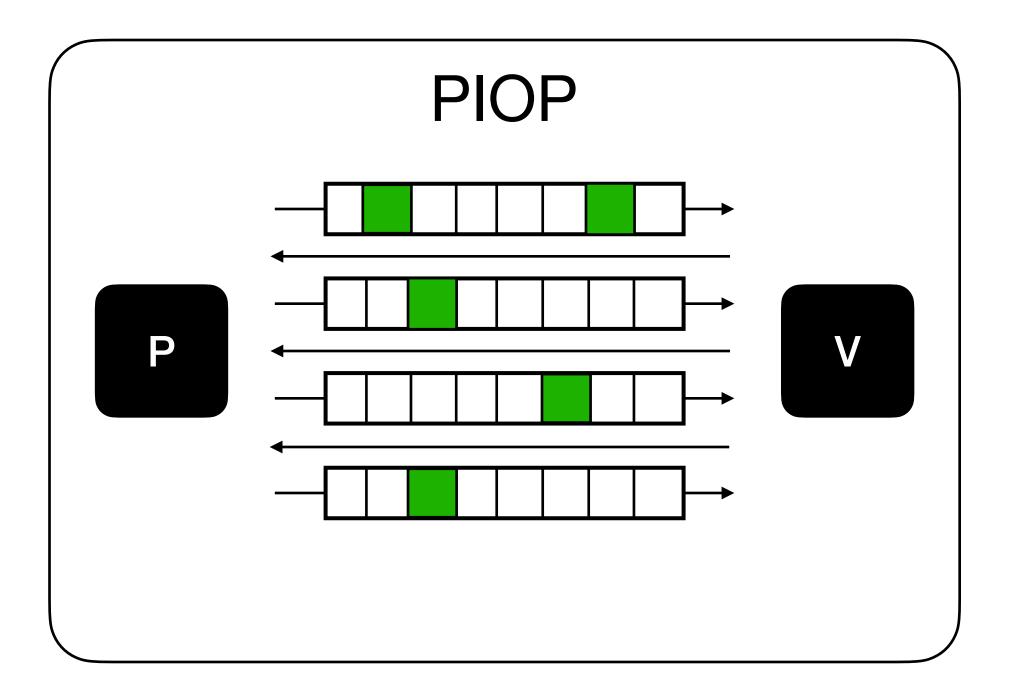
The modular wayTM



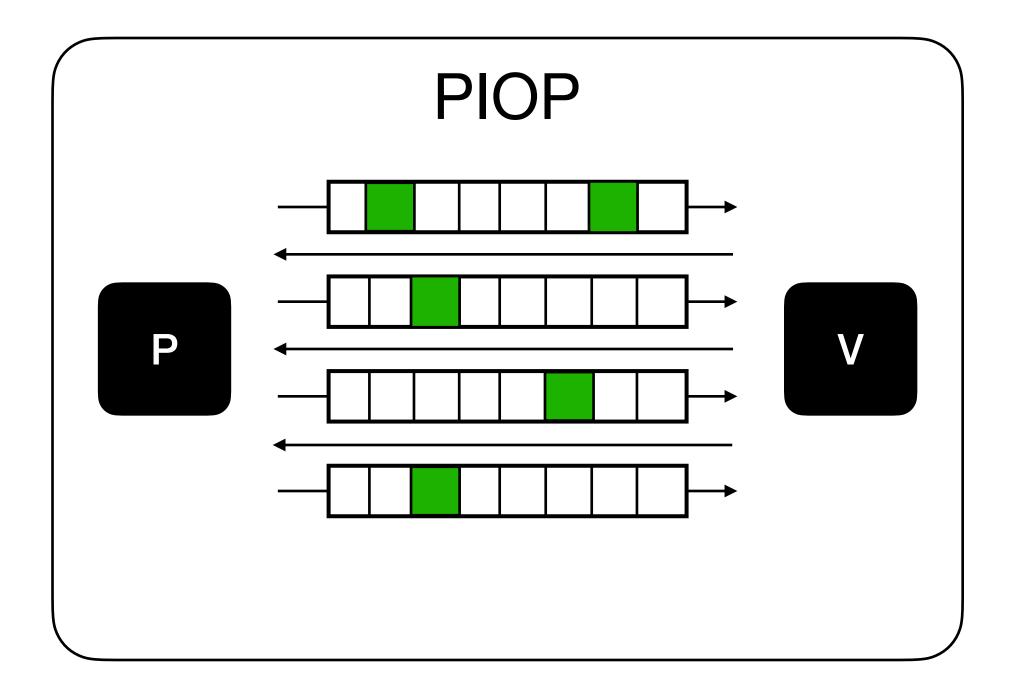
Oracles are polynomials



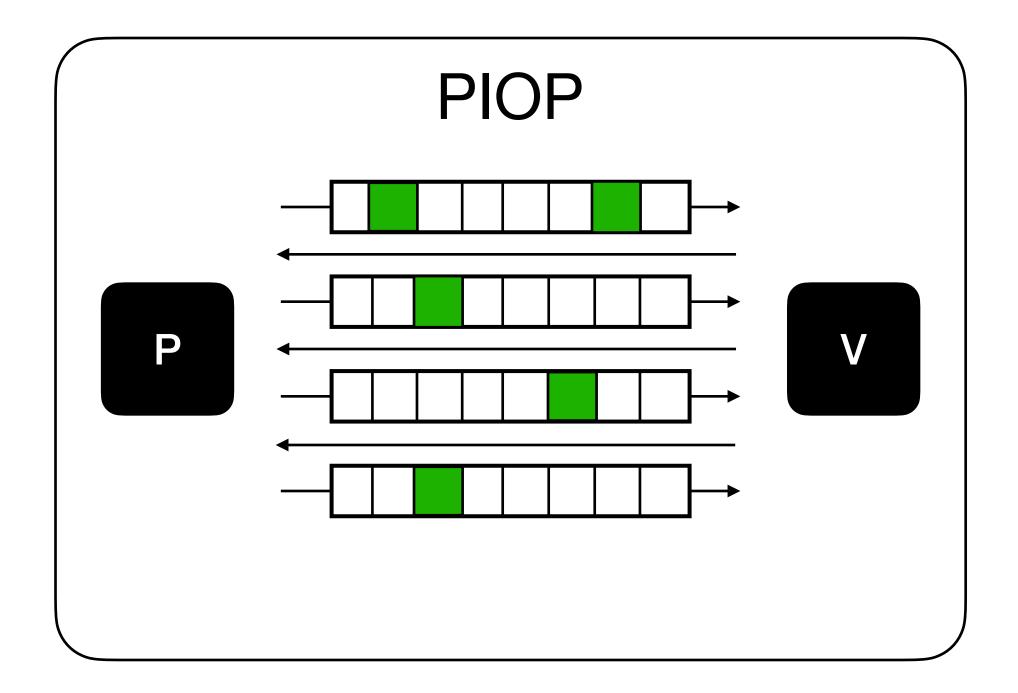
- Oracles are polynomials
- Security is information-theoretical



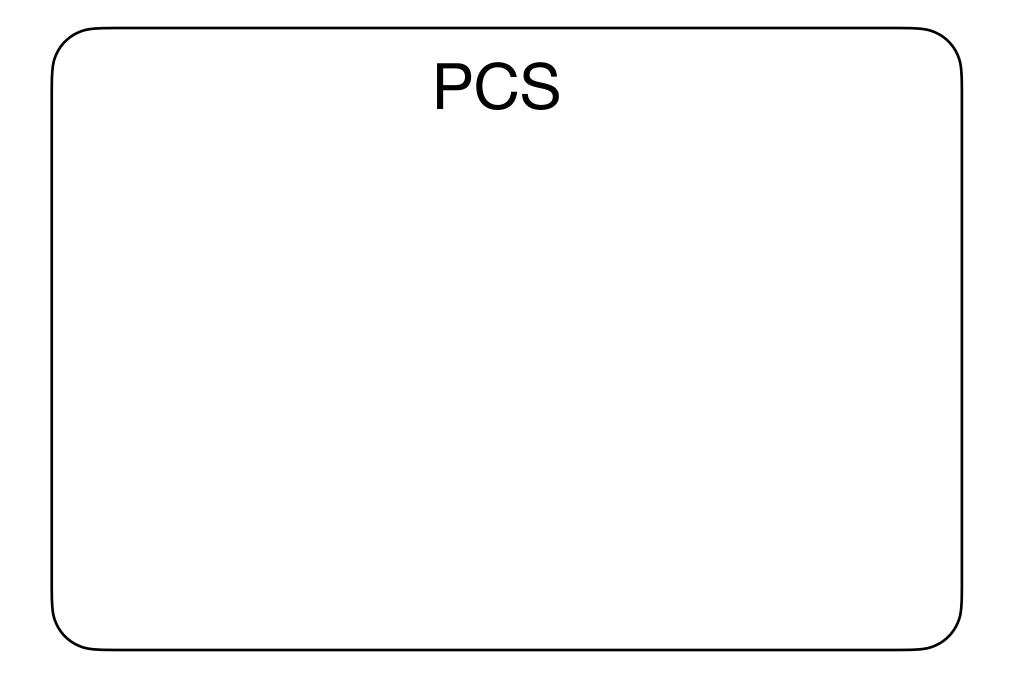
- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)

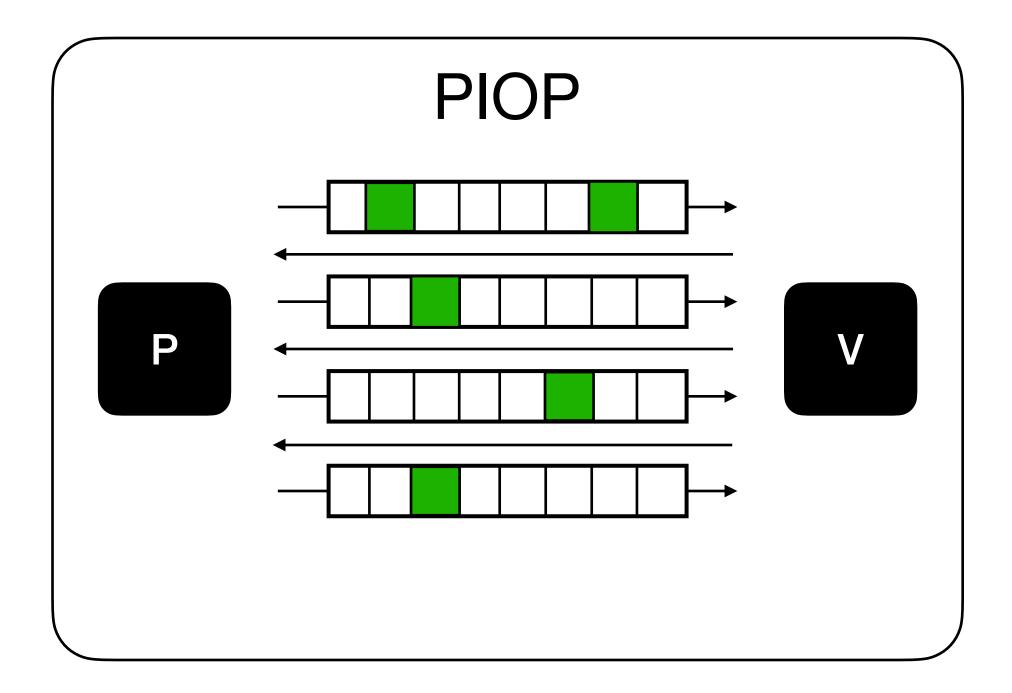


- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient

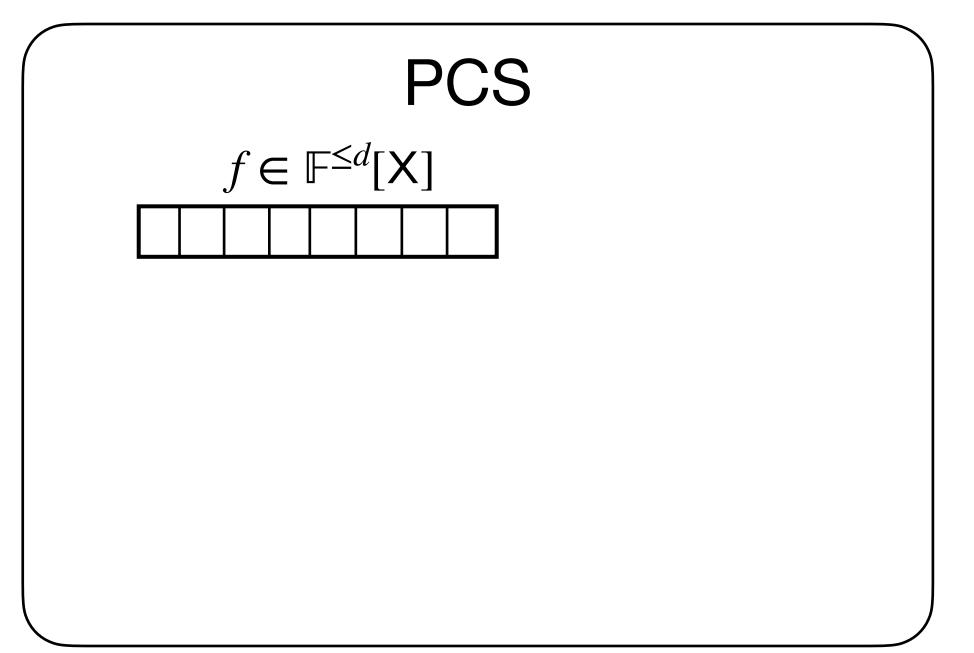


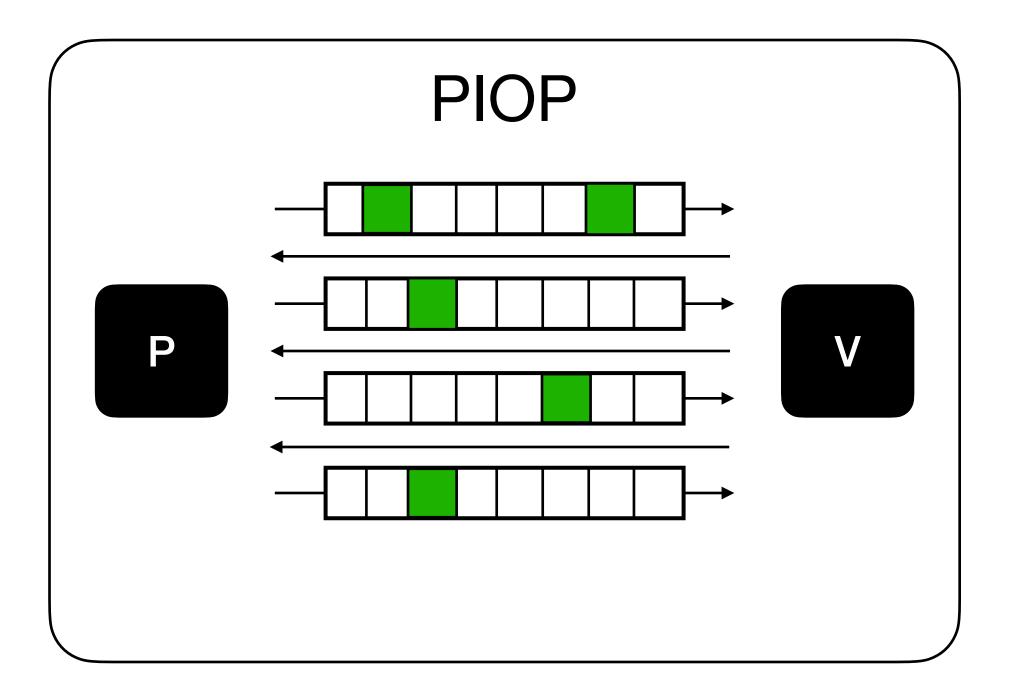
- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient



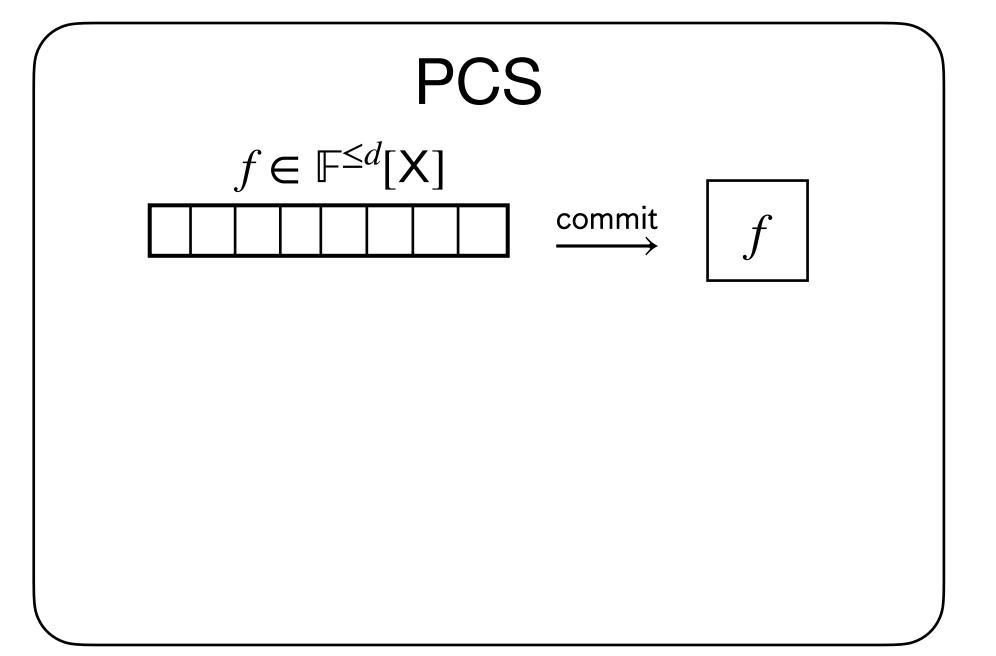


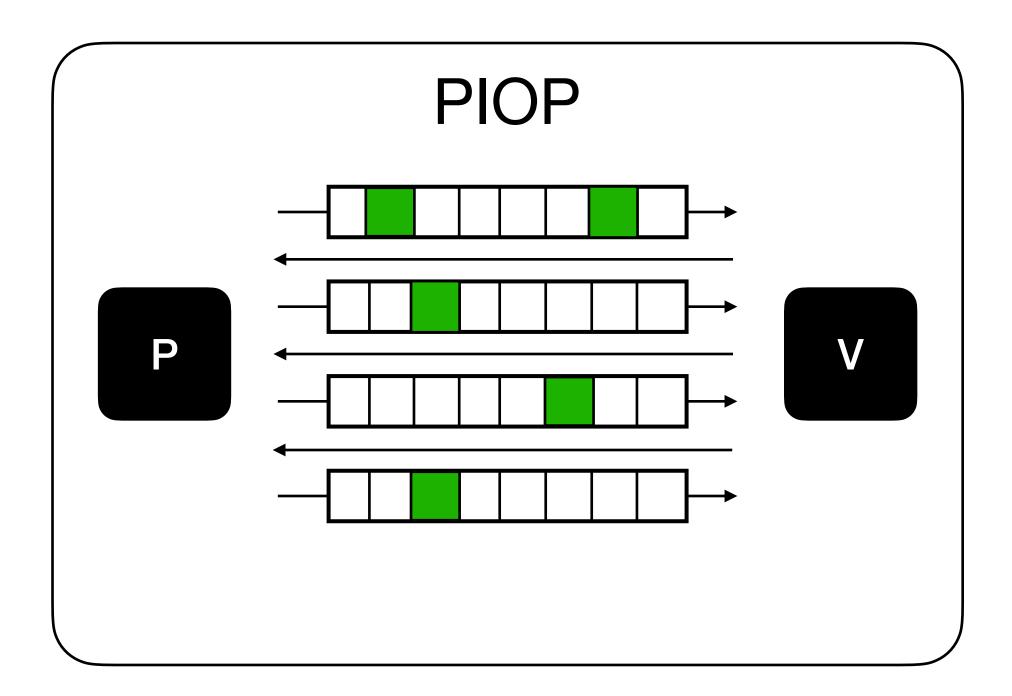
- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient



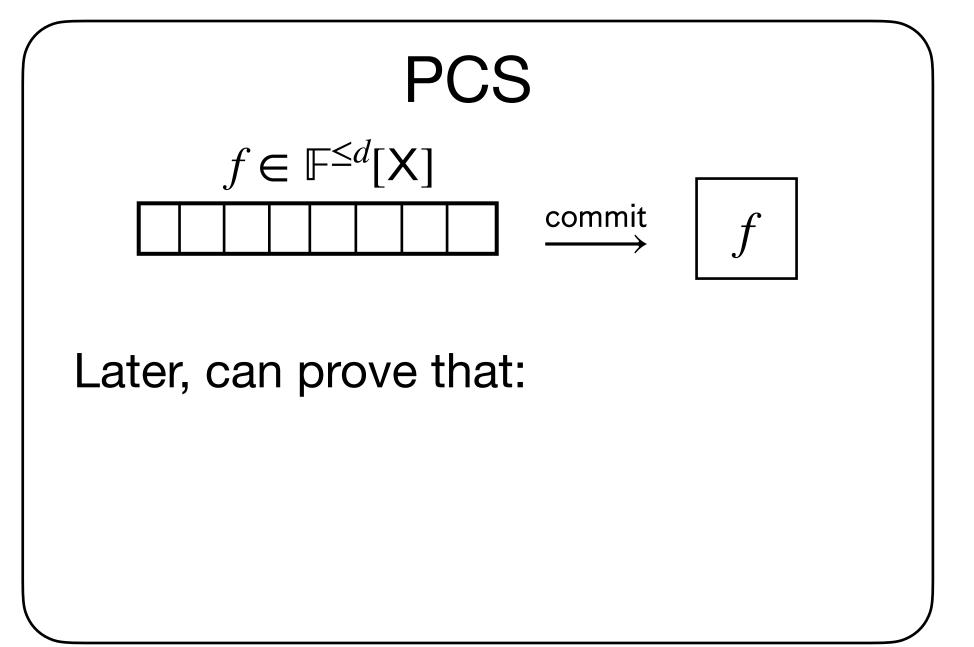


- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient

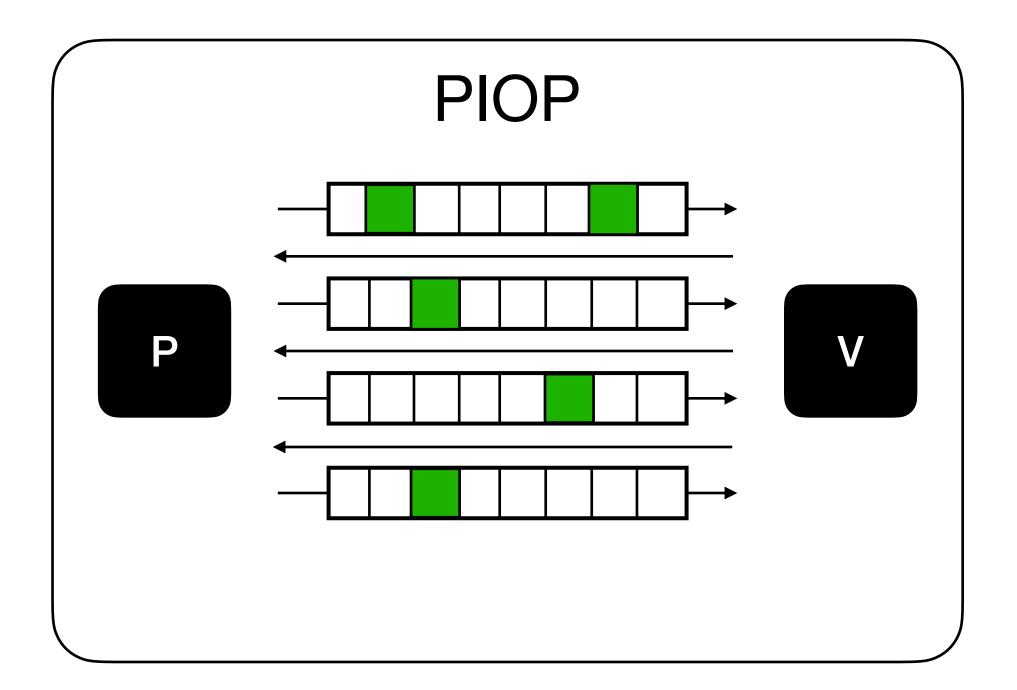




- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient



The modular wayTM



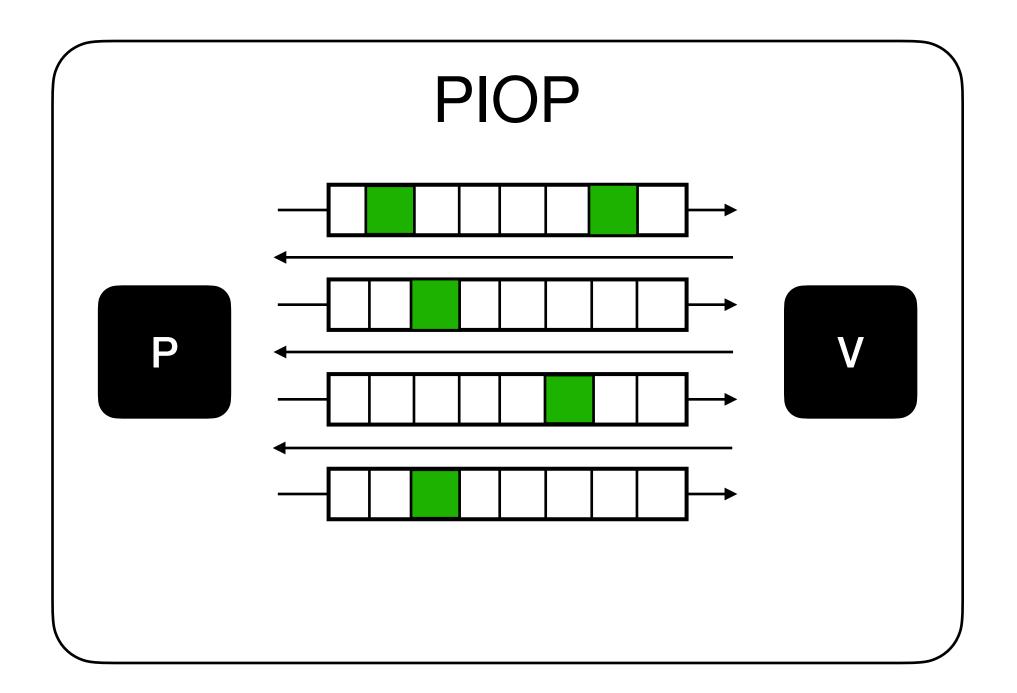
- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient

$$f \in \mathbb{F}^{\leq d}[\mathbf{X}] \qquad \qquad \underbrace{f} \qquad \qquad f$$

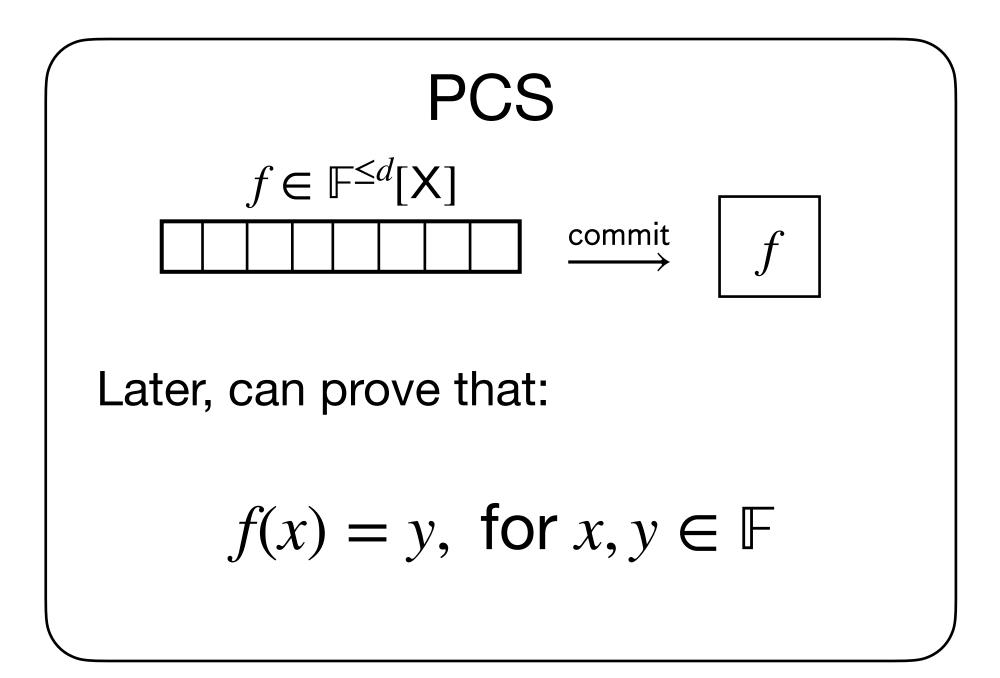
Later, can prove that:

$$f(x) = y$$
, for $x, y \in \mathbb{F}$

The modular wayTM

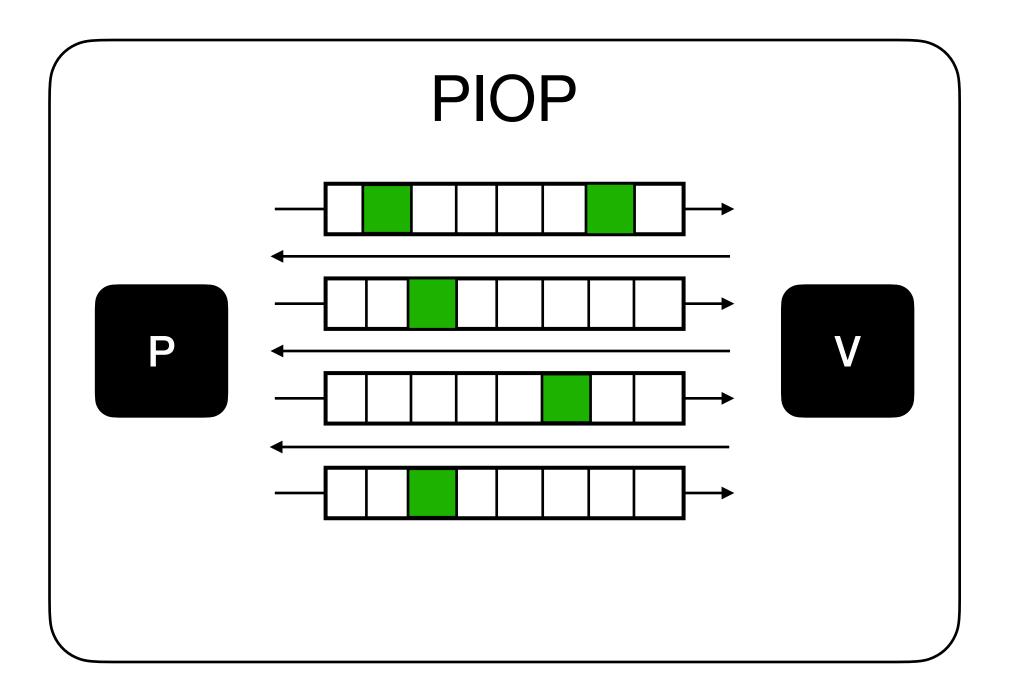


- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient



Cryptography goes here!

The modular wayTM



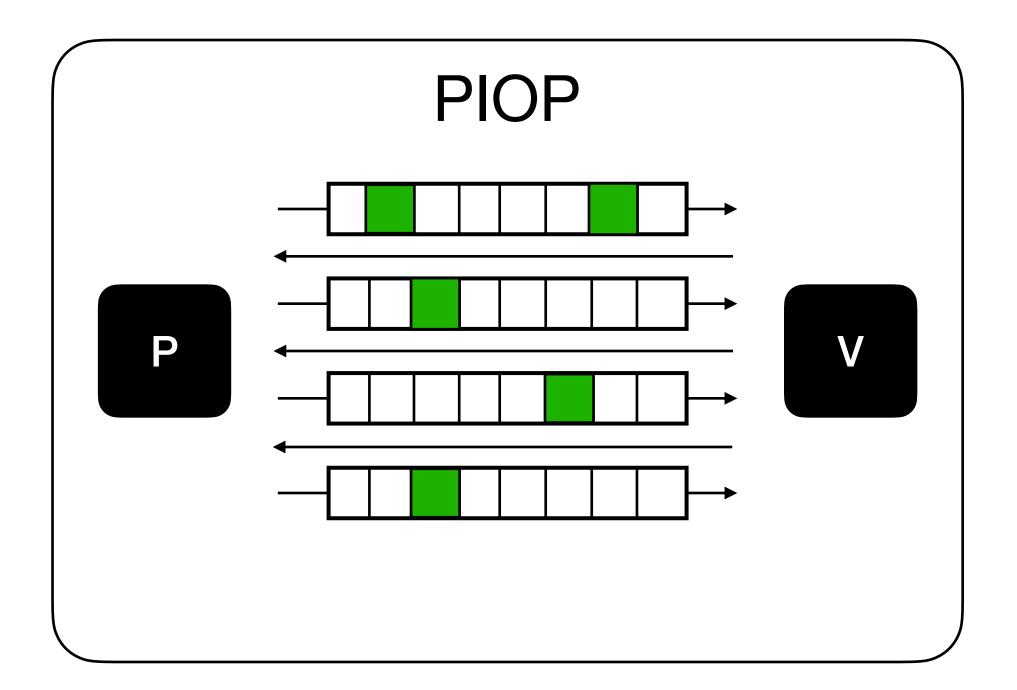
- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient

$$f \in \mathbb{F}^{\leq d}[\mathsf{X}] \qquad \qquad \underbrace{f} \qquad \qquad f$$

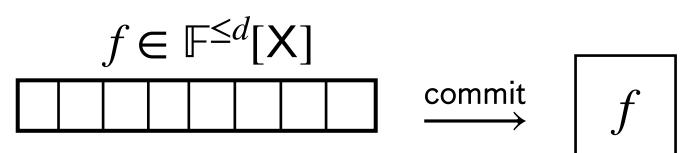
$$f(x) = y$$
, for $x, y \in \mathbb{F}$

- Cryptography goes here!
- Computational security

The modular wayTM



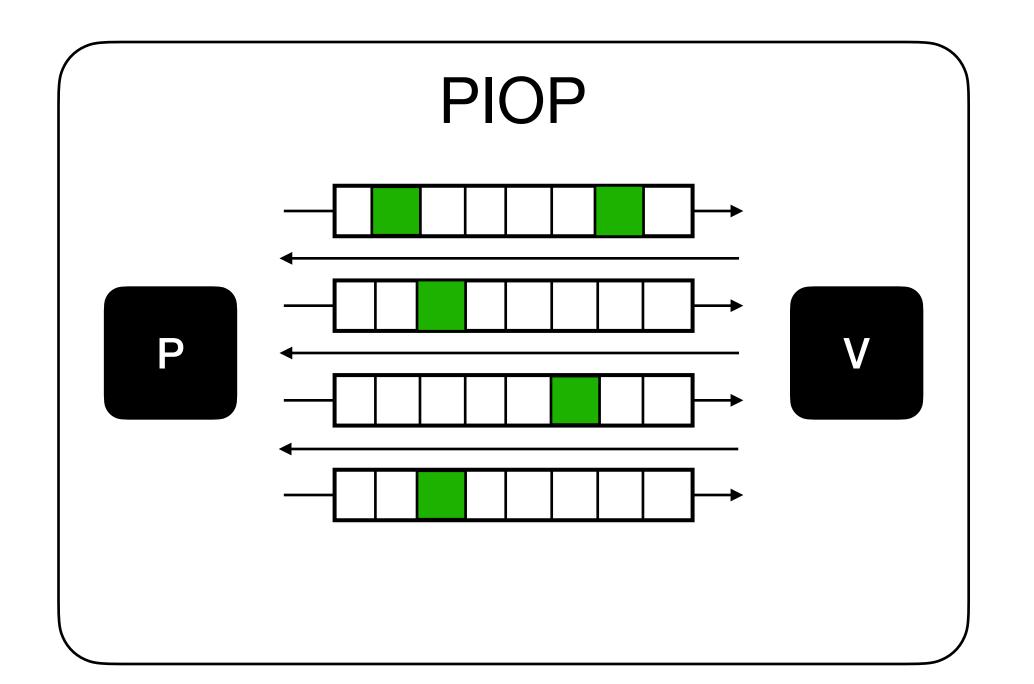
- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient



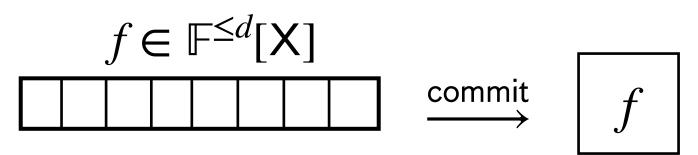
$$f(x) = y$$
, for $x, y \in \mathbb{F}$

- Cryptography goes here!
- Computational security
- We can achieve succinctness

The modular wayTM



FS

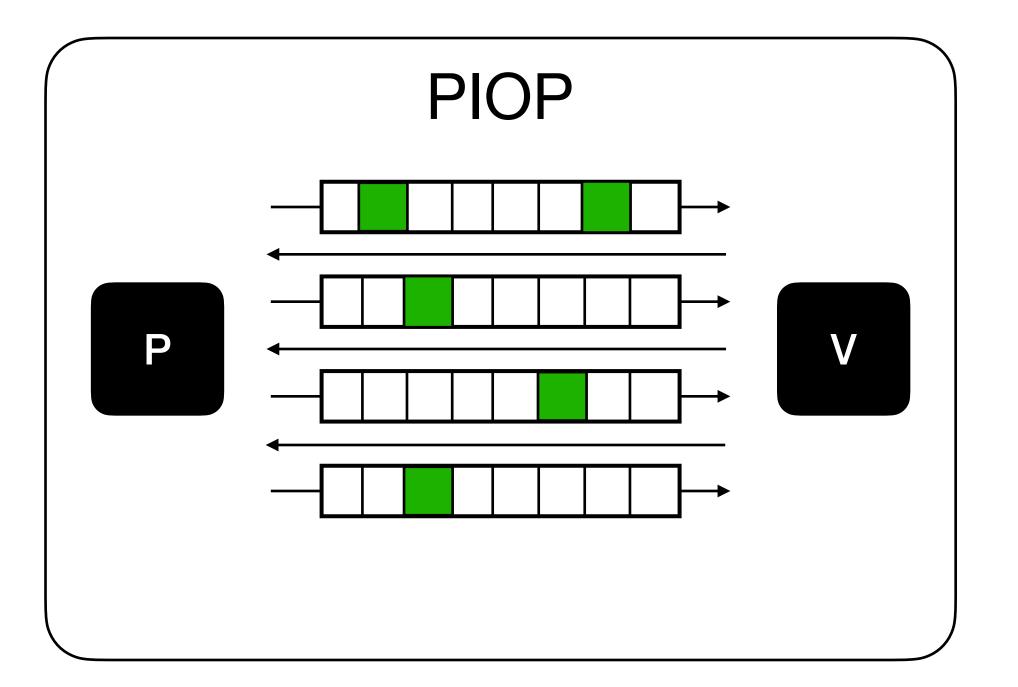


$$f(x) = y$$
, for $x, y \in \mathbb{F}$

- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient

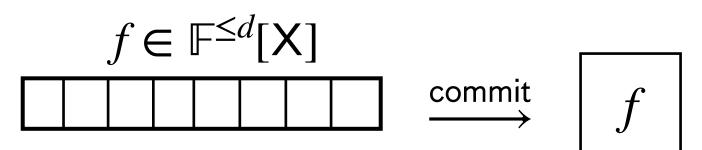
- Cryptography goes here!
- Computational security
- We can achieve succinctness

The modular wayTM



FS

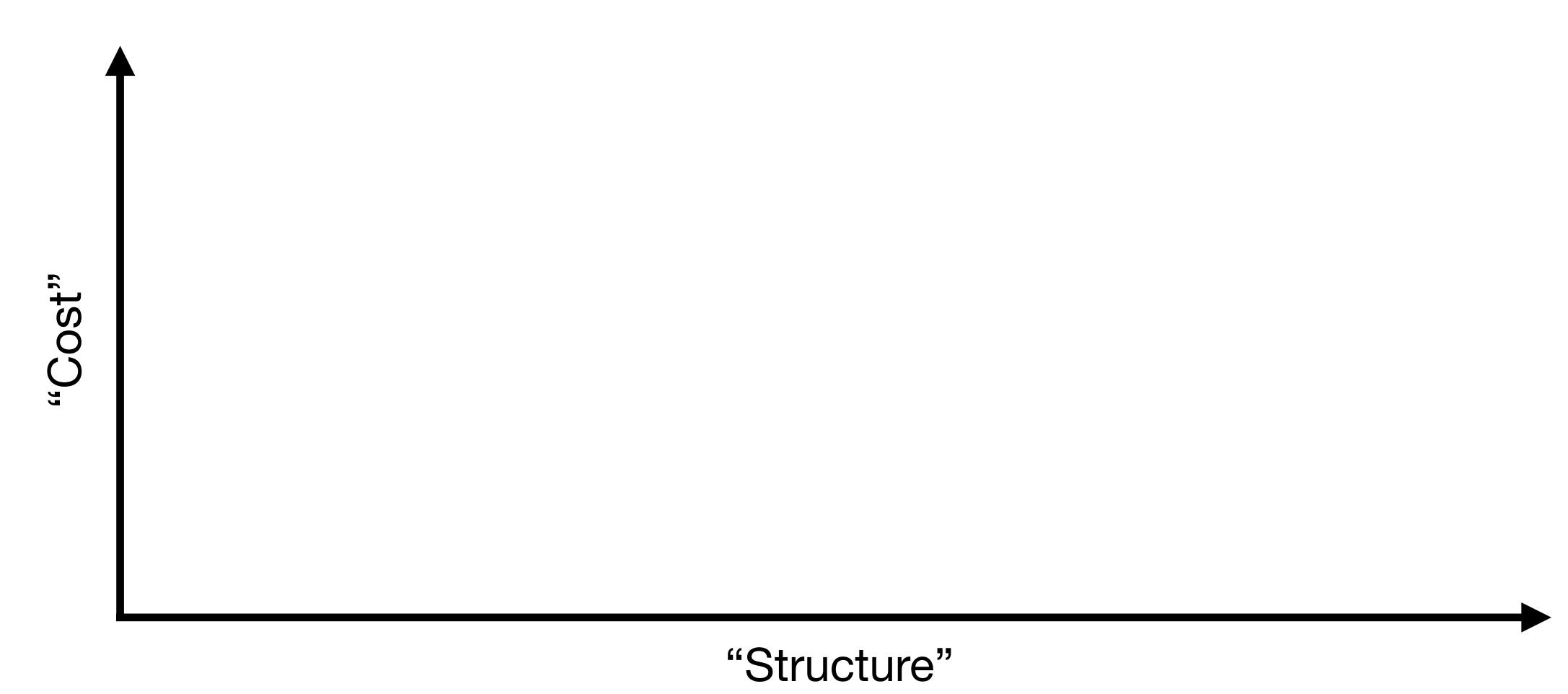
We focus on this!

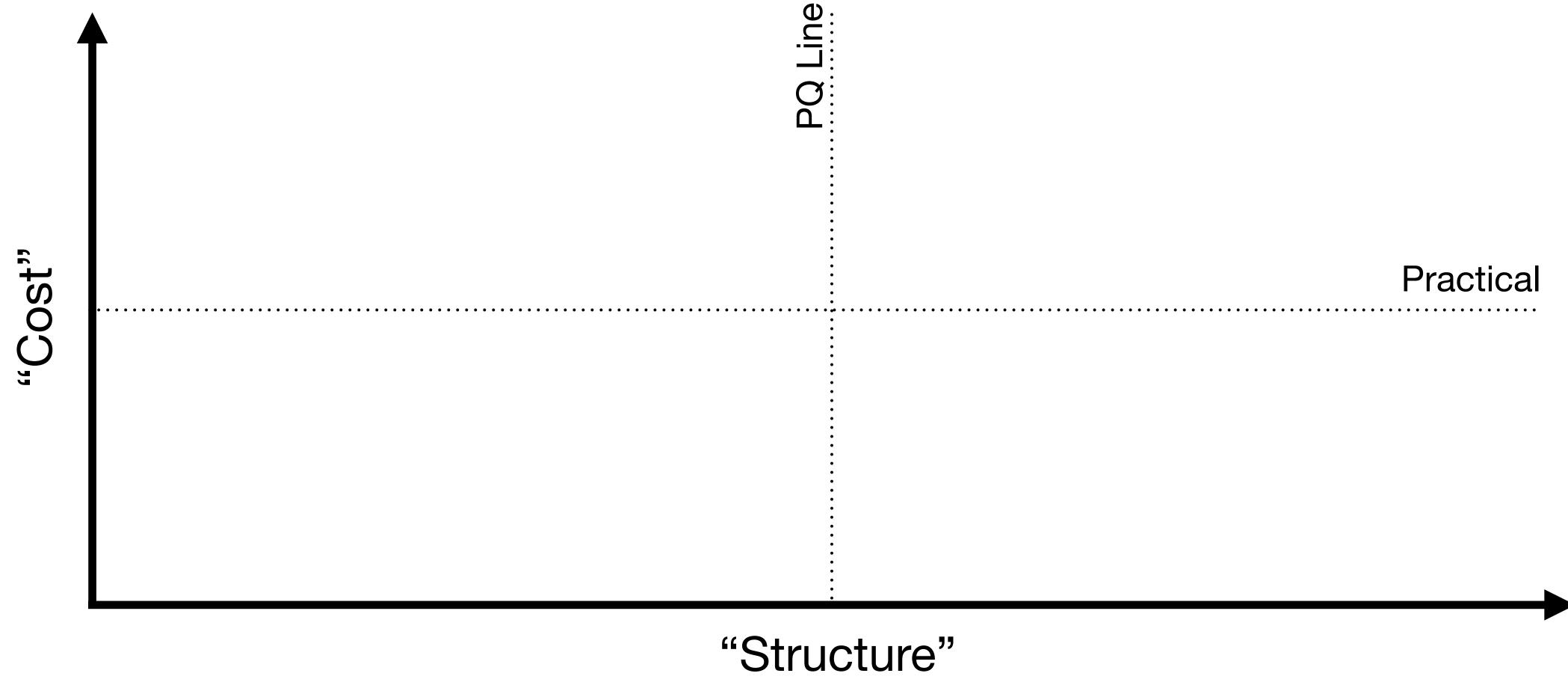


$$f(x) = y$$
, for $x, y \in \mathbb{F}$

- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient

- Cryptography goes here!
- Computational security
- We can achieve succinctness



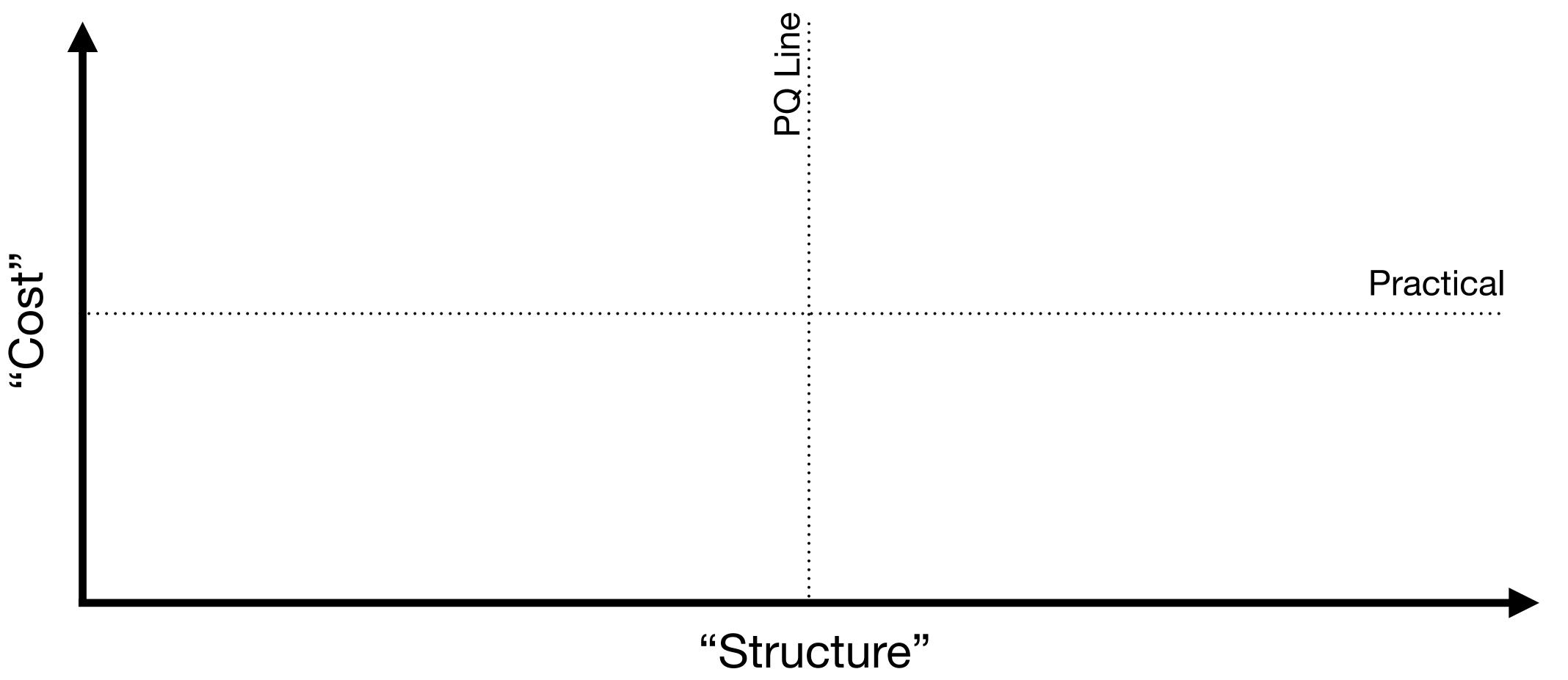


A very incomplete list...

<u>Underlined:</u> succinct verification

*: interactive (no FS)

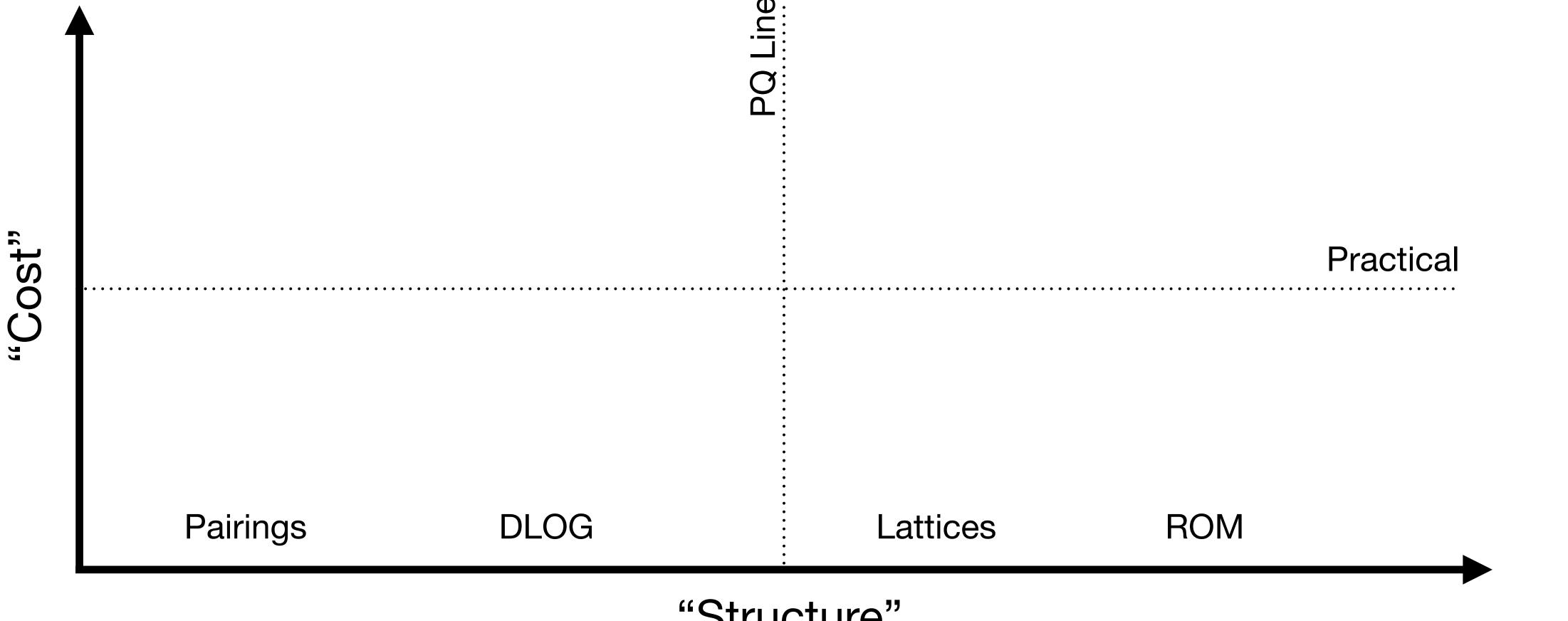
(T): trusted setup



A very incomplete list...

<u>Underlined:</u> succinct verification

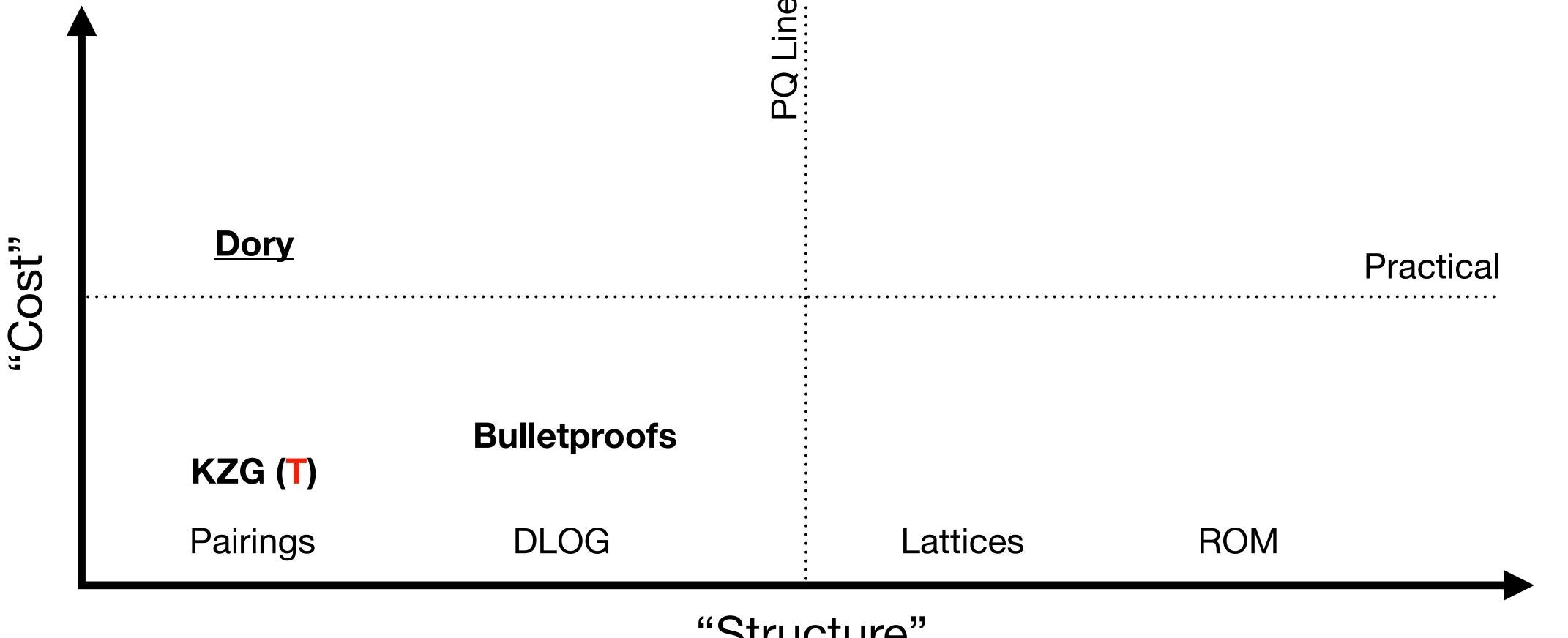
*: interactive (no FS) (T): trusted setup



A very incomplete list...

<u>Underlined:</u> succinct verification *: interactive (no FS)

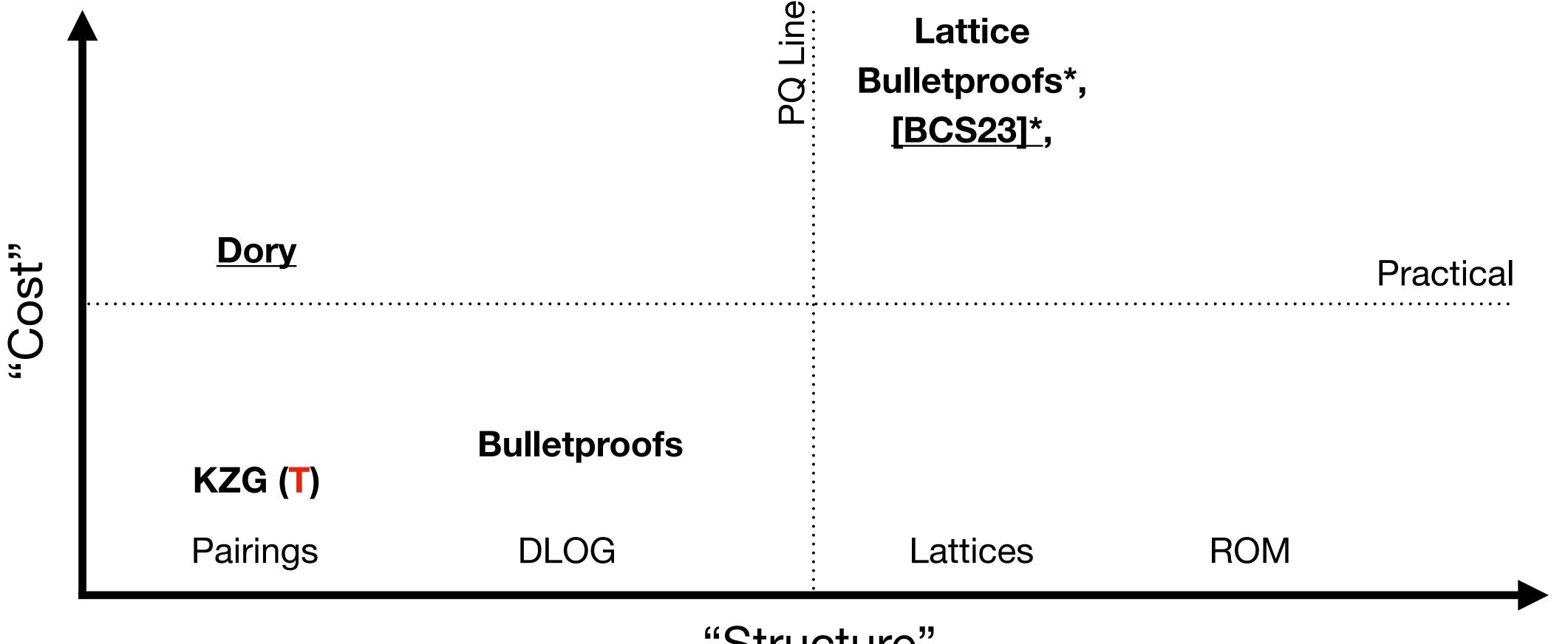
(T): trusted setup



A very incomplete list...

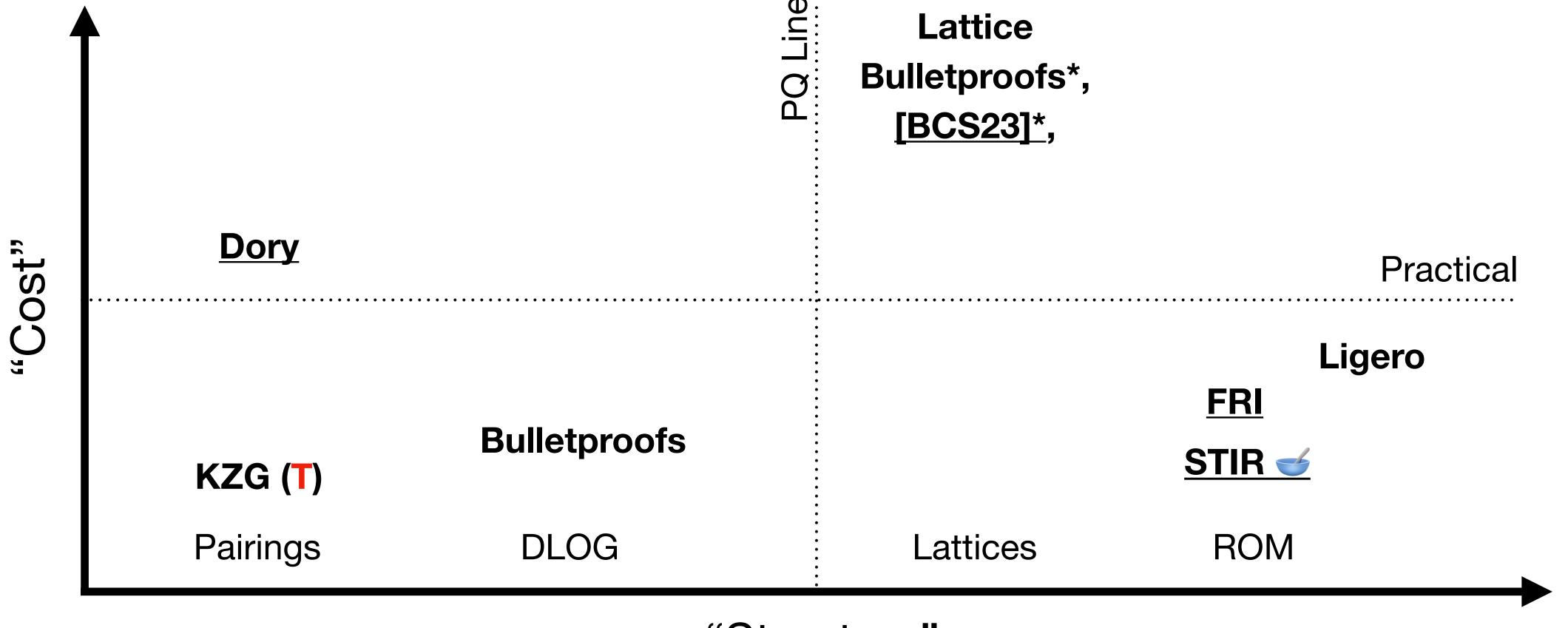
<u>Underlined:</u> succinct verification *: interactive (no FS)

(T): trusted setup



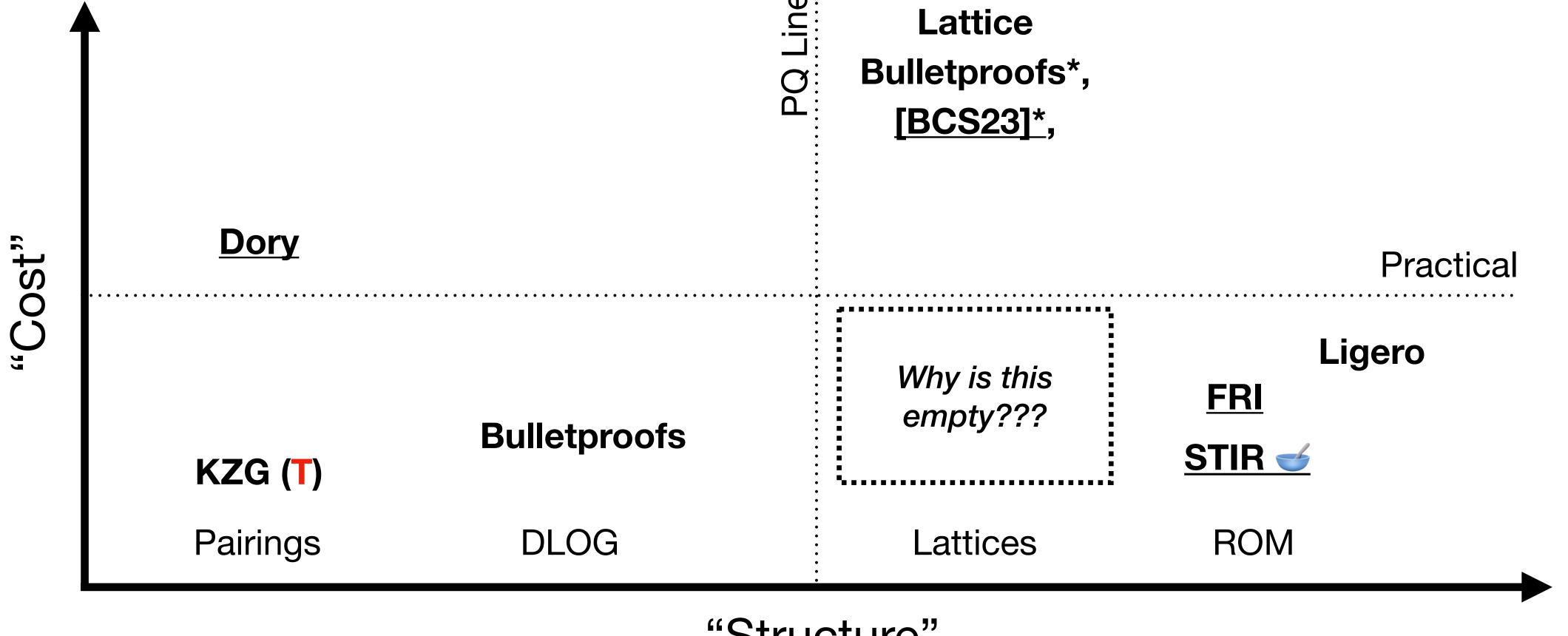
A very incomplete list...

Underlined: succinct verification*: interactive (no FS)(T): trusted setup



A very incomplete list...

<u>Underlined:</u> succinct verification *: interactive (no FS) (T): trusted setup



Our Results

Martin R. Albrecht
martin.albrecht@{kcl.ac.uk,sandboxaq.com}
King's College London and SandboxAQ

Oleksandra Lapiha sasha.lapiha.2021@live.rhul.ac.uk Royal Holloway, University of London Giacomo Fenzi giacomo.fenzi@epfl.ch EPFL

Ngoc Khanh Nguyen khanh.nguyen@epfl.ch EPFL

Martin R. Albrecht
martin.albrecht@{kcl.ac.uk,sandboxaq.com}
King's College London and SandboxAQ

Giacomo Fenzi giacomo.fenzi@epfl.ch EPFL

Oleksandra Lapiha sasha.lapiha.2021@live.rhul.ac.uk Royal Holloway, University of London Ngoc Khanh Nguyen khanh.nguyen@epfl.ch EPFL

We construct a non-interactive lattice-based polynomial commitment with:

Martin R. Albrecht
martin.albrecht@{kcl.ac.uk,sandboxaq.com}
King's College London and SandboxAQ

Giacomo Fenzi giacomo.fenzi@epfl.ch EPFL

Oleksandra Lapiha sasha.lapiha.2021@live.rhul.ac.uk Royal Holloway, University of London Ngoc Khanh Nguyen khanh.nguyen@epfl.ch EPFL

We construct a non-interactive lattice-based polynomial commitment with:

1. Succinct proofs

Martin R. Albrecht
martin.albrecht@{kcl.ac.uk,sandboxaq.com}
King's College London and SandboxAQ

Giacomo Fenzi giacomo.fenzi@epfl.ch EPFL

Oleksandra Lapiha sasha.lapiha.2021@live.rhul.ac.uk Royal Holloway, University of London Ngoc Khanh Nguyen khanh.nguyen@epfl.ch EPFL

We construct a non-interactive lattice-based polynomial commitment with:

- 1. Succinct proofs
- 2. Succinct verification time

Martin R. Albrecht
martin.albrecht@{kcl.ac.uk,sandboxaq.com}
King's College London and SandboxAQ

Giacomo Fenzi giacomo.fenzi@epfl.ch EPFL

Oleksandra Lapiha sasha.lapiha.2021@live.rhul.ac.uk Royal Holloway, University of London Ngoc Khanh Nguyen khanh.nguyen@epfl.ch EPFL

We construct a non-interactive lattice-based polynomial commitment with:

- 1. Succinct proofs
- 2. Succinct verification time
- 3. Binding under (M)SIS

Techniques

How to get around [GW11]?

How to get around [GW11]?

[GW11] - You cannot get SNARG from falsifiable assumptions.

How to get around [GW11]?

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

How to get around [GW11]?

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits using QAPs

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits using QAPs

Rinocchio: SNARKs for Ring Arithmetic

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits using QAPs

Amortized Efficient zk-SNARK

Rinocchio: SNARKs for Ring Arithmetic

from Linear-Only RLWE Encodings

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits using QAPs

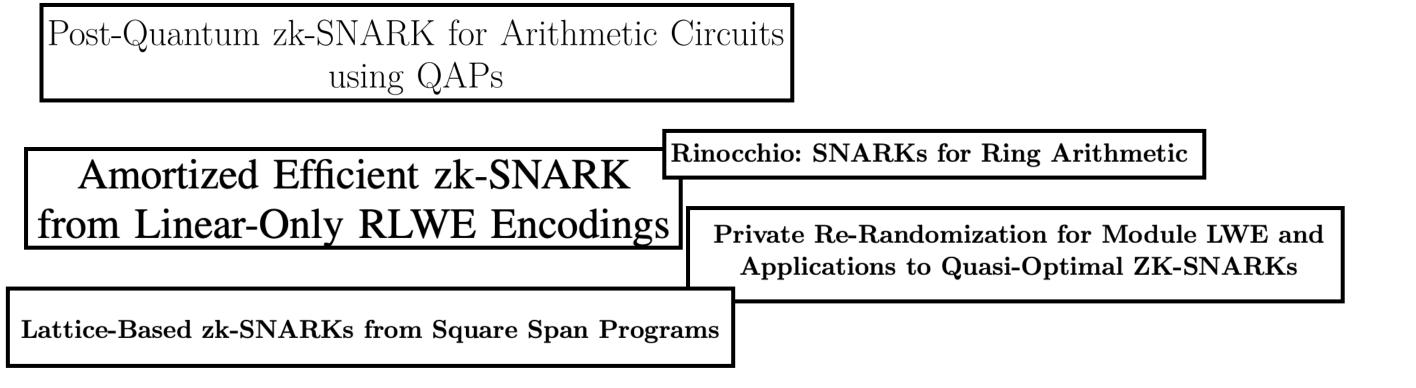
Amortized Efficient zk-SNARK from Linear-Only RLWE Encodings

Rinocchio: SNARKs for Ring Arithmetic

Private Re-Randomization for Module LWE and Applications to Quasi-Optimal ZK-SNARKs

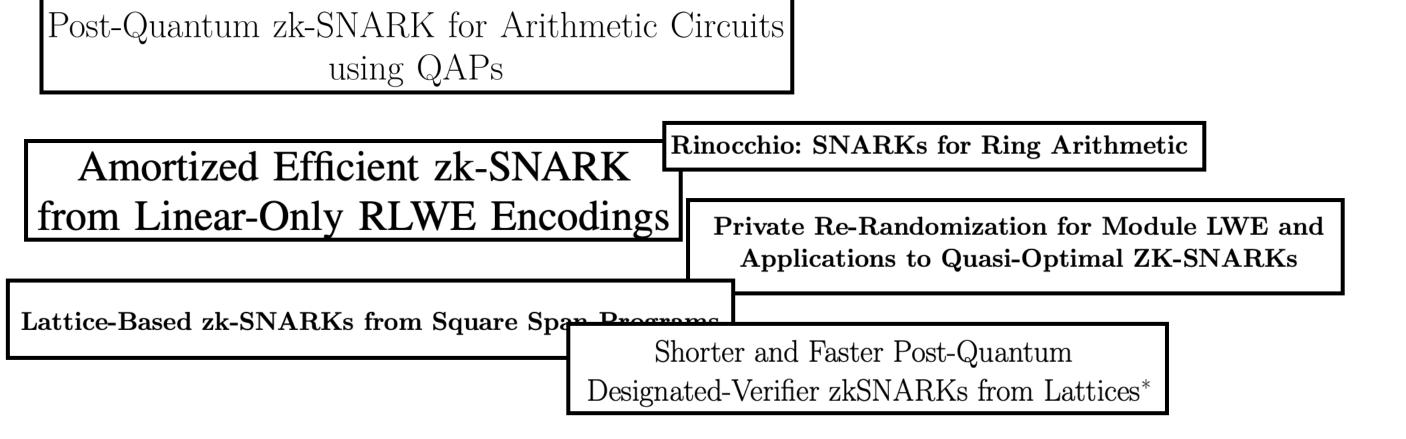
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions



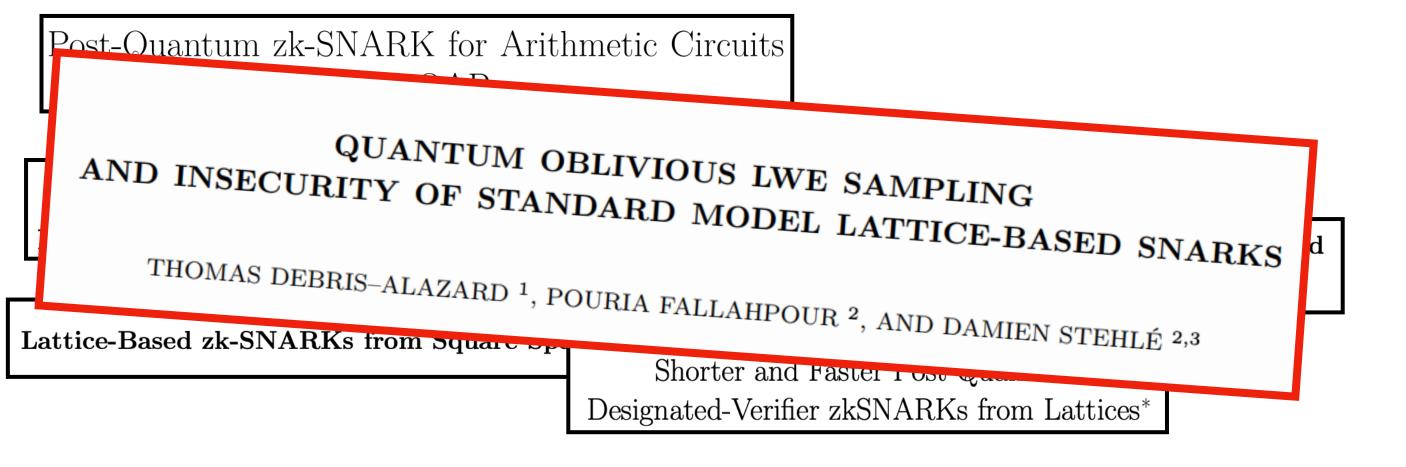
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions



[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions



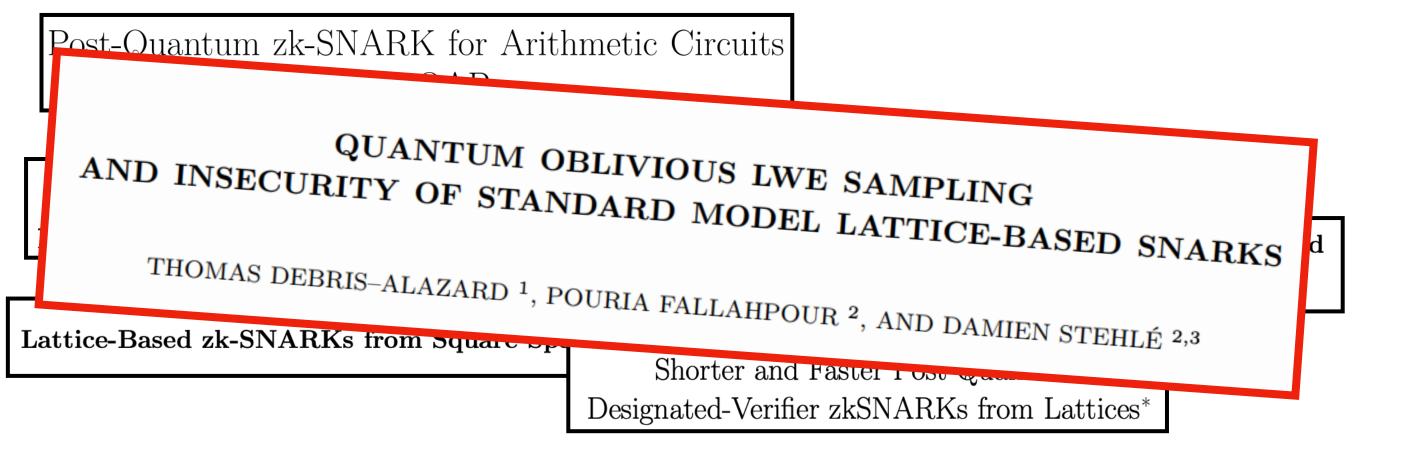
How to get around [GW11]?

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Knowledge k-RI-SIS

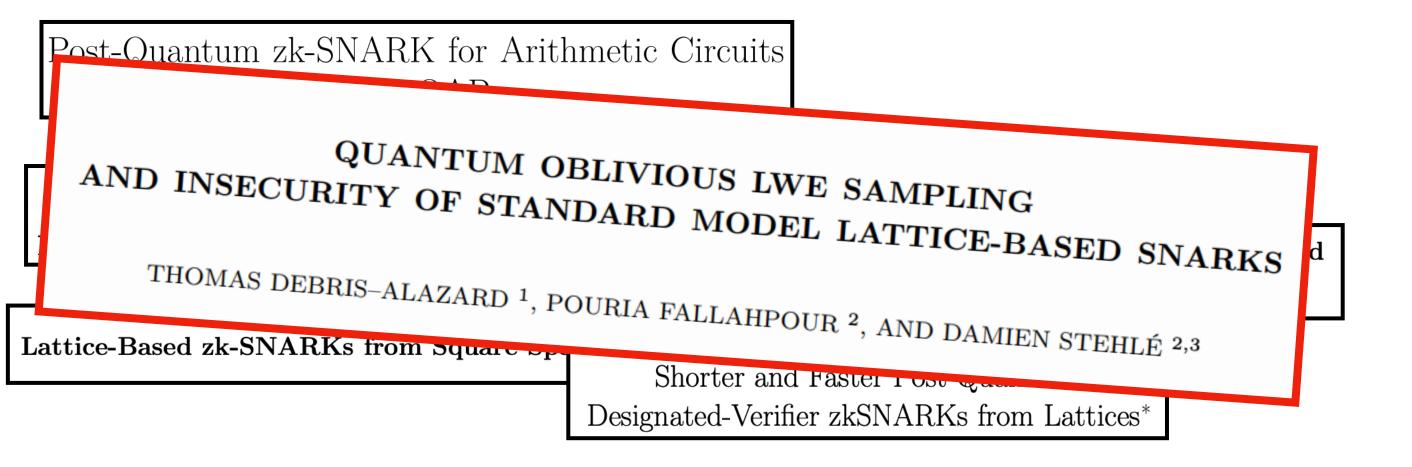


How to get around [GW11]?

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling



Knowledge k-RI-SIS

Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable

(Full Version)

How to get around [GW11]?

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

QUANTUM OBLIVIOUS LWE SAMPLING
AND INSECURITY OF STANDARD MODEL LATTICE-BASED SNARKS

THOMAS DEBRIS—ALAZARD 1, POURIA FALLAHPOUR 2, AND DAMIEN STEHLÉ 2,3

Lattice-Based zk-SNARKs from Square Sp

Shorter and Faster 1 050 Square
Designated-Verifier zkSNARKs from Lattices*

Knowledge k-RI-SIS

Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable

(Full Version)

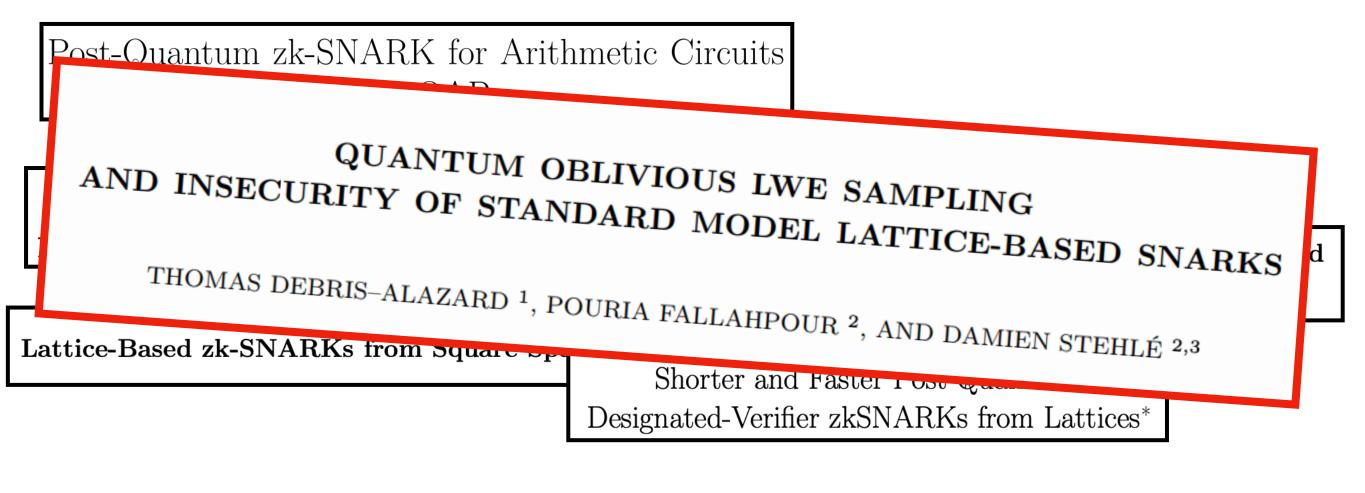
Lattice-based Succinct Arguments from Vanishing Polynomials (Full Version)

How to get around [GW11]?

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling



Lattice-Based SNARKs: Publicly Werification and Cryptanalysis

Recursive Fast Verification and Cryptanalysis

Lattice-Based SNARKs: Publicly Werification and Cryptanalysis

Recursive Fast Verification and Cryptanalysis

Recursive Fast Verification and Cryptanalysis

Lattice-Based SNARKs: Publicly Werification and Cryptanalysis

Lattice-Based Functional Commitments: Fast Verification and Recursive Fast Verification

• Knowledge assumptions in "lattice-land": hard to define and easy-ish to break

- Knowledge assumptions in "lattice-land": hard to define and easy-ish to break
- ROM takes care of extraction and non-interactivity.

- Knowledge assumptions in "lattice-land": hard to define and easy-ish to break
- ROM takes care of extraction and non-interactivity.

Special Sound Interactive Protocol

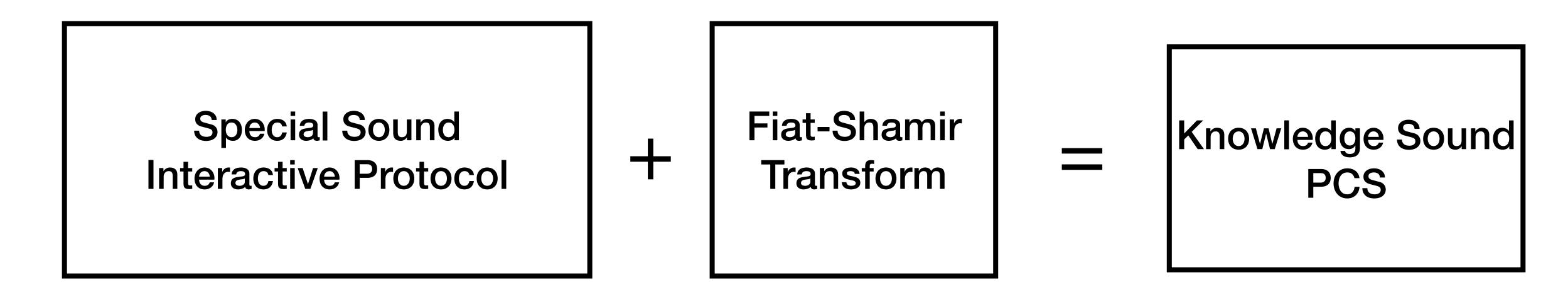
- Knowledge assumptions in "lattice-land": hard to define and easy-ish to break
- ROM takes care of extraction and non-interactivity.

Special Sound Interactive Protocol + Fiat-Shamir Transform

- Knowledge assumptions in "lattice-land": hard to define and easy-ish to break
- ROM takes care of extraction and non-interactivity.

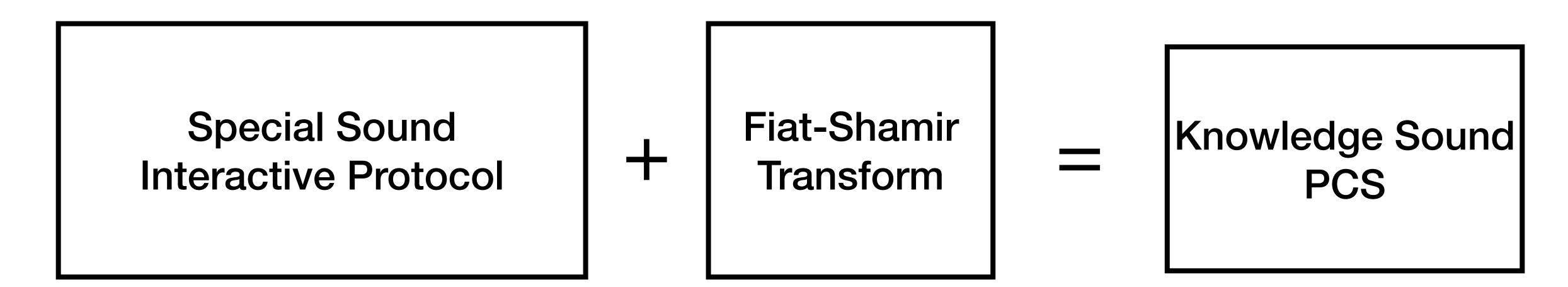
Special Sound Interactive Protocol + Fiat-Shamir Transform = Knowledge Sound PCS

- Knowledge assumptions in "lattice-land": hard to define and easy-ish to break
- ROM takes care of extraction and non-interactivity.



Use lattices to get succinctness in the interactive protocol.

- Knowledge assumptions in "lattice-land": hard to define and easy-ish to break
- ROM takes care of extraction and non-interactivity.



- Use lattices to get succinctness in the interactive protocol.
- Open Question: ROM alone is sufficient for efficient PCS (e.g. STIR), can we gain by using lattices?

Commitment Scheme

Commitment Scheme

• Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

• Need commitment $|\mathbf{t}| \ll d$

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

- Need commitment $|\mathbf{t}| \ll d$
- Must be binding for f of arbitrary norm

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

- Need commitment $|\mathbf{t}| \ll d$
- Must be binding for f of arbitrary norm

Evaluation Protocol

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

- Need commitment $|\mathbf{t}| \ll d$
- Must be binding for f of arbitrary norm

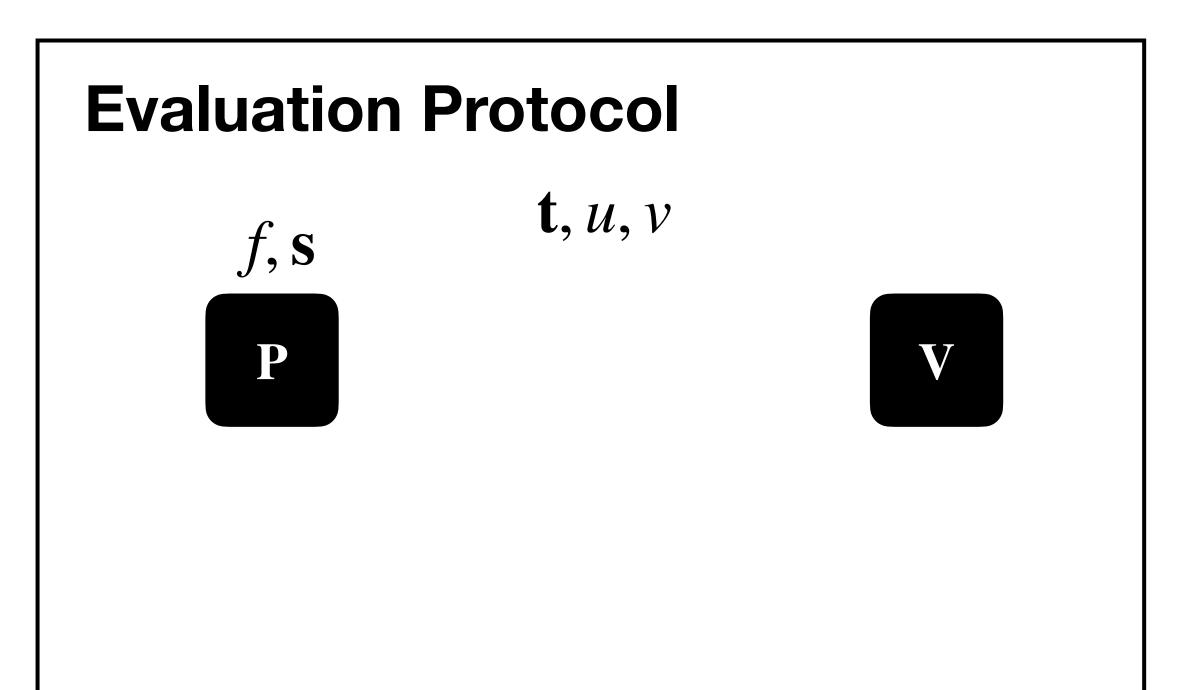
Evaluation Protocol

 \mathbf{t}, u, v

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

- Need commitment $|\mathbf{t}| \ll d$
- Must be binding for f of arbitrary norm

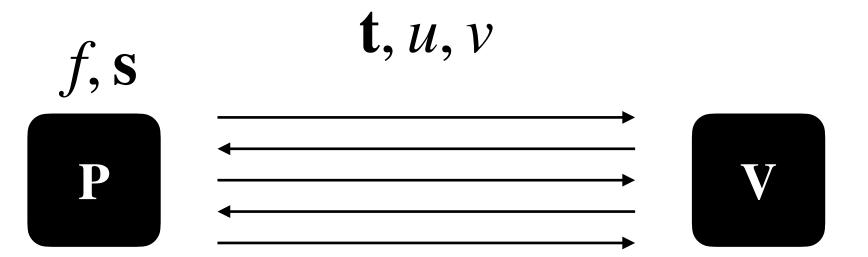


Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

- Need commitment $|\mathbf{t}| \ll d$
- Must be binding for f of arbitrary norm

Evaluation Protocol



Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

- Need commitment $|\mathbf{t}| \ll d$
- Must be binding for f of arbitrary norm

Evaluation Protocol

$$f, s$$
 t, u, v

P
 v

"I know f such that f(u) = v and an opening \mathbf{s} for $\mathbf{f} := \operatorname{coeff}(f)$ to \mathbf{t} "

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

- Need commitment $|\mathbf{t}| \ll d$
- Must be binding for f of arbitrary norm

Evaluation Protocol

$$f, s$$
 t, u, v
 V

"I know f such that f(u) = v and an opening \mathbf{s} for $\mathbf{f} := \operatorname{coeff}(f)$ to \mathbf{t} "

• Need V's running time to be $\ll d$

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathcal{R}_q^d$
- Commitment t, opening s
- Binding under lattice assumption

- Need commitment $|\mathbf{t}| \ll d$
- Must be binding for f of arbitrary norm

Evaluation Protocol

$$f, s$$
 t, u, v
 P
 V

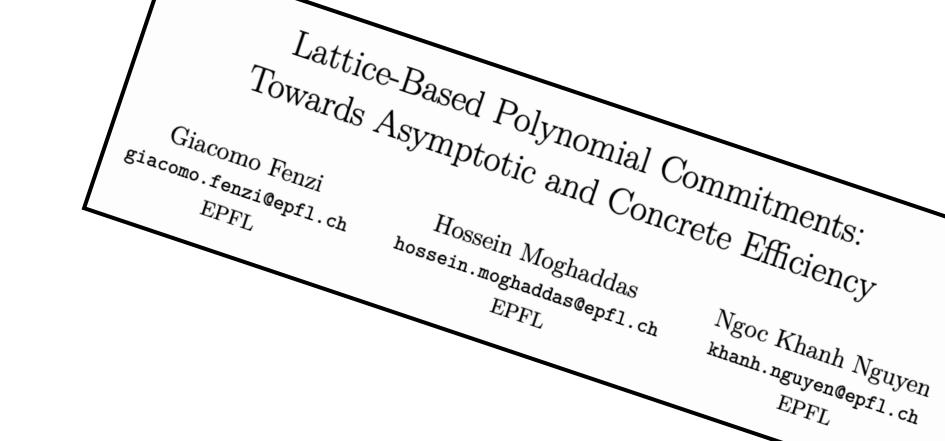
"I know f such that f(u) = v and an opening \mathbf{s} for $\mathbf{f} := \operatorname{coeff}(f)$ to \mathbf{t} "

- Need V's running time to be $\ll d$
- Need communication complexity $\ll d$

A starting point [FMN23]

A starting point [FMN23]

Given
$$\mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \end{bmatrix}$$
 and **trapdoor T** for \mathbf{B}



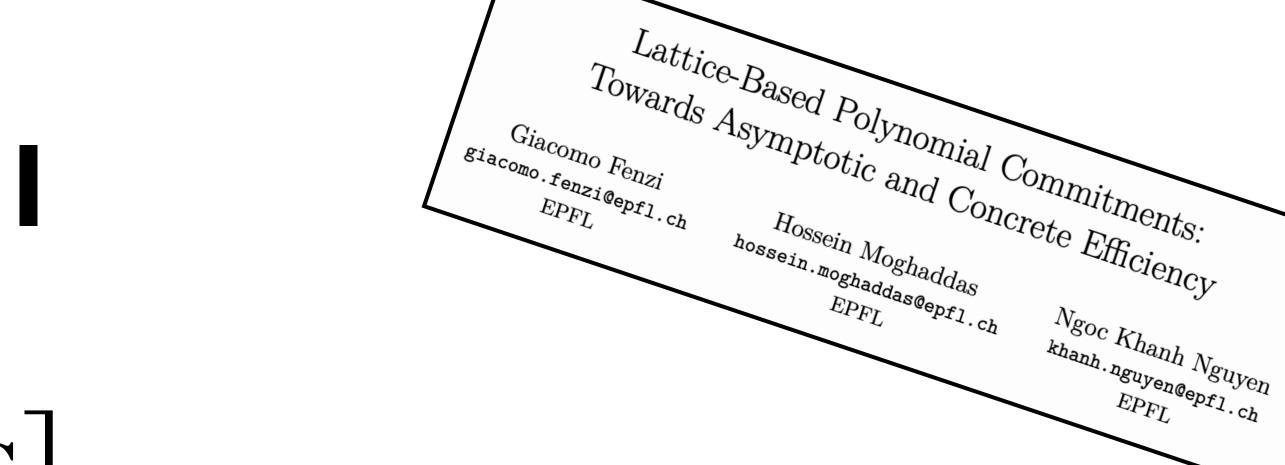
A starting point [FMN23]

Given
$$\mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \end{bmatrix}$$
 and **trapdoor T** for \mathbf{B}

Lattice-Based Polynomial Commitments: Towards Asymptotic and Concrete Efficiency G_{iacomo} F_{enzi} $gi_{acomo.fenzi@epfl.ch}$ $ho_{SSein.moghaddas@epfl.ch}$ $N_{goc} K_{hanh} N_{guyen}$ khanh.nguyen@epfl.ch

Use T to sample short $s_0, \ldots, s_{\ell-1}, \hat{t}$ such that:

A starting point [FMN23]

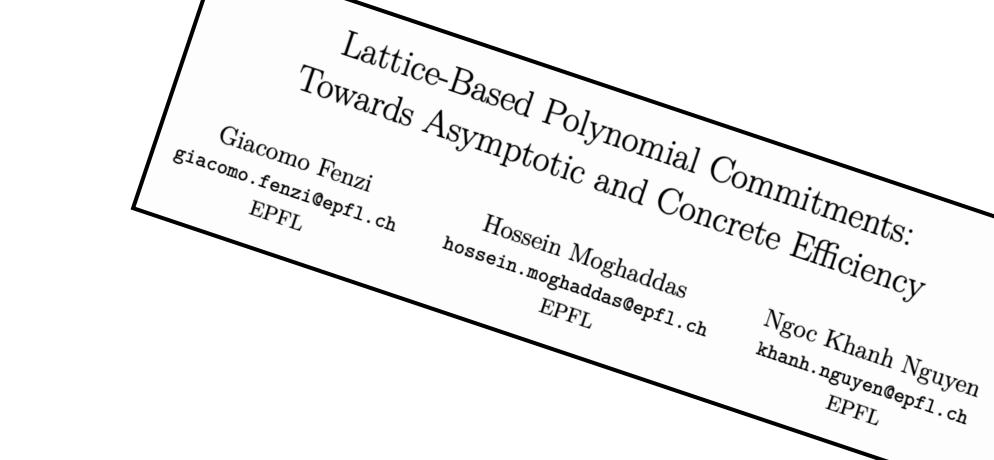


Given
$$\mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \end{bmatrix}$$
 and **trapdoor T** for \mathbf{B}

Use T to sample short $s_0, ..., s_{\ell-1}, \hat{t}$ such that:

$$\mathbf{B} \begin{bmatrix} \mathbf{s}_0 \\ \vdots \\ \mathbf{s}_{\ell-1} \\ \hat{\mathbf{t}} \end{bmatrix} = \begin{bmatrix} -f_0 w^0 \mathbf{e}_1 \\ \vdots \\ -f_{\ell-1} w^{\ell-1} \mathbf{e}_1 \end{bmatrix}$$
preimage target

A starting point [FMN23]



Given
$$\mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \end{bmatrix}$$
 and $\mathbf{trapdoor} \ \mathbf{T} \ \mathbf{for} \ \mathbf{B}$

Use T to sample short $s_0, ..., s_{\ell-1}, \hat{t}$ such that:

$$\mathbf{B} \begin{bmatrix} \mathbf{s}_0 \\ \vdots \\ \mathbf{s}_{\ell-1} \\ \hat{\mathbf{t}} \end{bmatrix} = \begin{bmatrix} -f_0 w^0 \mathbf{e}_1 \\ \vdots \\ -f_{\ell-1} w^{\ell-1} \mathbf{e}_1 \end{bmatrix}$$
preimage target

The commitment is $\mathbf{t} := \mathbf{G}\hat{\mathbf{t}}$ and the openings are $(S_i)_i$.

A starting point [FMN23]

Given
$$\mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \end{bmatrix}$$
 and **trapdoor T** for \mathbf{B}

Lattice-Based Polynomial Commitments: Towards Asymptotic and Concrete Efficiency $N_{goc} K_{hanh} N_{guyen}$

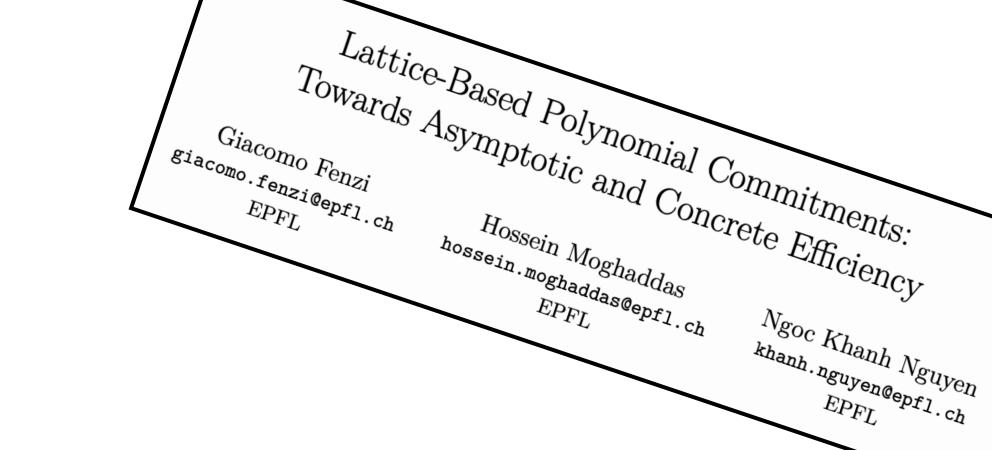
Use T to sample short $s_0, ..., s_{\ell-1}, \hat{t}$ such that:

$$\mathbf{B} \begin{bmatrix} \mathbf{s}_0 \\ \vdots \\ \mathbf{s}_{\ell-1} \\ \hat{\mathbf{t}} \end{bmatrix} = \begin{bmatrix} -f_0 w^0 \mathbf{e}_1 \\ \vdots \\ -f_{\ell-1} w^{\ell-1} \mathbf{e}_1 \end{bmatrix} \qquad \mathbf{T}$$
preimage
$$\text{target}$$

The commitment is $\mathbf{t} := \mathbf{G}\hat{\mathbf{t}}$ and the openings are $(S_i)_i$.

To open check that

A starting point [FMN23]



Given
$$\mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \end{bmatrix}$$
 and $\mathbf{trapdoor} \ \mathbf{T} \ \mathbf{for} \ \mathbf{B}$

Use T to sample short $s_0, ..., s_{\ell-1}, \hat{t}$ such that:

$$\mathbf{B} \begin{bmatrix} \mathbf{s}_0 \\ \vdots \\ \mathbf{s}_{\ell-1} \\ \hat{\mathbf{t}} \end{bmatrix} = \begin{bmatrix} -f_0 w^0 \mathbf{e}_1 \\ \vdots \\ -f_{\ell-1} w^{\ell-1} \mathbf{e}_1 \end{bmatrix}$$

$$\uparrow$$
preimage
$$\mathsf{target}$$

The commitment is $\mathbf{t} := \mathbf{G}\hat{\mathbf{t}}$ and the openings are $(S_i)_i$.

To open check that

$$\mathbf{A}\mathbf{s}_i + f_i\mathbf{e}_1 = w^{-i}\mathbf{t}$$
 and \mathbf{s}_i short

Pros and Cons X

Pros and Cons X

• Commitment is succinct.

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Algebraic structure enables efficient evaluation protocol.

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Algebraic structure enables efficient evaluation protocol.

• Binding under non-standard PRISIS assumption.

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Algebraic structure enables efficient evaluation protocol.

- Binding under non-standard PRISIS assumption.
- Time to commit is quadratic.

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Algebraic structure enables efficient evaluation protocol.

- Binding under non-standard PRISIS assumption.
- Time to commit is quadratic.
- Common reference string is quadratic.

PRISIS Commitments II

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Algebraic structure enables efficient evaluation protocol.

- Binding under non-standard PRISIS assumption.
- Time to commit is quadratic.
- Common reference string is quadratic.
- Trusted setup

PRISIS Commitments II

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Algebraic structure enables efficient evaluation protocol.

- Binding under non-standard PRISIS assumption.
- Time to commit is quadratic.
- Common reference string is quadratic.
- Trusted setup

Can we do better?

[FMN23]: $\mathcal{E} = 2$ reduces to MSIS

[FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0,1/3)$ and $\mathfrak{s} \ge \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let

$$\sigma \ge \delta \sqrt{tN \cdot (N^2 \mathfrak{s}^2 m + 2t)} \cdot \omega(\sqrt{N \log n N}).$$

Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

[FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0,1/3)$ and $\mathfrak{s} \ge \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let $\sigma \ge \delta \sqrt{tN \cdot (N^2\mathfrak{s}^2m + 2t)} \cdot \omega(\sqrt{N \log nN}).$

Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

Multi-Instance BASIS

[FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0,1/3)$ and $\mathfrak{s} \ge \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let

$$\sigma \geq \delta \sqrt{tN \cdot (N^2 \mathfrak{s}^2 m + 2t)} \cdot \omega(\sqrt{N \log n N}).$$

Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

Multi-Instance BASIS

h-instance BASIS Game

[FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0,1/3)$ and $\mathfrak{s} \ge \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let

$$\sigma \geq \delta \sqrt{tN \cdot (N^2 \mathfrak{s}^2 m + 2t)} \cdot \omega(\sqrt{N \log n N}).$$

Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

Multi-Instance BASIS

h-instance BASIS Game

$$\mathbf{A}_{1}^{\star},...,\mathbf{A}_{h}^{\star}\leftarrow\mathcal{R}_{q}^{m\times n}$$

[FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0,1/3)$ and $\mathfrak{s} \ge \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let

$$\sigma \geq \delta \sqrt{tN \cdot (N^2 \mathfrak{s}^2 m + 2t)} \cdot \omega(\sqrt{N \log n N}).$$

Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

Multi-Instance BASIS

h-instance BASIS Game

$$\mathbf{A}_{1}^{\star},...,\mathbf{A}_{h}^{\star}\leftarrow\mathcal{R}_{q}^{m\times n}$$

$$\operatorname{aux}_i \leftarrow \operatorname{Samp}(\mathbf{A}_i^{\star}) \text{ for } i \in [h]$$

[FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0,1/3)$ and $\mathfrak{s} \ge \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let

$$\sigma \geq \delta \sqrt{tN \cdot (N^2 \mathfrak{s}^2 m + 2t)} \cdot \omega(\sqrt{N \log n N}).$$

Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

Multi-Instance BASIS

h-instance BASIS Game

$$\mathbf{A}_{1}^{\star},...,\mathbf{A}_{h}^{\star}\leftarrow\mathcal{R}_{q}^{m\times n}$$

$$\operatorname{aux}_i \leftarrow \operatorname{Samp}(\mathbf{A}_i^{\star}) \text{ for } i \in [h]$$

return $((\mathbf{A}_i^{\star}, \mathsf{aux}_i)_i)$ to \mathscr{A}

[FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0,1/3)$ and $\mathfrak{s} \ge \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let

$$\sigma \geq \delta \sqrt{tN \cdot (N^2 \mathfrak{s}^2 m + 2t)} \cdot \omega(\sqrt{N \log n N}).$$

Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

Multi-Instance BASIS

h-instance BASIS Game

$$\mathbf{A}_{1}^{\star},...,\mathbf{A}_{h}^{\star}\leftarrow\mathcal{R}_{q}^{m\times n}$$

$$\operatorname{aux}_i \leftarrow \operatorname{Samp}(\mathbf{A}_i^{\star}) \text{ for } i \in [h]$$

return
$$((\mathbf{A}_i^{\star}, \mathsf{aux}_i)_i)$$
 to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{X} :

•
$$[\mathbf{A}_1^{\star}, \dots, \mathbf{A}_h^{\star}] \cdot \mathbf{x} = 0$$

•
$$0 < |\mathbf{x}| \le \beta$$

[FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0,1/3)$ and $\mathfrak{s} \ge \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let

$$\sigma \geq \delta \sqrt{tN \cdot (N^2 \mathfrak{s}^2 m + 2t)} \cdot \omega(\sqrt{N \log n N}).$$

Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

Multi-Instance BASIS

h-instance BASIS Game

$$\mathbf{A}_{1}^{\star},...,\mathbf{A}_{h}^{\star}\leftarrow\mathcal{R}_{q}^{m\times n}$$

 $\operatorname{aux}_i \leftarrow \operatorname{Samp}(\mathbf{A}_i^{\star}) \text{ for } i \in [h]$

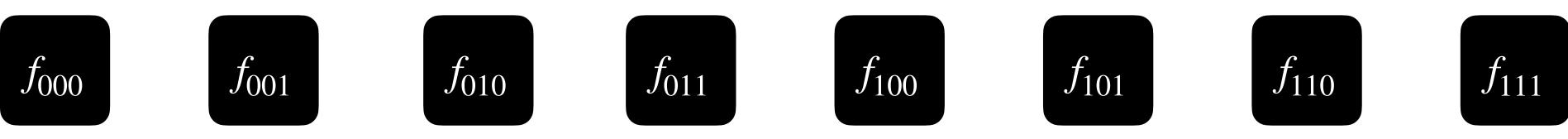
return $((\mathbf{A}_i^{\star}, \mathbf{aux}_i)_i)$ to \mathscr{A}

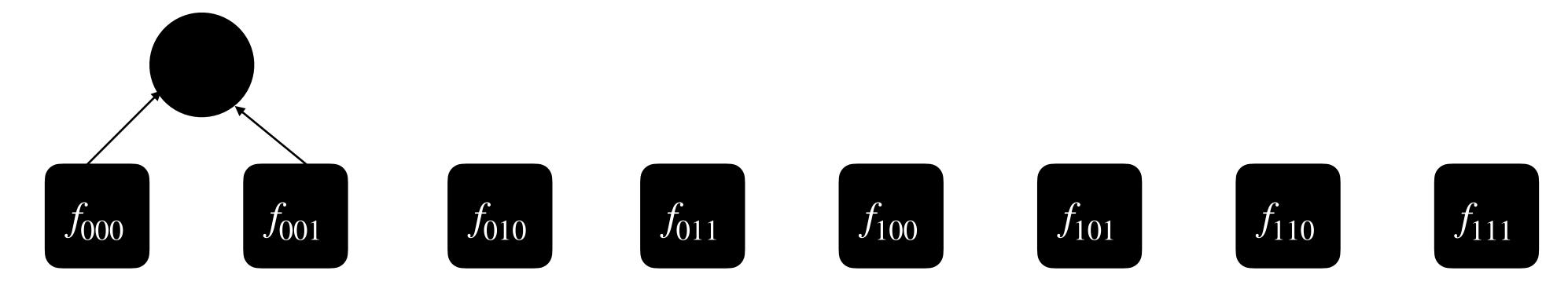
 \mathscr{A} wins if it finds \mathbf{x} :

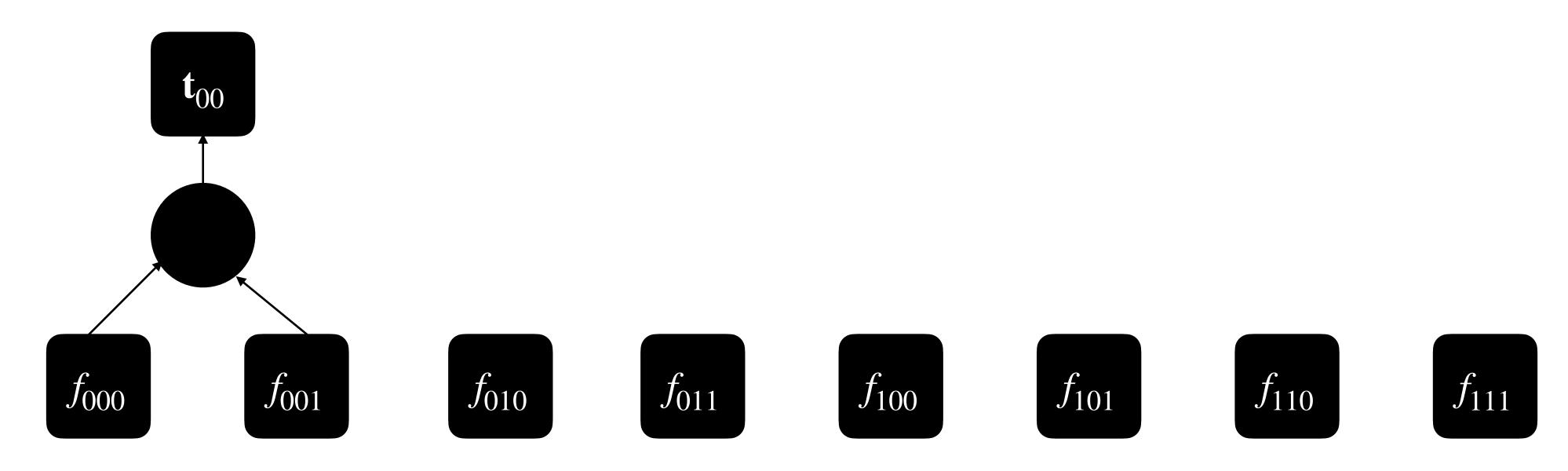
•
$$[\mathbf{A}_1^{\star}, ..., \mathbf{A}_h^{\star}] \cdot \mathbf{x} = 0$$

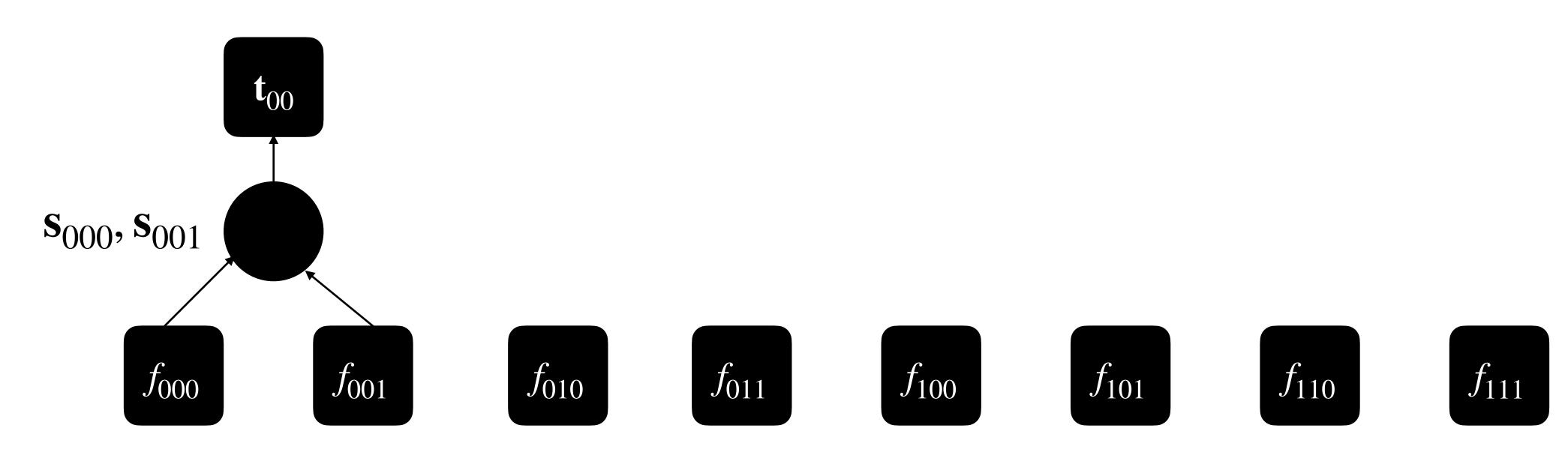
•
$$0 < |\mathbf{x}| \le \beta$$

For $\ell = O(1)$, if PRISIS $_{\ell}$ is hard so is h-PRISIS $_{\ell}$!

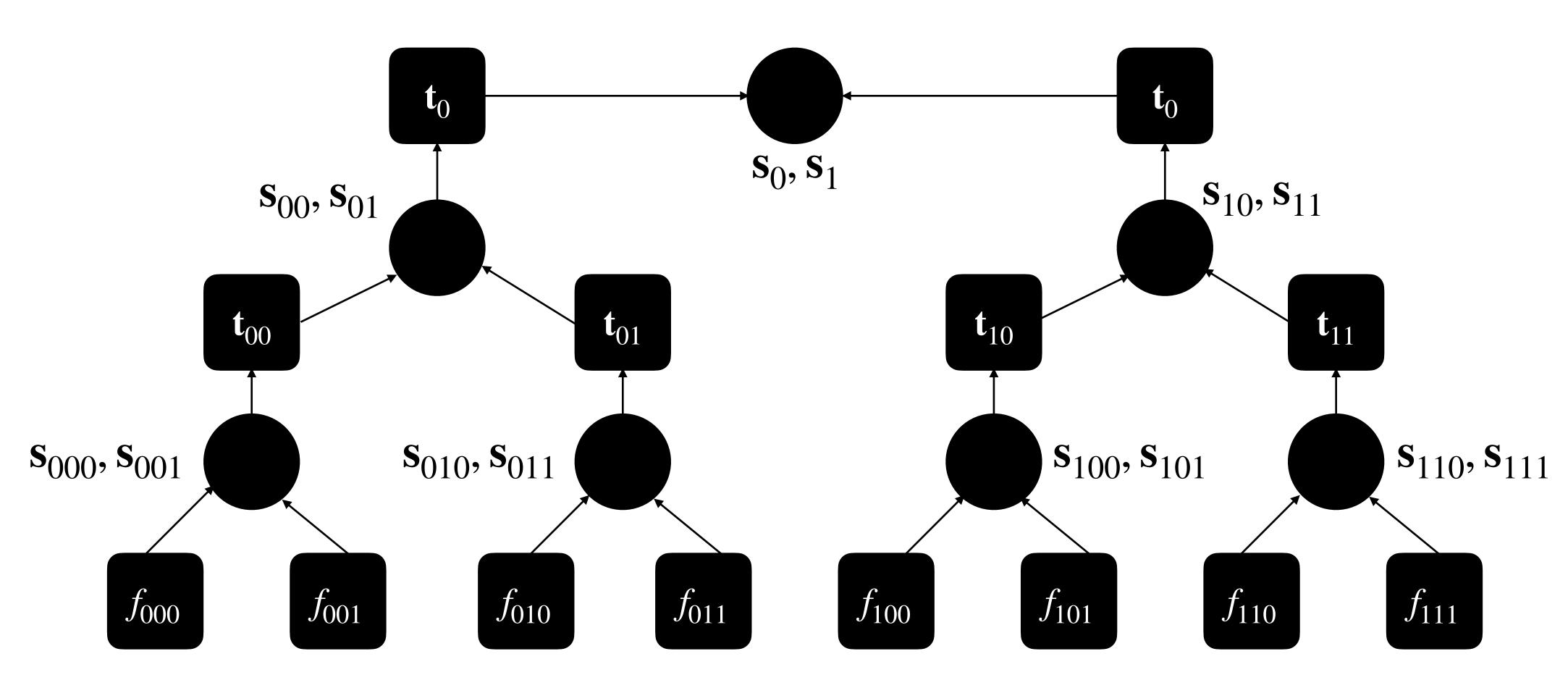


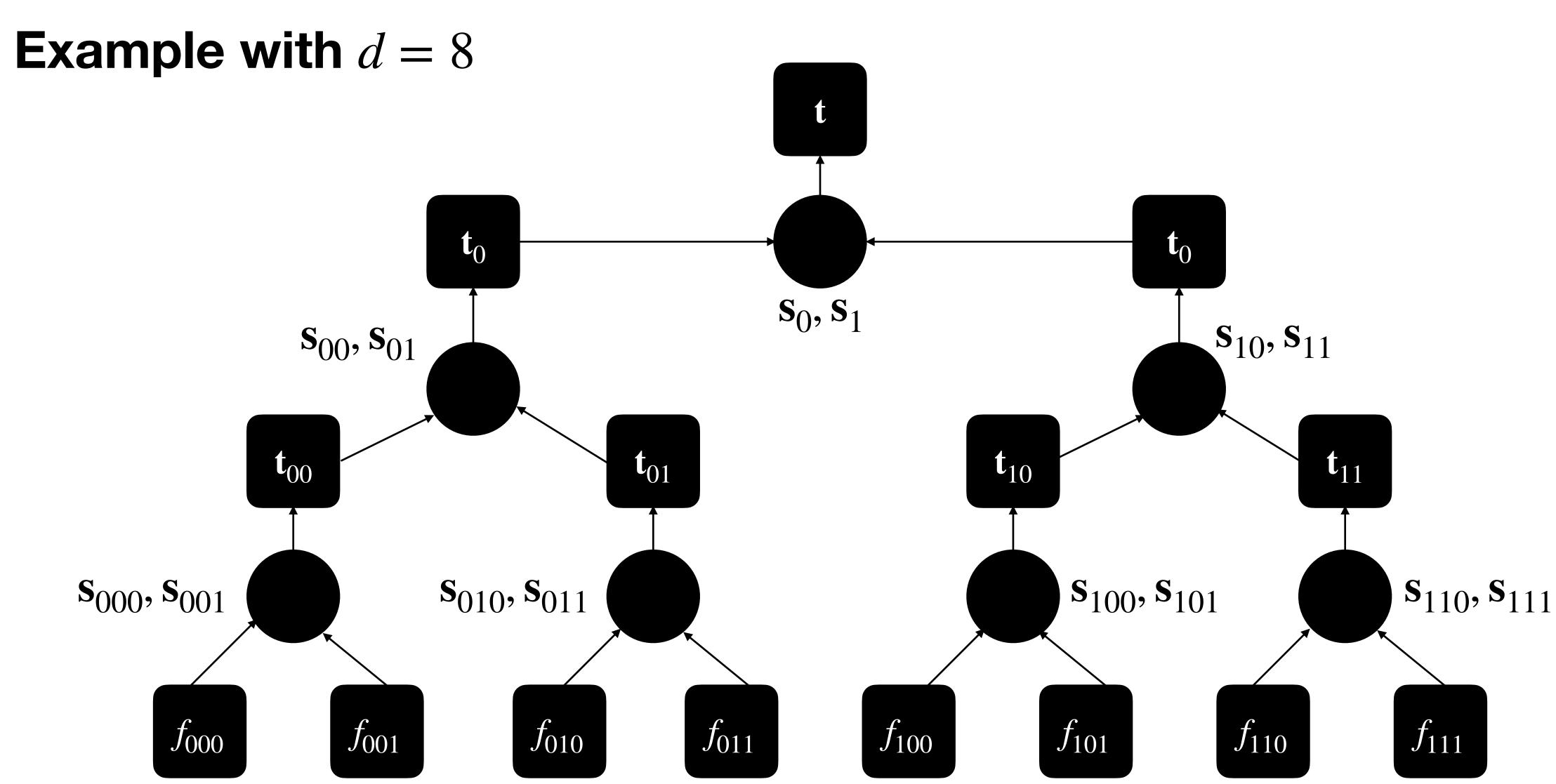












How to check an opening

How to check an opening

• Each layer has its own $\operatorname{crs}_j := (\mathbf{A}_j, w_j, \mathbf{T}_j)$ for $j \in [h := \log d]$

How to check an opening

- Each layer has its own $\operatorname{crs}_j := (\mathbf{A}_j, w_j, \mathbf{T}_j)$ for $j \in [h := \log d]$
- Check that all local openings are correct. I.e. check that, for $\mathbf{b} \in \{0,1\}^h$:

How to check an opening

- Each layer has its own $\operatorname{crs}_j := (\mathbf{A}_j, w_j, \mathbf{T}_j)$ for $j \in [h := \log d]$
- Check that all local openings are correct. I.e. check that, for $\mathbf{b} \in \{0,1\}^h$:

$$\sum_{j \in [h]} w_j^{b_j} \mathbf{A}_j \mathbf{s}_{\mathbf{b}:j} + f_{\mathbf{b}} \cdot \mathbf{e} = \mathbf{t}$$

How to check an opening

- Each layer has its own $\operatorname{crs}_j := (\mathbf{A}_j, w_j, \mathbf{T}_j)$ for $j \in [h := \log d]$
- Check that all local openings are correct. I.e. check that, for $\mathbf{b} \in \{0,1\}^h$:

$$\sum_{j \in [h]} w_j^{b_j} \mathbf{A}_j \mathbf{s}_{\mathbf{b}:j} + f_{\mathbf{b}} \cdot \mathbf{e} = \mathbf{t}$$

• And, of course, that all the openings $\mathbf{s_b}$ are short for $\mathbf{b} \in \{0,1\}^{\leq h}$

How to check an opening

- Each layer has its own $\operatorname{crs}_j := (\mathbf{A}_j, w_j, \mathbf{T}_j)$ for $j \in [h := \log d]$
- Check that all local openings are correct. I.e. check that, for $\mathbf{b} \in \{0,1\}^h$:

$$\sum_{j \in [h]} w_j^{b_j} \mathbf{A}_j \mathbf{s}_{\mathbf{b}:j} + f_{\mathbf{b}} \cdot \mathbf{e} = \mathbf{t}$$

- And, of course, that all the openings $\mathbf{s_b}$ are short for $\mathbf{b} \in \{0,1\}^{\leq h}$
- Binding: subtract two verification equation:

How to check an opening

- Each layer has its own $\operatorname{crs}_j := (\mathbf{A}_j, w_j, \mathbf{T}_j)$ for $j \in [h := \log d]$
- Check that all local openings are correct. I.e. check that, for $\mathbf{b} \in \{0,1\}^h$:

$$\sum_{j \in [h]} w_j^{b_j} \mathbf{A}_j \mathbf{s}_{\mathbf{b}:j} + f_{\mathbf{b}} \cdot \mathbf{e} = \mathbf{t}$$

- And, of course, that all the openings $\mathbf{s_b}$ are short for $\mathbf{b} \in \{0,1\}^{\leq h}$
- Binding: subtract two verification equation:

reduces to h-PRISIS $_{\ell}$ i.e. **MSIS**!

Pros and Cons X

• Commitment is succinct.

- Commitment is succinct.
- Supports committing to messages of arbitrary size.

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Time to commit is quasi-linear.

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Time to commit is quasi-linear.
- Common reference string is logarithmic.

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Time to commit is quasi-linear.
- Common reference string is logarithmic.
- Binding under standard SIS assumption.

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Time to commit is quasi-linear.
- Common reference string is logarithmic.
- Binding under standard SIS assumption.

Trusted setup

Merkle-PRISIS III

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Time to commit is quasi-linear.
- Common reference string is logarithmic.
- Binding under standard SIS assumption.

Trusted setup

Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup

Valerio Cini¹, Giulio Malavolta², Ngoc Khanh Nguyen³, and Hoeteck Wee¹

- ¹ NTT Research, Sunnyvale, CA, USA
- ² Bocconi University, Milan, Italy
- ³ King's College London, London, UK

Merkle-PRISIS III

Pros and Cons

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Time to commit is quasi-linear.
- Common reference string is logarithmic.
- Binding under standard SIS assumption.

Trusted setup

Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup

Valerio Cini¹, Giulio Malavolta², Ngoc Khanh Nguyen³, and Hoeteck Wee¹

- ¹ NTT Research, Sunnyvale, CA, USA
- Bocconi University, Milan, Italy King's College London, London, UK

Can we do an efficient evaluation protocol?

Evaluation Protocol

FRI Inspired folding + CWSS

Basic Σ -Protocol

Prover

$$f(X) = f_0(X^2) + X f_1(X^2)$$

$$z_i \coloneqq f_i(u^2) \text{ for } i \in \mathbb{Z}_2$$

$$g(\mathsf{X}) \coloneqq \alpha_0 f_0(\mathsf{X}) + \alpha_1 f_1(\mathsf{X})$$

$$\mathbf{z_b} \coloneqq \alpha_0 \mathbf{s_{b,0}} + \alpha_1 \mathbf{s_{b,1}} \text{ for } \mathbf{b} \in \mathbb{Z}_2^{\leq h-1} \quad \underline{g, (\mathbf{z_b})_b}$$

Verifier

Check:
$$z_0 + uz_1 = z$$
; Check: $\mathbf{s}_0, \mathbf{s}_1$ short

$$\alpha_0, \alpha_1 \leftarrow \{X^i : i \in \mathbb{Z}\}$$

$$\mathsf{crs}' \coloneqq (\mathbf{A}_{1+t}, w_{1+t}, \mathbf{T}_{1+t})_{t \in [h-1]}$$

$$\mathbf{t}' \coloneqq \alpha_0 \cdot \left(\mathbf{t} - w_1^0 \mathbf{A}_1 \mathbf{s}_0\right) + \alpha_1 \cdot \left(\mathbf{t} - w_1^1 \mathbf{A}_1 \mathbf{s}_1\right)$$

$$u' \coloneqq u^2; z' \coloneqq \alpha_0 \cdot z_0 + \alpha_1 \cdot z_1$$

Check:
$$g(u') = z'$$

Check: Open(crs',
$$\mathbf{t}', g, (\mathbf{z_b})_{\mathbf{b}}) = 1$$

 $z_0,z_1,\mathbf{s}_0,\mathbf{s}_1$

 α_0,α_1

• Apply protocol recursively $\log d$ times and send final opening O(1).

- Apply protocol recursively $\log d$ times and send final opening O(1).
- Knowledge soundness follows from coordinate-wise special soundness.

- Apply protocol recursively $\log d$ times and send final opening O(1).
- Knowledge soundness follows from coordinate-wise special soundness.
- Commitment is succinct, verifier also succinct.

- Apply protocol recursively $\log d$ times and send final opening O(1).
- Knowledge soundness follows from coordinate-wise special soundness.
- Commitment is **succinct**, verifier also **succinct**.
- **Problem** \mathfrak{P} : Knowledge soundness error is $1/\operatorname{poly}(\lambda)$.

- Apply protocol recursively $\log d$ times and send final opening O(1).
- Knowledge soundness follows from coordinate-wise special soundness.
- Commitment is **succinct**, verifier also **succinct**.
- **Problem** \mathfrak{P} : Knowledge soundness error is $1/\operatorname{poly}(\lambda)$.
- Can be made negligible by parallel repetition, but then no Fiat-Shamir!

- Apply protocol recursively $\log d$ times and send final opening O(1).
- Knowledge soundness follows from coordinate-wise special soundness.
- Commitment is **succinct**, verifier also **succinct**.
- **Problem** \mathfrak{P} : Knowledge soundness error is $1/\operatorname{poly}(\lambda)$.
- Can be made negligible by parallel repetition, but then no Fiat-Shamir!
- Change the challenge space?

- Apply protocol recursively $\log d$ times and send final opening O(1).
- Knowledge soundness follows from coordinate-wise special soundness.
- Commitment is **succinct**, verifier also **succinct**.
- **Problem** \mathfrak{P} : Knowledge soundness error is $1/\operatorname{poly}(\lambda)$.
- Can be made negligible by parallel repetition, but then no Fiat-Shamir!
- Change the challenge space?
 - Non-subtractive challenge space => Blowup in extraction, cannot do more than $\log \log d$ recursions => only **quasi-polylogarithmic** sizes.

- Apply protocol recursively $\log d$ times and send final opening O(1).
- Knowledge soundness follows from coordinate-wise special soundness.
- Commitment is **succinct**, verifier also **succinct**.
- **Problem** \mathfrak{P} : Knowledge soundness error is $1/\operatorname{poly}(\lambda)$.
- Can be made negligible by parallel repetition, but then no Fiat-Shamir!
- Change the challenge space?
 - Non-subtractive challenge space => Blowup in extraction, cannot do more than $\log \log d$ recursions => only **quasi-polylogarithmic** sizes.
 - Subtractive challenge space => Challenge space of size at most poly(λ) [AL21]

Claim bundling I Let's prove something harder!

Let's prove something harder!

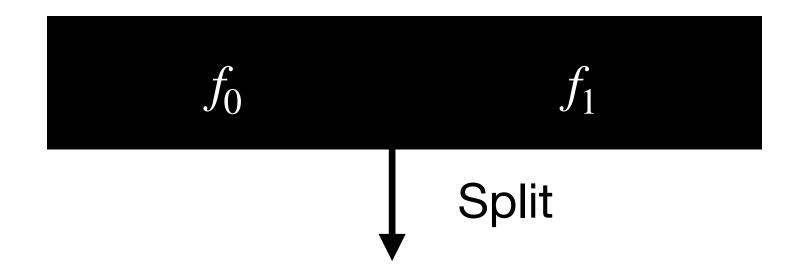
• Instead of proving f(u) = v, show that, for $i \in [r]$, $f_i(u) = v_i$

Let's prove something harder!

- Instead of proving f(u) = v, show that, for $i \in [r]$, $f_i(u) = v_i$
- As in [FMN23], our protocol can be easily extended to deal with this.

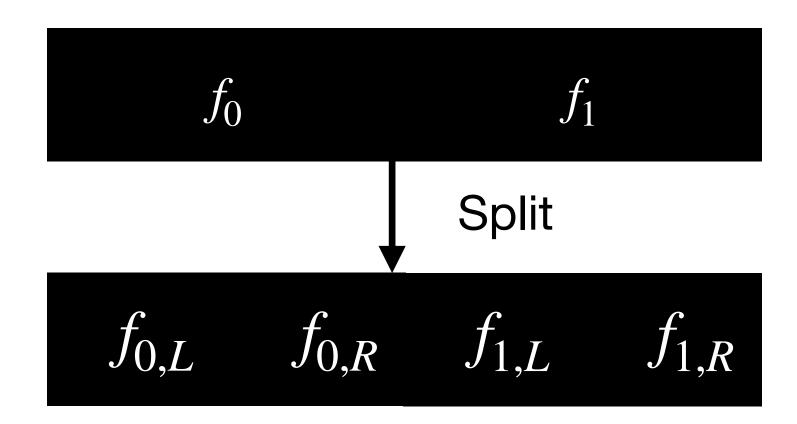
Let's prove something harder!

- Instead of proving f(u) = v, show that, for $i \in [r]$, $f_i(u) = v_i$
- As in [FMN23], our protocol can be easily extended to deal with this.



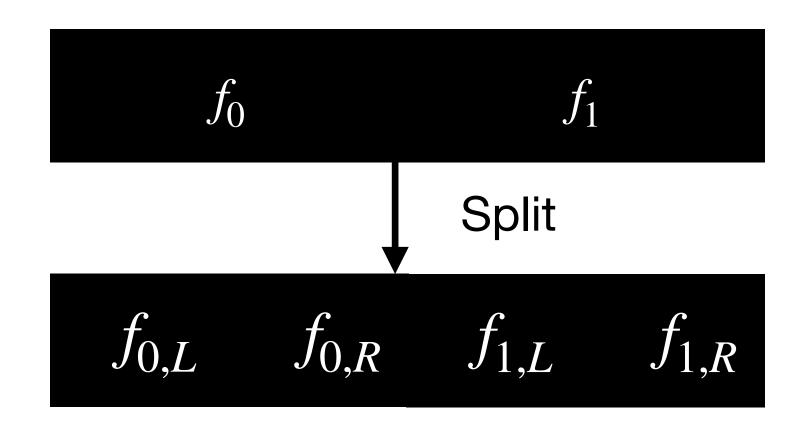
Let's prove something harder!

- Instead of proving f(u) = v, show that, for $i \in [r]$, $f_i(u) = v_i$
- As in [FMN23], our protocol can be easily extended to deal with this.



Let's prove something harder!

- Instead of proving f(u) = v, show that, for $i \in [r], f_i(u) = v_i$
- As in [FMN23], our protocol can be easily extended to deal with this.

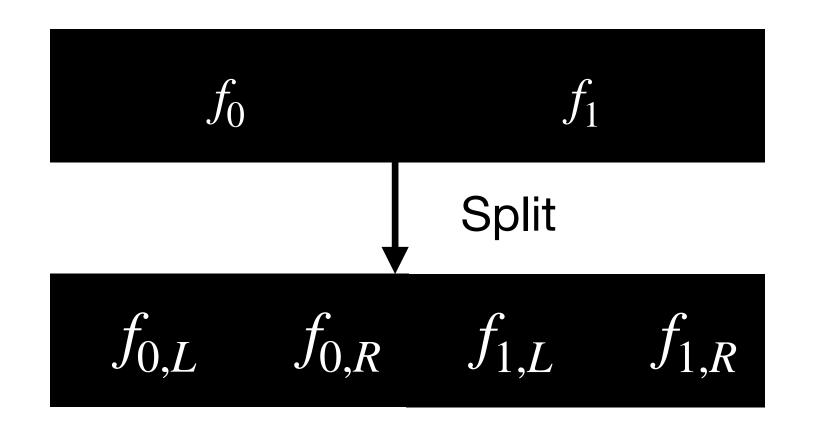


Randomness is now:

$$\begin{bmatrix} \alpha_{0,L,0}, \alpha_{0,R,0}, \alpha_{1,L,0}, \alpha_{1,R,0} \\ \alpha_{0,L,1}, \alpha_{0,R,1}, \alpha_{1,L,1}, \alpha_{1,R,1} \end{bmatrix} \in (\mathscr{C}^r)^{2r}$$

Let's prove something harder!

- Instead of proving f(u) = v, show that, for $i \in [r]$, $f_i(u) = v_i$
- As in [FMN23], our protocol can be easily extended to deal with this.

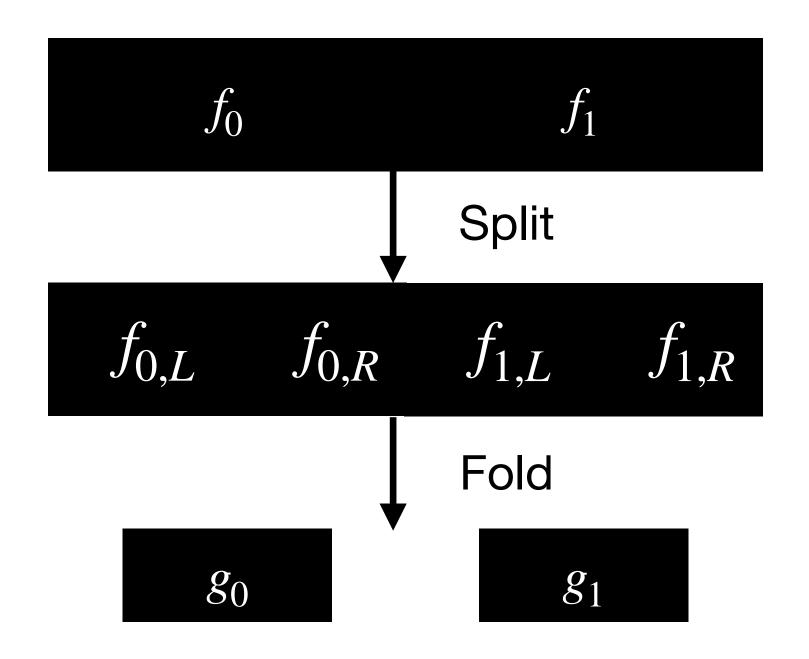


Randomness is now:

$$\begin{bmatrix} \alpha_{0,L,0}, \alpha_{0,R,0}, \alpha_{1,L,0}, \alpha_{1,R,0} \\ \alpha_{0,L,1}, \alpha_{0,R,1}, \alpha_{1,L,1}, \alpha_{1,R,1} \end{bmatrix} \in (\mathscr{C}^r)^{2r} \qquad \underset{\text{into } g_{\kappa}}{\alpha_{l,i,\kappa}} \text{ folds } f_{l,i}$$

Let's prove something harder!

- Instead of proving f(u) = v, show that, for $i \in [r], f_i(u) = v_i$
- As in [FMN23], our protocol can be easily extended to deal with this.

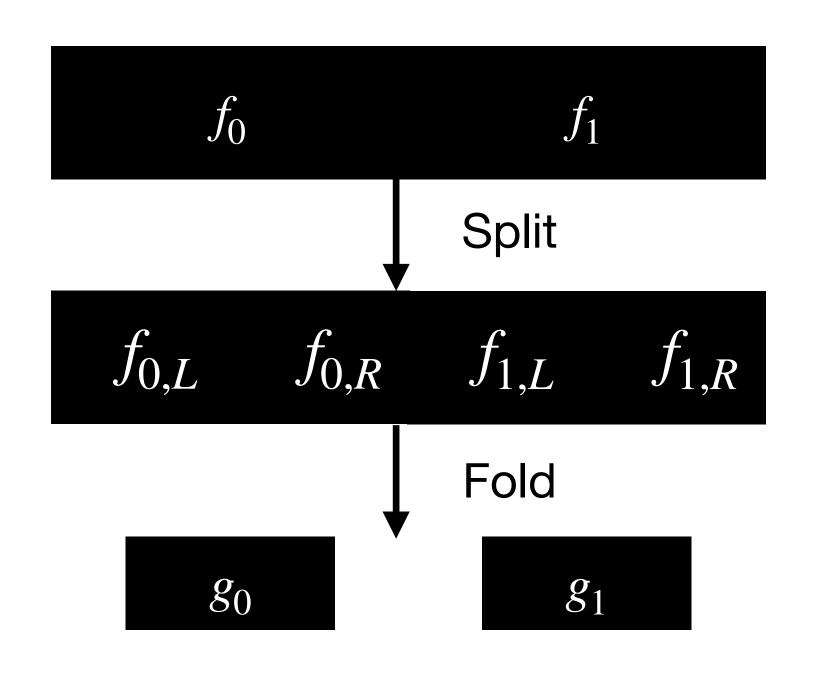


Randomness is now:

$$\begin{bmatrix} \alpha_{0,L,0}, \alpha_{0,R,0}, \alpha_{1,L,0}, \alpha_{1,R,0} \\ \alpha_{0,L,1}, \alpha_{0,R,1}, \alpha_{1,L,1}, \alpha_{1,R,1} \end{bmatrix} \in (\mathscr{C}^r)^{2r} \qquad \underset{\text{into } g_{\kappa}}{\alpha_{l,i,\kappa}} \text{ folds } f_{l,i}$$

Let's prove something harder!

- Instead of proving f(u) = v, show that, for $i \in [r]$, $f_i(u) = v_i$
- As in [FMN23], our protocol can be easily extended to deal with this.



Randomness is now:

$$\begin{bmatrix} \alpha_{0,L,0}, \alpha_{0,R,0}, \alpha_{1,L,0}, \alpha_{1,R,0} \\ \alpha_{0,L,1}, \alpha_{0,R,1}, \alpha_{1,L,1}, \alpha_{1,R,1} \end{bmatrix} \in (\mathscr{C}^r)^{2r} \qquad \alpha_{l,i,\kappa} \text{ folds } f_{l,i} \text{ into } g_{\kappa}$$

Folded polynomial:

$$g_0 := \alpha_{0,L,0} f_{0,L} + \alpha_{0,R,0} f_{0,R} + \alpha_{1,L,0} f_{1,L} + \alpha_{1,R,0} f_{1,R}$$

$$g_1 := \alpha_{0,L,1} f_{0,L} + \alpha_{0,R,1} f_{0,R} + \alpha_{1,L,1} f_{1,L} + \alpha_{1,R,1} f_{1,R}$$

Claim bundling II What did we gain?

What did we gain?

• Now, protocol is 2r coordinate-wise special sound with challenge space of size roughly $\operatorname{poly}(\lambda)^r$

What did we gain?

- Now, protocol is 2r coordinate-wise special sound with challenge space of size roughly $\operatorname{poly}(\lambda)^r$
- Setting r to be polylog(λ), we achieve negligible knowledge error!

What did we gain?

- Now, protocol is 2r coordinate-wise special sound with challenge space of size roughly $\operatorname{poly}(\lambda)^r$
- Setting r to be polylog(λ), we achieve negligible knowledge error!
- Our protocol can now be made non-interactive using FS.

What did we gain?

- Now, protocol is 2r coordinate-wise special sound with challenge space of size roughly $\operatorname{poly}(\lambda)^r$
- Setting r to be polylog(λ), we achieve negligible knowledge error!
- Our protocol can now be made non-interactive using FS.
- To prove a single claim f(u) = v, simply set $f_1, \ldots, f_r = f$ and $v_1, \ldots, v_r = v$.

Conclusion

SLAP

A non-interactive lattice-based polynomial commitment with succinct proofs and verification time, from standard lattice assumptions.

What we did not talk about

Succinct evaluation protocol for Merkle-PRISIS

- Succinct evaluation protocol for Merkle-PRISIS
- Folding more at each step

- Succinct evaluation protocol for Merkle-PRISIS
- Folding more at each step
- Coordinate-wise special soundness

- Succinct evaluation protocol for Merkle-PRISIS
- Folding more at each step
- Coordinate-wise special soundness
- Honest-verifier zero knowledge for our PCS

- Succinct evaluation protocol for Merkle-PRISIS
- Folding more at each step
- Coordinate-wise special soundness
- Honest-verifier zero knowledge for our PCS
- Transforming PCS for \mathcal{R}_q in those for \mathbb{Z}_q (efficient packing)

- Succinct evaluation protocol for Merkle-PRISIS
- Folding more at each step
- Coordinate-wise special soundness
- Honest-verifier zero knowledge for our PCS
- Transforming PCS for \mathcal{R}_q in those for \mathbb{Z}_q (efficient packing)
- Twin-k-M-ISIS is no easier than 2k-M-ISIS

- Succinct evaluation protocol for Merkle-PRISIS
- Folding more at each step
- Coordinate-wise special soundness
- Honest-verifier zero knowledge for our PCS
- Transforming PCS for \mathcal{R}_q in those for \mathbb{Z}_q (efficient packing)
- Twin-k-M-ISIS is no easier than 2k-M-ISIS
- Setting concrete parameters

There is more!

What we did not talk about

- Succinct evaluation protocol for Merkle-PRISIS
- Folding more at each step
- Coordinate-wise special soundness
- Honest-verifier zero knowledge for our PCS
- Transforming PCS for \mathcal{R}_q in those for \mathbb{Z}_q (efficient packing)
- Twin-k-M-ISIS is no easier than 2k-M-ISIS
- Setting concrete parameters
- Reductions... all the reductions

There is more!

What we did not talk about

- Succinct evaluation protocol for Merkle-PRISIS
- Folding more at each step
- Coordinate-wise special soundness
- Honest-verifier zero knowledge for our PCS
- Transforming PCS for \mathcal{R}_q in those for \mathbb{Z}_q (efficient packing)
- Twin-k-M-ISIS is no easier than 2k-M-ISIS
- Setting concrete parameters
- Reductions... all the reductions

SLAP: Succinct Lattice-Based Polynomial Commitments from Standard Assumptions

Martin R. Albrecht
martin.albrecht@{kcl.ac.uk,sandboxaq.com}
King's College London and SandboxAQ

Oleksandra Lapiha sasha.lapiha.2021@live.rhul.ac.uk Royal Holloway, University of London Giacomo Fenzi giacomo.fenzi@epfl.ch EPFL

Ngoc Khanh Nguyen khanh.nguyen@epfl.ch EPFL

ia.cr/2023/1469

Details here!

SLAP: Succinct Lattice-Based Polynomial Commitments from Standard Assumptions

September 2023 · Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, Ngoc Khanh Nguyen · <u>EUROCRYPT 2024 - ePrint: 2023/1469</u>

This blog-post is a short introduction to our new work: "SLAP: Succinct Lattice-Based Polynomial Commitments from Standard Assumptions". This is joint work with Martin Albrecht, Oleksandra Lapiha and Ngoc Khanh Nguyen, and the full version is <u>available on</u> ePrint . Here are also some slides that might be helpful.

gfenzi.io/papers/slap

• Can we get succinct lattice-based polynomial commitments under 100KB?

- Can we get succinct lattice-based polynomial commitments under 100KB?
- Can we get $negl(\lambda)$ knowledge error in one-shot (no claim bundling)?

- Can we get succinct lattice-based polynomial commitments under 100KB?
- Can we get $negl(\lambda)$ knowledge error in one-shot (no claim bundling)?
- Is $PRISIS_{\ell}$ with $\ell > 2$ still secure?

- Can we get succinct lattice-based polynomial commitments under 100KB?
- Can we get $negl(\lambda)$ knowledge error in one-shot (no claim bundling)?

Thank you!

Extra slides

P

Prover knows:

P

Prover knows:

- Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$

P

Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$

P

V

Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$

P

Verifier knows:

V

Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$

P

Verifier knows:

Common reference string crs

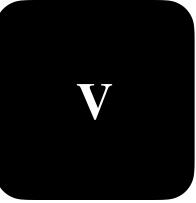
Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$

P

Verifier knows:

- Common reference string crs
- Commitment t



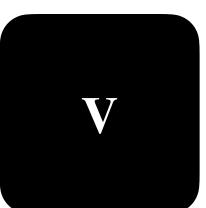
Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{S_b})_{\mathbf{b}}$

P

Verifier knows:

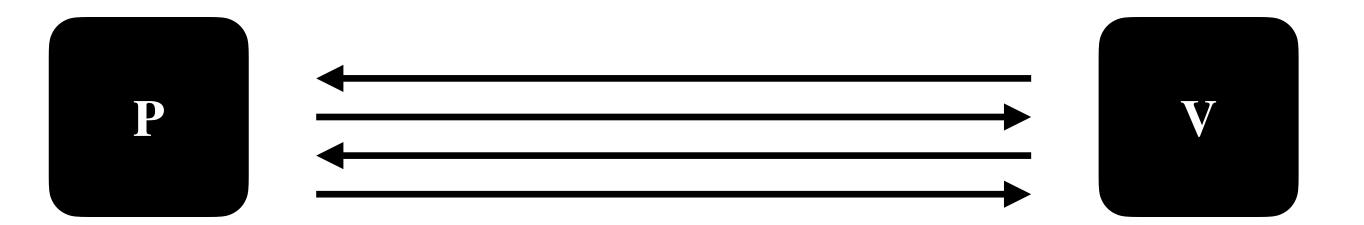
- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$



Prover knows:

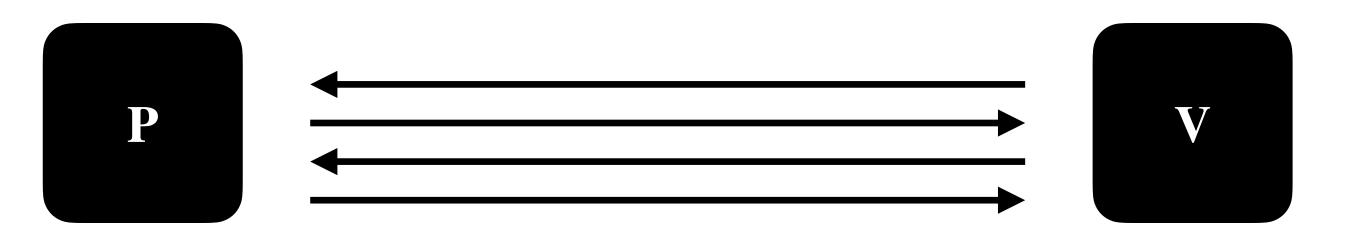
• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{S_b})_{\mathbf{b}}$

- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$



Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{S_b})_{\mathbf{b}}$



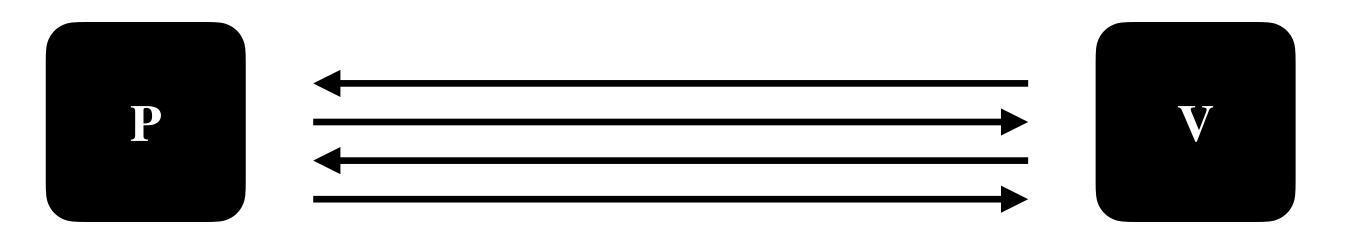
Prover now knows:

Verifier knows:

- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$

Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$



Prover now knows:

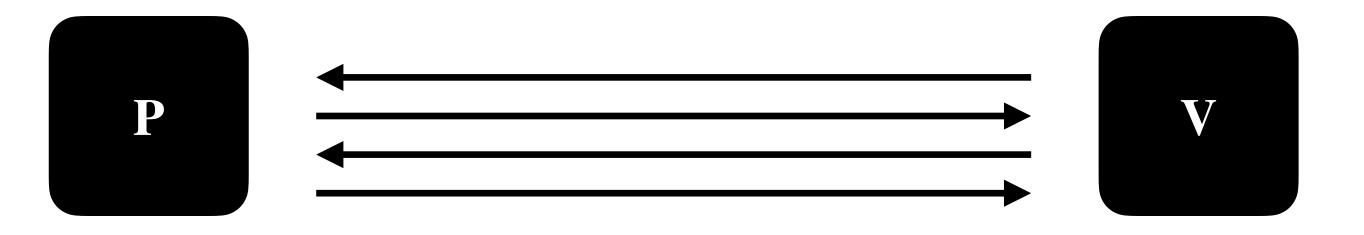
- Polynomial $g \in \mathcal{R}_q^{< d/2}[X]$ and openings $(\mathbf{z_b})_{\mathbf{b}}$

Verifier knows:

- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$

Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$



Prover now knows:

• Polynomial $g \in \mathcal{R}_q^{< d/2}[X]$ and openings $(\mathbf{z_b})_{\mathbf{b}}$

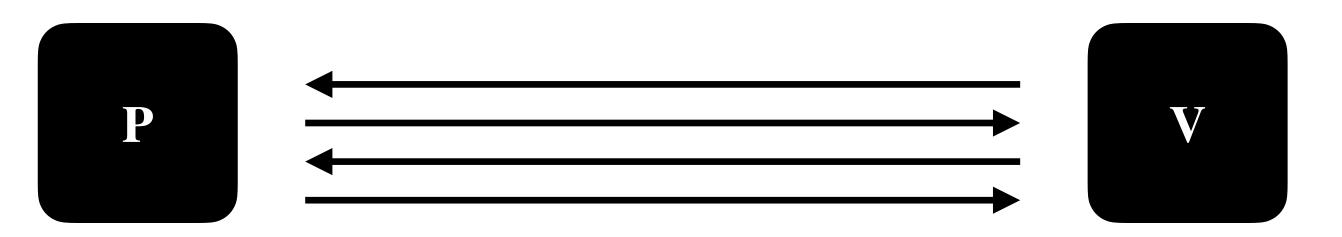
Verifier knows:

- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$

Verifier now knows:

Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_h})_{\mathbf{h}}$



Prover now knows:

• Polynomial $g \in \mathcal{R}_q^{< d/2}[X]$ and openings $(\mathbf{z_b})_{\mathbf{b}}$

Verifier knows:

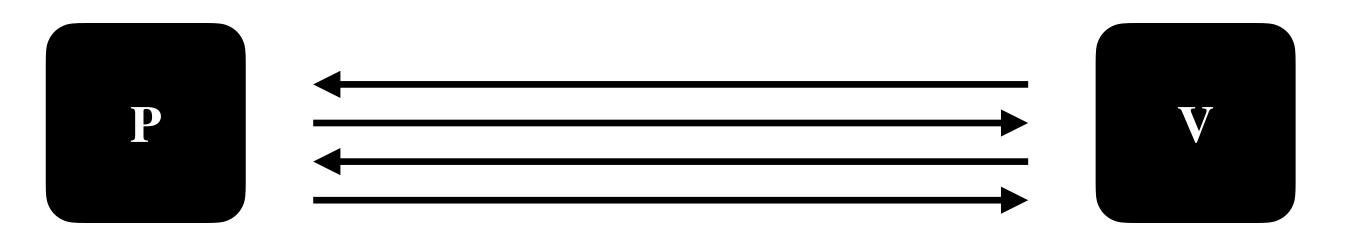
- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$

Verifier now knows:

Common reference string crs[']

Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$



Prover now knows:

• Polynomial $g \in \mathcal{R}_q^{< d/2}[X]$ and openings $(\mathbf{z_h})_{\mathbf{b}}$

Verifier knows:

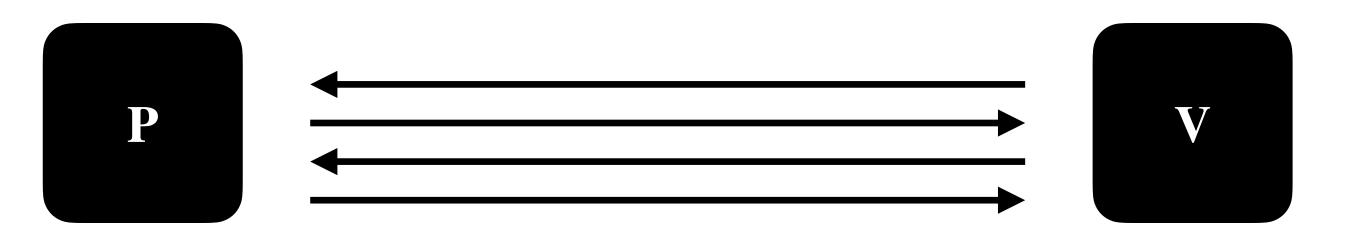
- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$

Verifier now knows:

- Common reference string crs[']
- Commitment t'

Prover knows:

• Polynomial $f \in \mathcal{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$



Prover now knows:

• Polynomial $g \in \mathcal{R}_q^{< d/2}[X]$ and openings $(\mathbf{z_b})_{\mathbf{b}}$

Verifier knows:

- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$

Verifier now knows:

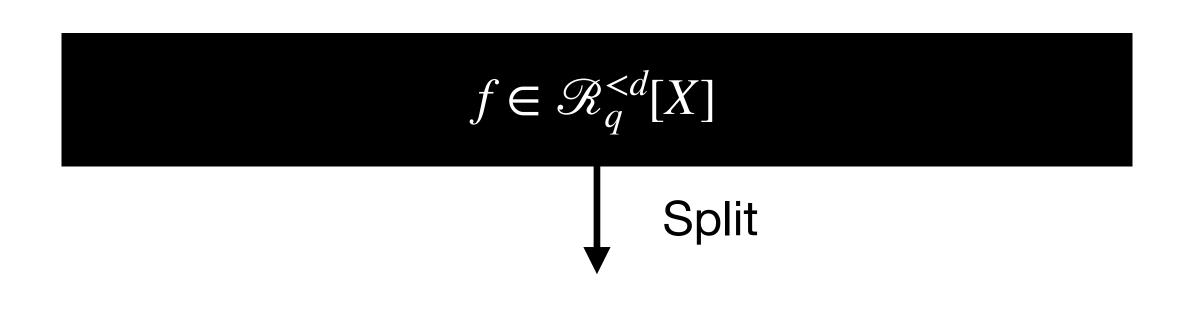
- Common reference string crs[']
- Commitment t'
- New claim: g(u') = v' and Open(crs', $\mathbf{t}', g, (\mathbf{z_b})_{\mathbf{b}}) = 1$

Evaluation Protocol IISplit and fold (Evaluations)

 $f \in \mathcal{R}_q^{< d}[X]$

Fast Reed-Solomon Interactive Oracle Proofs of Proximity

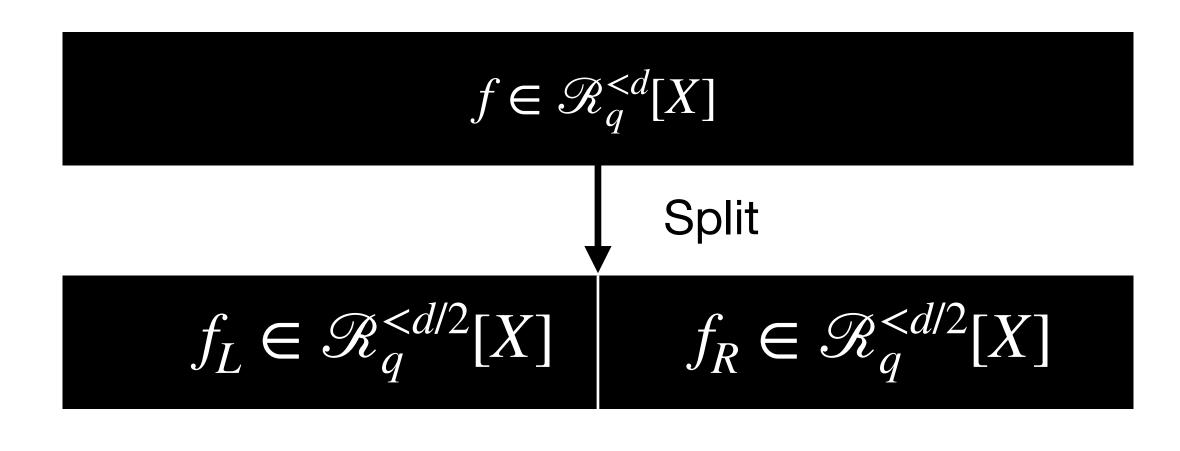
Eli Ben-Sasson* Iddo Bentov† Ynon Horesh* Michael Riabzev*

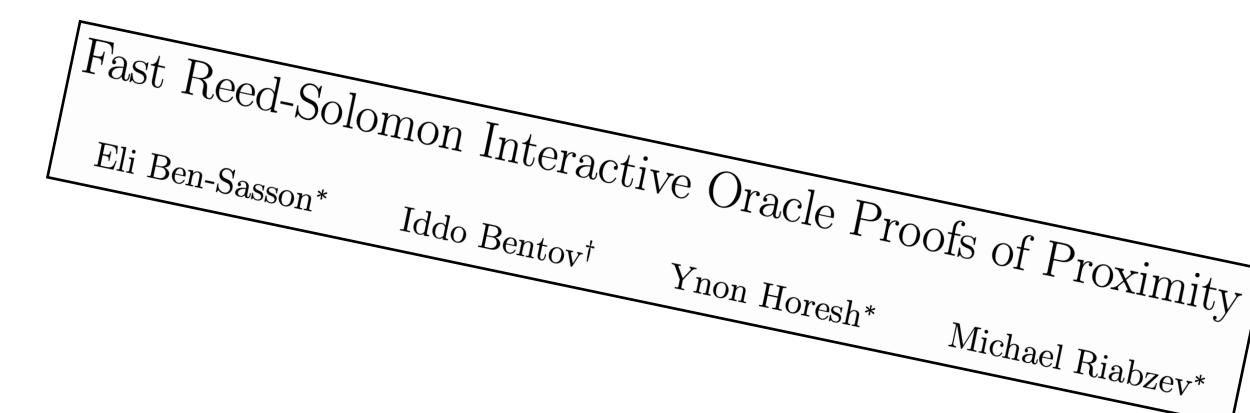


Fast Reed-Solomon Interactive Oracle Proofs of Proximity

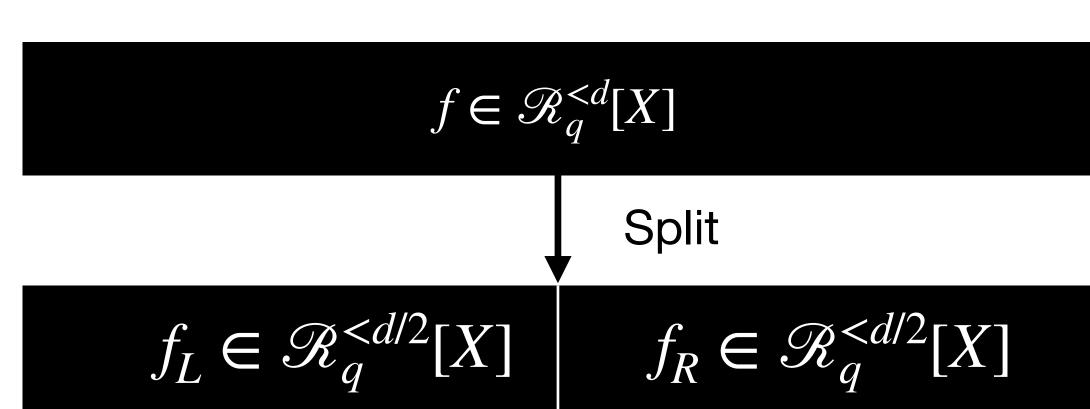
$$Eli\ Ben-Sasson^*$$
 $Iddo\ Bentov^\dagger$
 $Ynon\ Horesh^*$
 $Michael\ Riabzev^*$

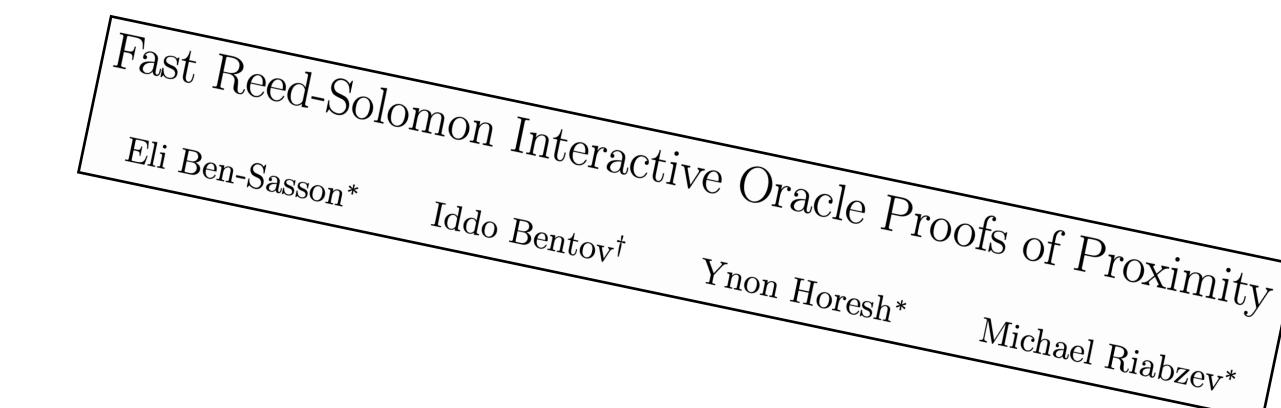
$$f(X) = f_L(X^2) + X \cdot f_R(X^2)$$





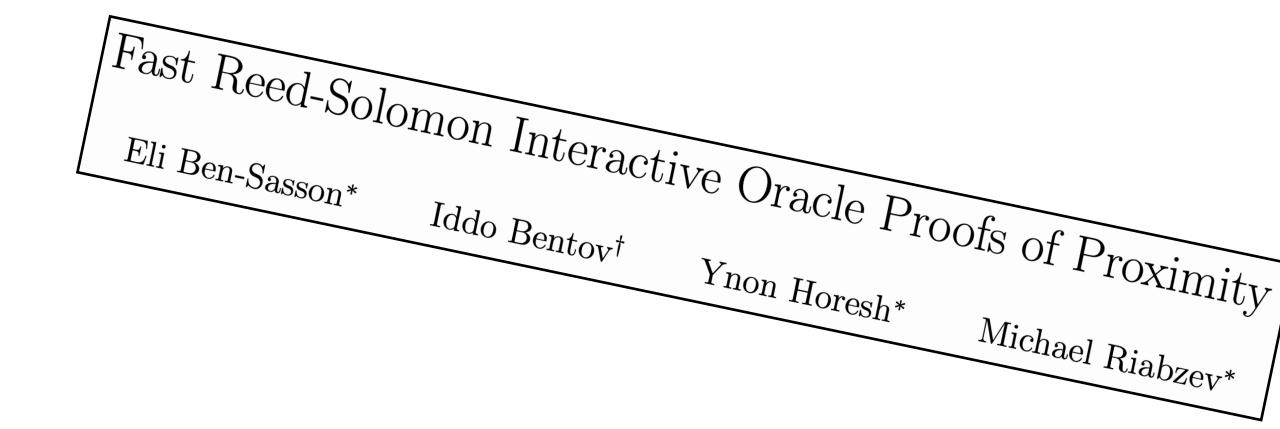
$$f(X) = f_L(X^2) + X \cdot f_R(X^2)$$

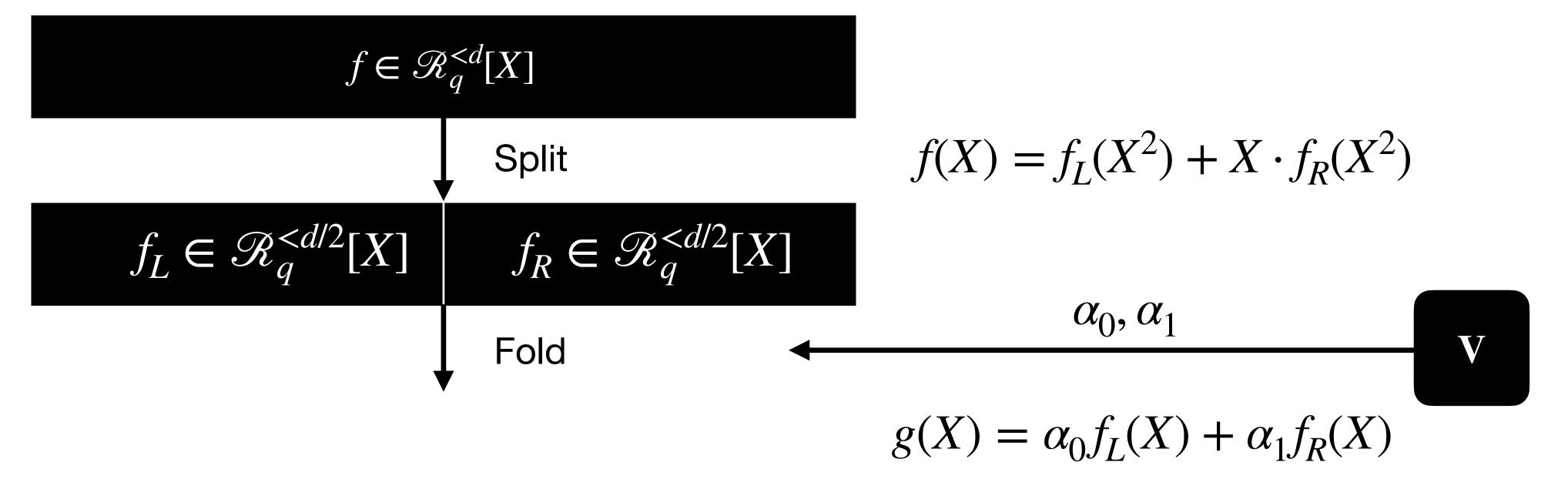


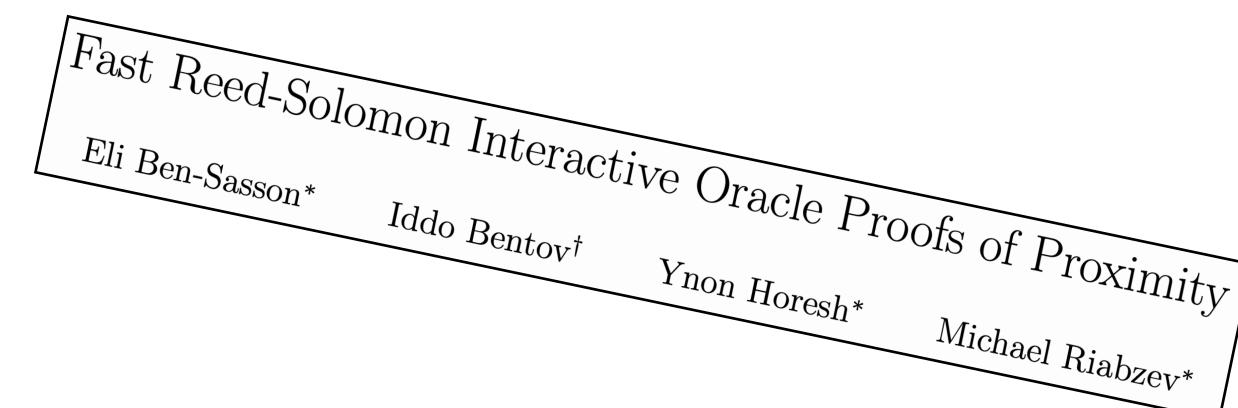


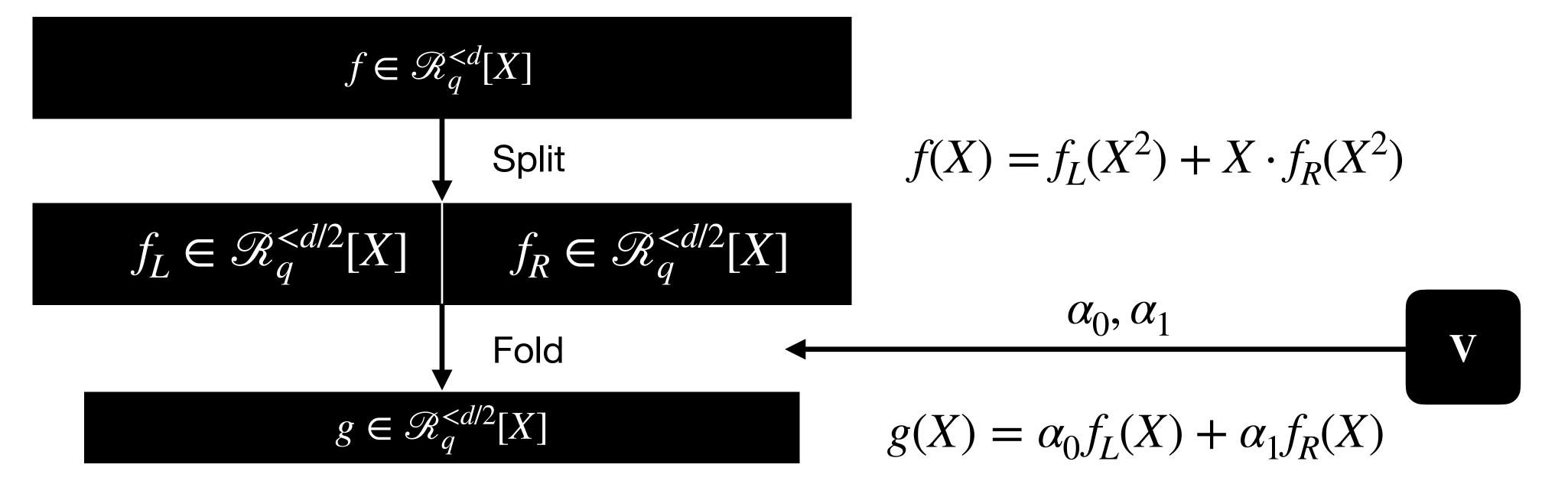
$$f(X) = f_L(X^2) + X \cdot f_R(X^2)$$

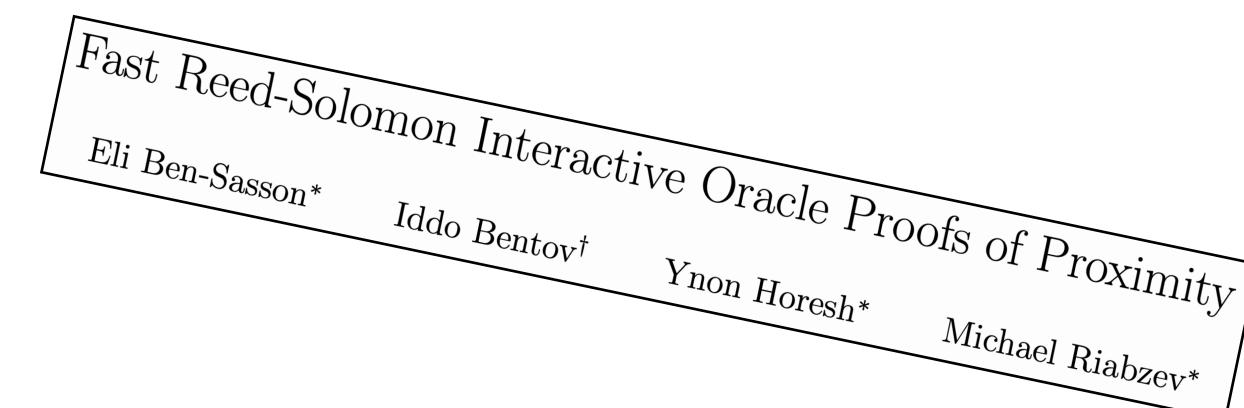
$$\alpha_0, \alpha_1$$

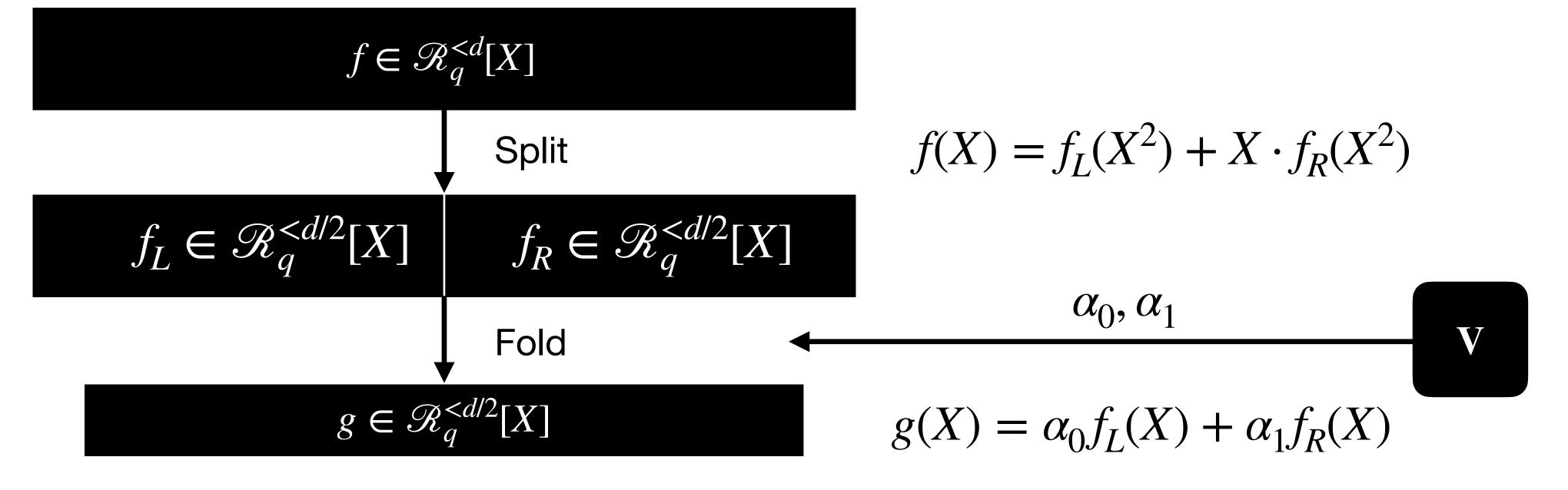




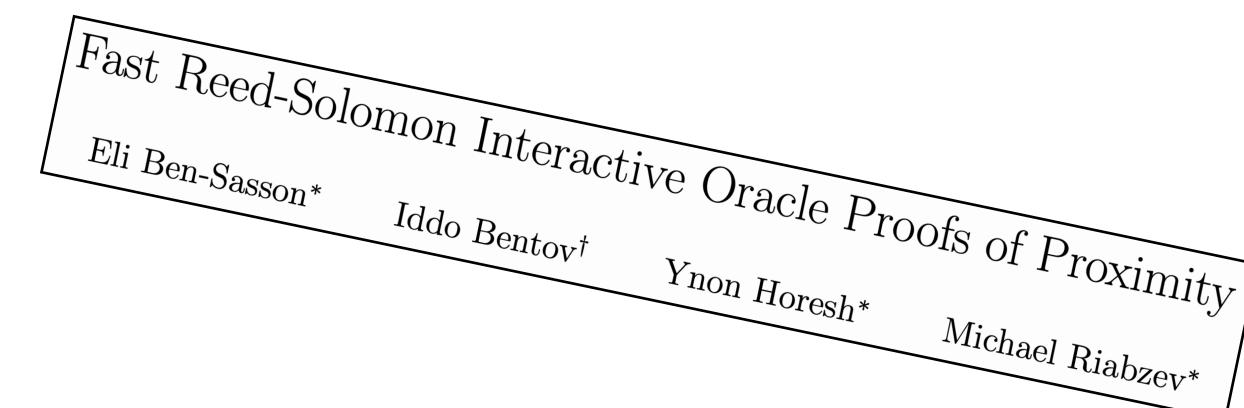


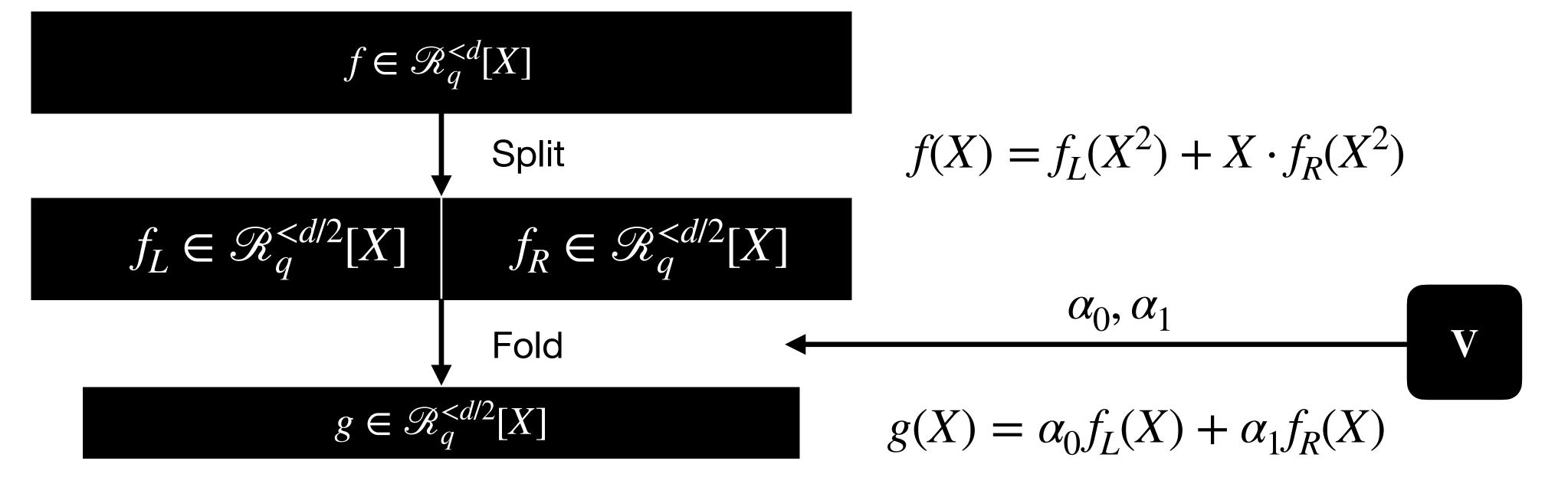






Ask prover to send
$$z_0=f_L(u^2), z_1=f_R(u^2).$$
 Check $z_0+uz_1=z$

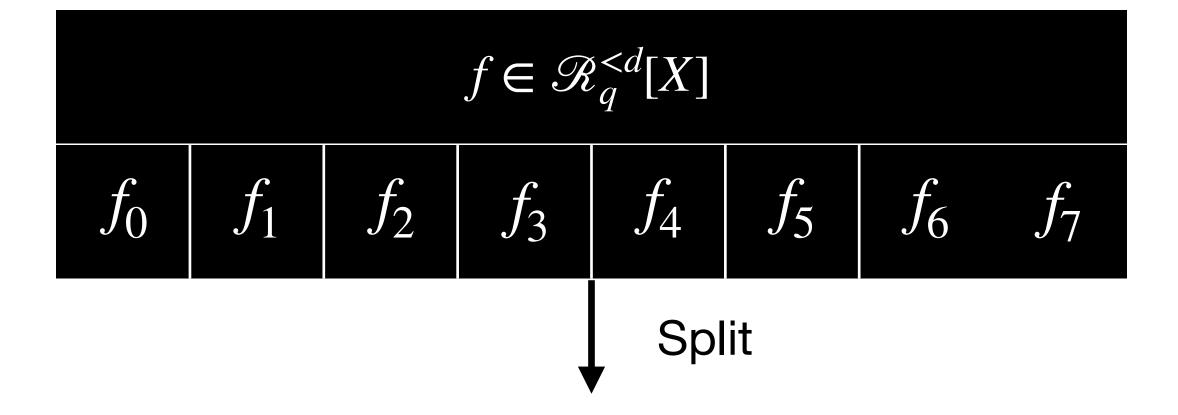




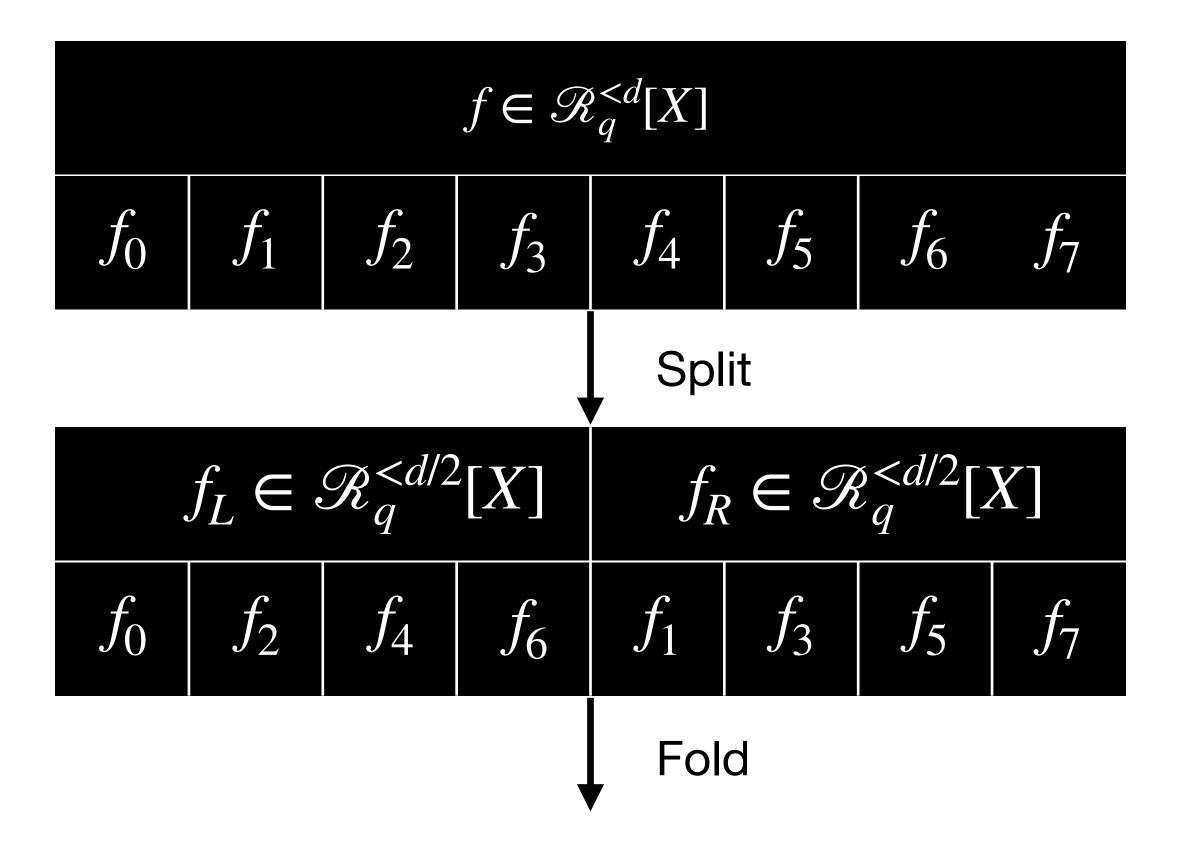
Ask prover to send
$$z_0=f_L(u^2), z_1=f_R(u^2).$$
 Check $z_0+uz_1=z$ If $f(u)=v$, then $g(u^2)=\alpha_0z_0+\alpha_1z_1.$

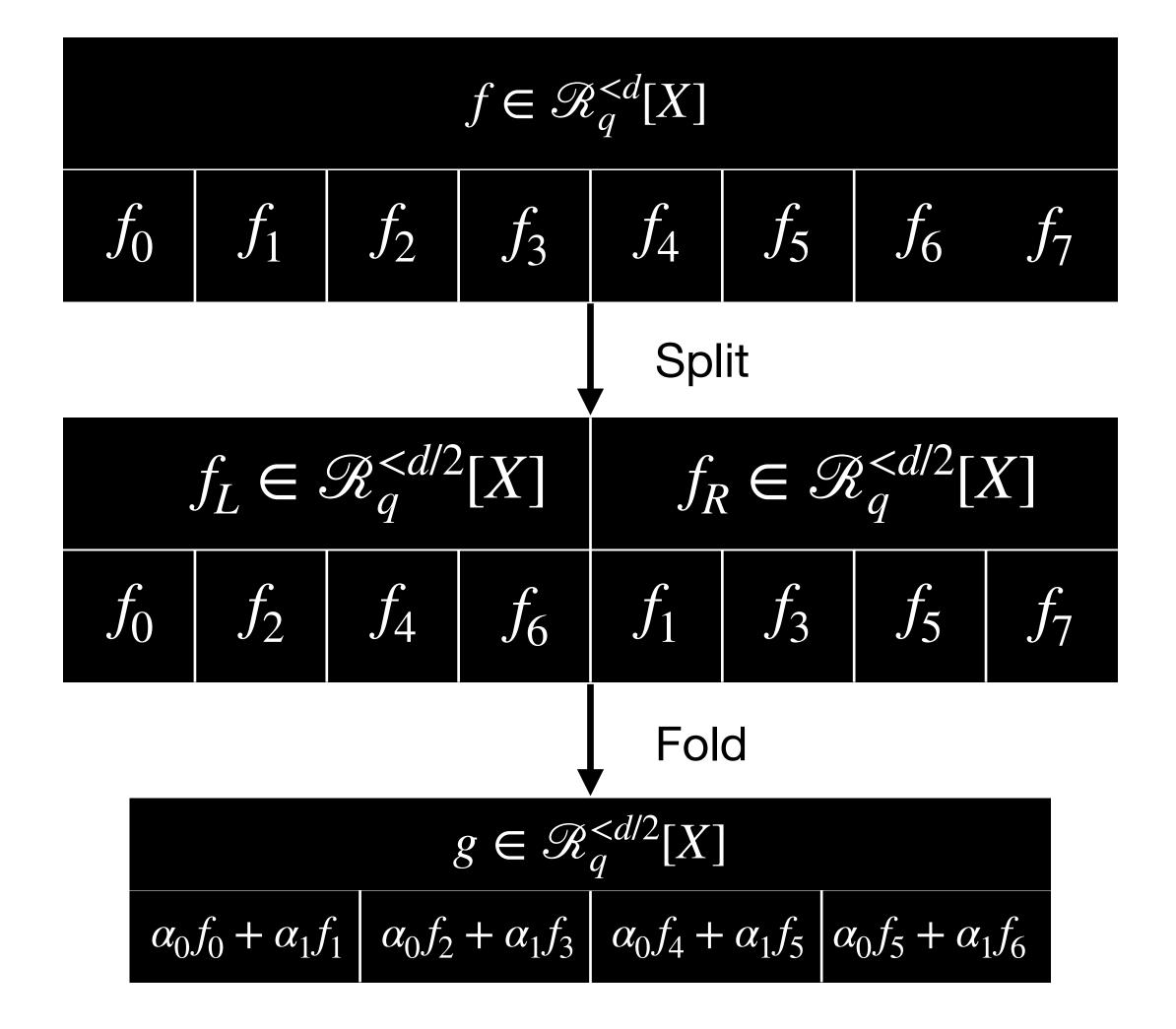
Split and fold (Openings)

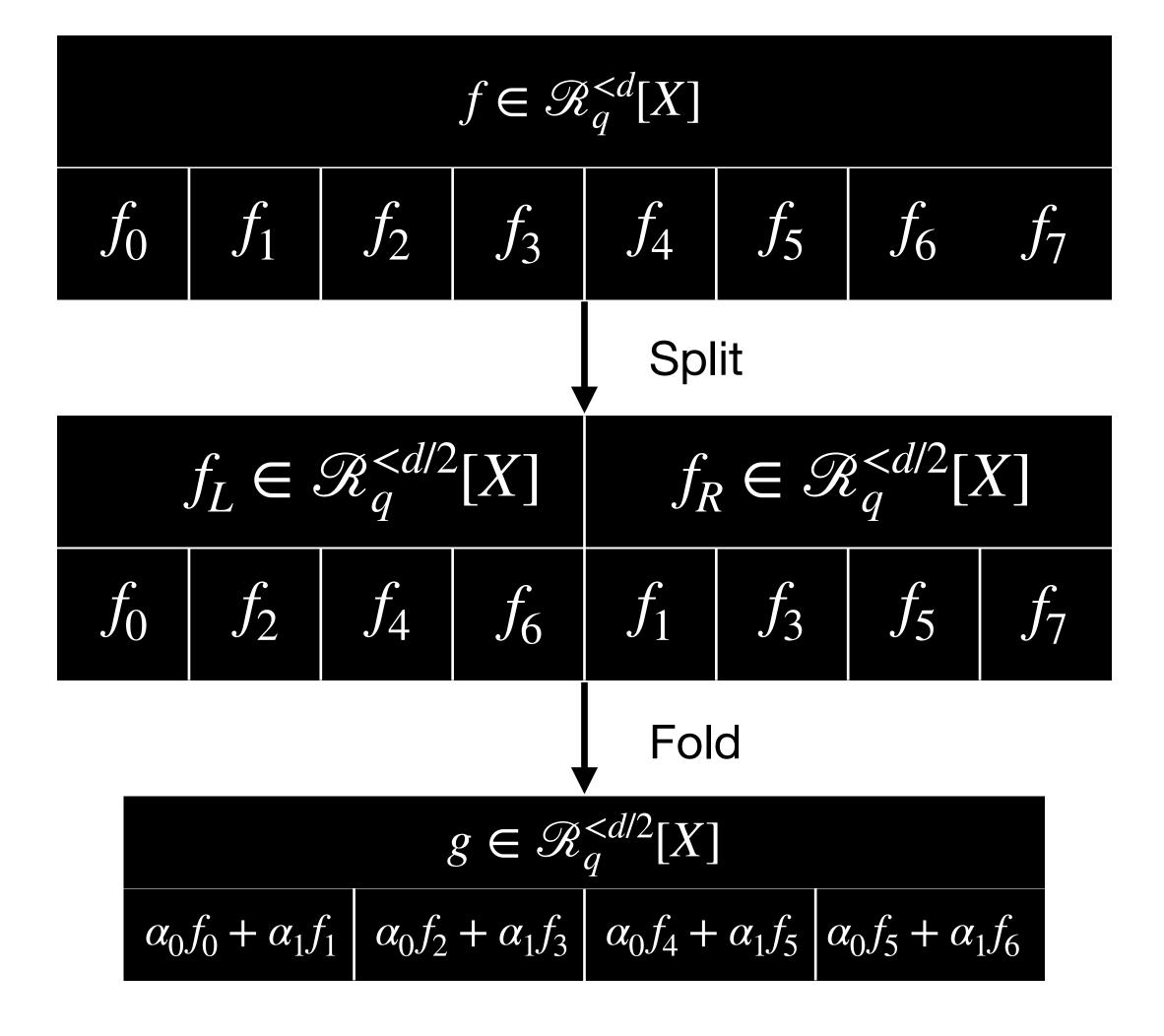
$f \in \mathcal{R}_q^{< d}[X]$											
f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7				

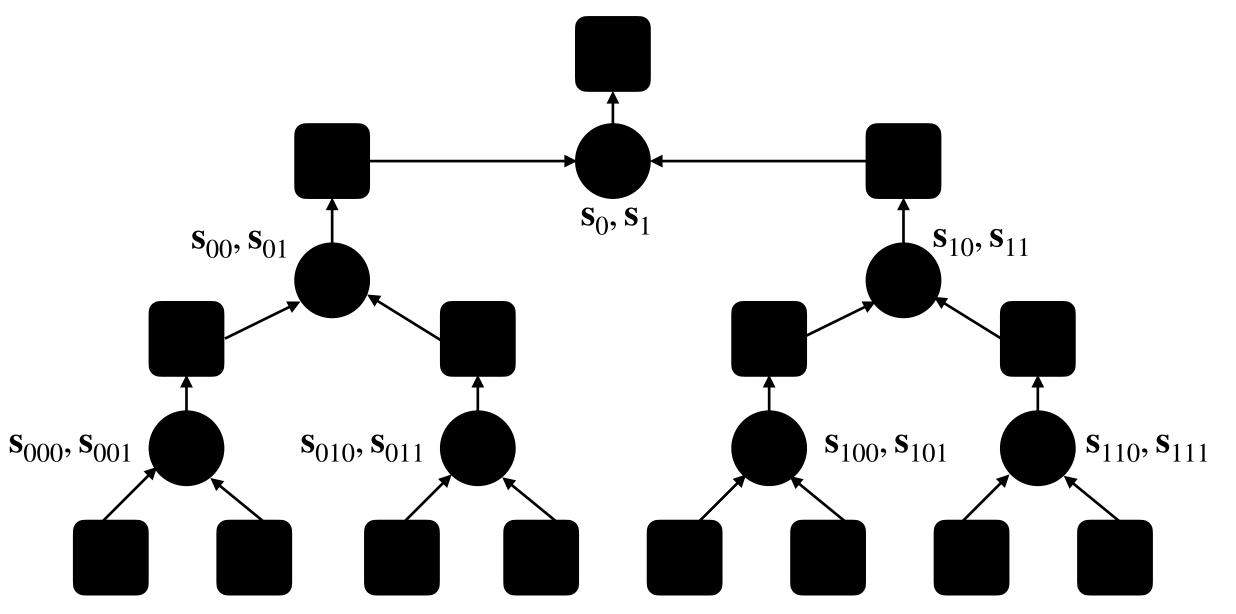


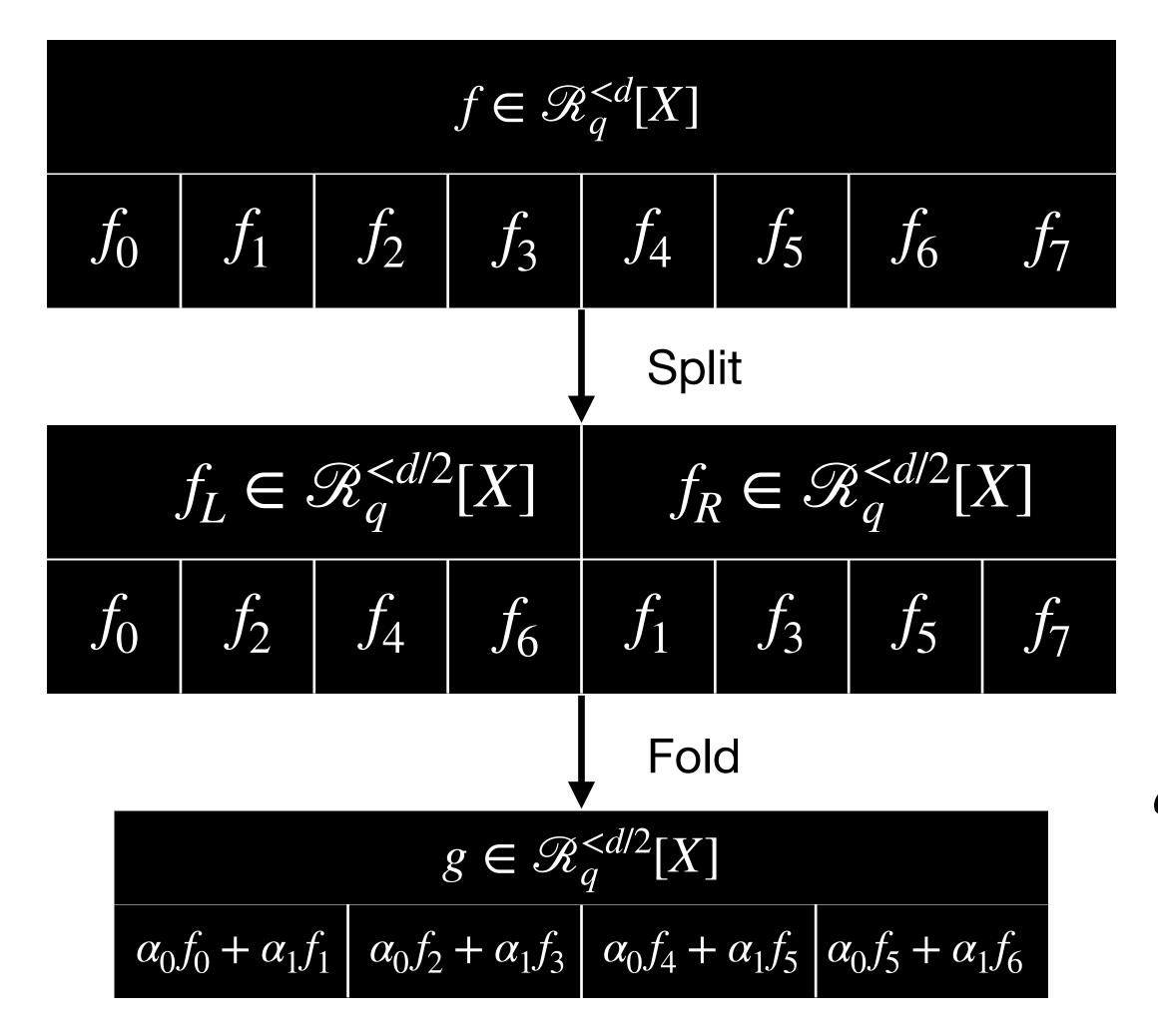
$f \in \mathcal{R}_q^{< d}[X]$											
f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7				
Split											
$f_L \in \mathcal{R}_q^{< d/2}[X]$				$f_R \in \mathcal{R}_q^{< d/2}[X]$							
f_0	f_2	f_4	f_6	f_1	f_3	f_5	f_7				

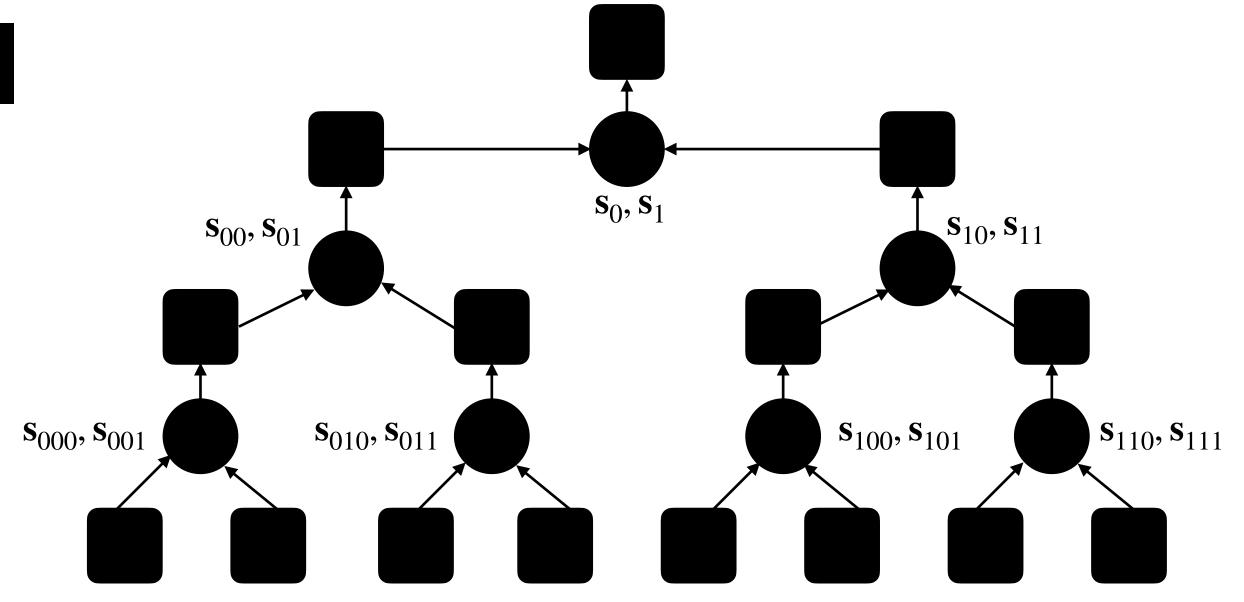


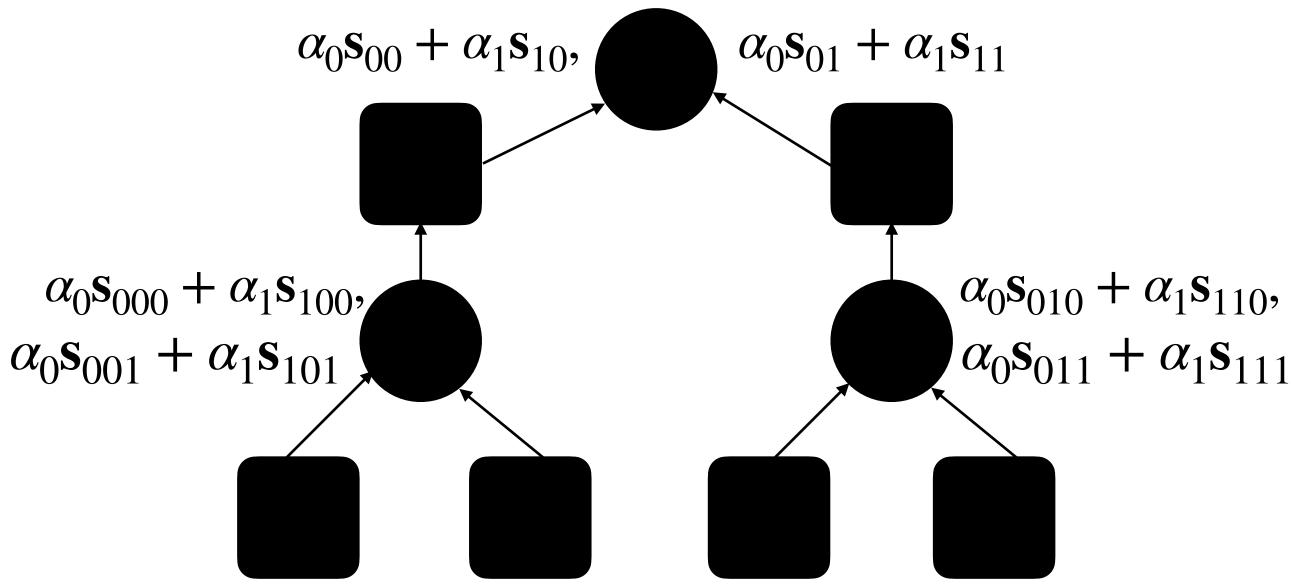












Split and fold (Commitment)

We have shown how to compute new evaluations and openings

- We have shown how to compute new evaluations and openings
- If α_i are short, the new openings also are.

- We have shown how to compute new evaluations and openings
- If α_i are short, the new openings also are.
- How does the verifier compute new commitment? With some magic:

- We have shown how to compute new evaluations and openings
- If α_i are short, the new openings also are.
- How does the verifier compute new commitment? With some magic:

$$\sum_{j \in [h-1]} w_{1+j}^{b_{1+j}} \mathbf{A}_{1+j} \mathbf{s}_{\mathbf{b}:1+j} + g_{\mathbf{b}} \mathbf{e} = \alpha_0 \cdot (\mathbf{t} - w_1^0 \mathbf{A}_1 \mathbf{s}_0) + \alpha_1 \cdot (\mathbf{t} - w_1^1 \mathbf{A}_1 \mathbf{s}_1)$$

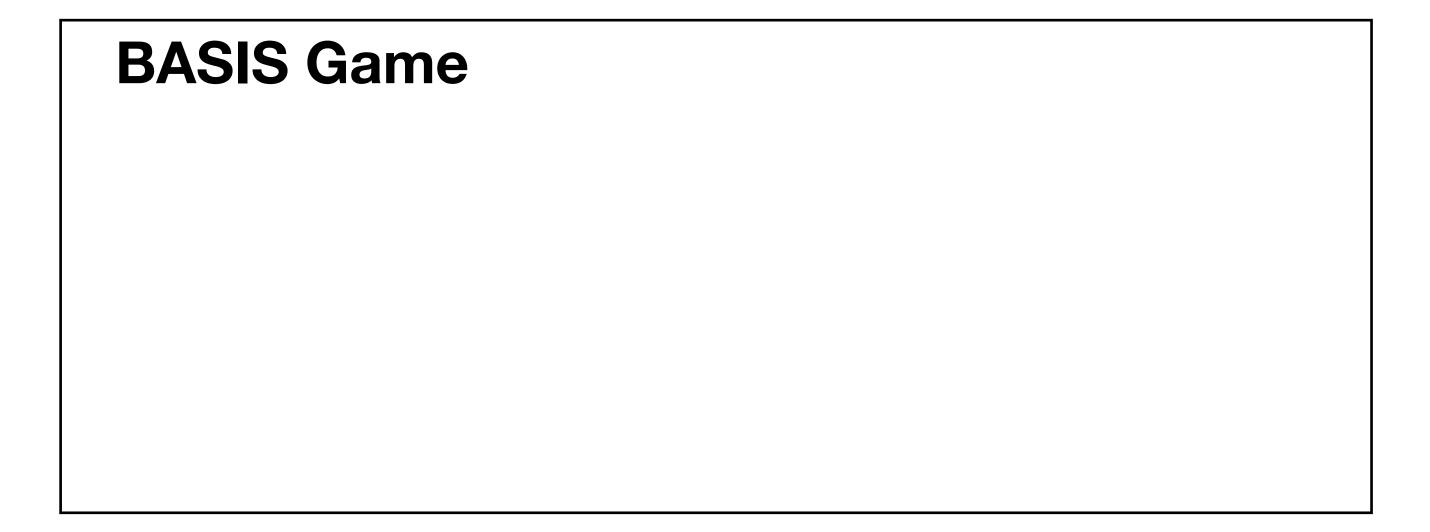
Split and fold (Commitment)

- We have shown how to compute new evaluations and openings
- If α_i are short, the new openings also are.
- How does the verifier compute new commitment? With some magic:

$$\sum_{j \in [h-1]} w_{1+j}^{b_{1+j}} \mathbf{A}_{1+j} \mathbf{s}_{\mathbf{b}:1+j} + g_{\mathbf{b}} \mathbf{e} = \alpha_0 \cdot (\mathbf{t} - w_1^0 \mathbf{A}_1 \mathbf{s}_0) + \alpha_1 \cdot (\mathbf{t} - w_1^1 \mathbf{A}_1 \mathbf{s}_1)$$

• Prover reveals s_0 , s_1 . Verifier sets RHS as new updated commitment.

BASISBASISENVIOLENTIAL BOOK STATES TO BE SHOWN THE PROPERTY OF THE PROPERT



BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

BASIS-LASISTANTIANS AND STATEMENT OF THE PARTIES AND STATEMENT OF THE PART

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

$$\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$$

BASIS-LASISTANTICATION OF THE INTERIOR OF THE

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

$$\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$$

return
$$(\mathbf{A}^{\star}, \mathbf{aux})$$
 to \mathscr{A}

BASIS-LASISTANTIANS IN THE INTERIOR OF THE INT

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{x} :

•
$$\mathbf{A}^{\star}\mathbf{x} = 0$$

•
$$0 < |\mathbf{x}| \le \beta$$

BASIS-LASIS-

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return **1**

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{x} :

•
$$\mathbf{A}^{\star}\mathbf{x} = 0$$

•
$$0 < |\mathbf{x}| \le \beta$$

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return **L**

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{x} :

- $\bullet \quad \mathbf{A}^{\star}\mathbf{x} = 0$
- $0 < |\mathbf{x}| \le \beta$

 $\mathsf{Samp}_{\mathsf{BASIS},\mathscr{C}}(\mathbf{A}^{\star})$

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return **1**

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{x} :

- $\bullet \quad \mathbf{A}^{\star}\mathbf{x} = 0$
- $0 < |\mathbf{x}| \le \beta$

 $\mathsf{Samp}_{\mathsf{BASIS},\mathscr{E}}(\mathbf{A}^{\star})$

Sample $\mathbf{a}, \mathbf{A}_2, ... \mathbf{A}_{\ell}$

BASIS-LESSINGER BASIS-LESSINGE

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return \bot

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{x} :

$$\bullet \quad \mathbf{A}^{\star}\mathbf{x} = 0$$

•
$$0 < |\mathbf{x}| \le \beta$$

$$\mathsf{Samp}_{\mathsf{BASIS},\mathscr{C}}(\mathbf{A}^{\star})$$

Sample $\mathbf{a}, \mathbf{A}_2, ... \mathbf{A}_\ell$

$$\mathbf{A}_{1} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} \mathbf{A}_{1} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & \mathbf{A}_{d} & -\mathbf{G} \end{bmatrix}$$

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return \bot

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{X} :

•
$$\mathbf{A}^{\star}\mathbf{x} = 0$$

•
$$0 < |\mathbf{x}| \le \beta$$

 $\mathsf{Samp}_{\mathsf{BASIS},\mathscr{C}}(\mathbf{A}^{\star})$

Sample $\mathbf{a}, \mathbf{A}_2, ... \mathbf{A}_\ell$

$$\mathbf{A}_{1} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} \mathbf{A}_{1} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & \mathbf{A}_{d} & -\mathbf{G} \end{bmatrix}$$

return $(\mathbf{a}, (\mathbf{A}_i)_i, \mathbf{B}^{-1}(\mathbf{G}))$

BASIS-Line BASIS-Line

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return \bot

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{x} :

- $\bullet \quad \mathbf{A}^{\star}\mathbf{x} = 0$
- $0 < |\mathbf{x}| \le \beta$

$$\mathsf{Samp}_{\mathsf{BASIS},\mathscr{C}}(\mathbf{A}^{\star})$$

Sample $\mathbf{a}, \mathbf{A}_2, ... \mathbf{A}_\ell$

return $(\mathbf{a}, (\mathbf{A}_i)_i, \mathbf{B}^{-1}(\mathbf{G}))$

$$\mathbf{A}_{1} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} \mathbf{A}_{1} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & \mathbf{A}_{d} & -\mathbf{G} \end{bmatrix}$$

 $\mathsf{Samp}_{\mathsf{PRISIS},\mathscr{C}}(\mathbf{A}^{\star})$

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return \bot

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{x} :

- $\mathbf{A}^{\star}\mathbf{x} = 0$
- $0 < |\mathbf{x}| \le \beta$

$$\mathsf{Samp}_{\mathsf{BASIS},\mathscr{C}}(\mathbf{A}^{\star})$$

Sample $\mathbf{a}, \mathbf{A}_2, ... \mathbf{A}_\ell$

return $(\mathbf{a}, (\mathbf{A}_i)_i, \mathbf{B}^{-1}(\mathbf{G}))$

$$\mathbf{A}_{1} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} \mathbf{A}_{1} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & \mathbf{A}_{d} & -\mathbf{G} \end{bmatrix}$$

 $\mathsf{Samp}_{\mathsf{PRISIS},\mathscr{C}}(\mathbf{A}^{\star})$

Sample a, w

BASIS-ESSIMINATION OF THE PROPERTY OF THE PROP

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return \bot

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 \mathscr{A} wins if it finds \mathbf{x} :

- $\mathbf{A}^{\star}\mathbf{x} = 0$
- $0 < |\mathbf{x}| \le \beta$

 $\mathsf{Samp}_{\mathsf{BASIS},\mathscr{C}}(\mathbf{A}^{\star})$

Sample $\mathbf{a}, \mathbf{A}_2, ... \mathbf{A}_\ell$

return $(\mathbf{a}, (\mathbf{A}_i)_i, \mathbf{B}^{-1}(\mathbf{G}))$

$$\mathbf{A}_{1} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} \mathbf{A}_{1} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & \mathbf{A}_{d} & -\mathbf{G} \end{bmatrix}$$

$$\mathsf{Samp}_{\mathsf{PRISIS},\mathscr{C}}(\mathbf{A}^{\star})$$

Sample **a**, *w*

$$\mathbf{A} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \end{bmatrix}$$

BASIS-

 $\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$

return \bot

BASIS Game

$$\mathbf{A}^{\star} \leftarrow \mathcal{R}_q^{m \times n}$$

 $\mathsf{aux} \leftarrow \mathsf{Samp}(\mathbf{A}^{\star})$

return (A^*, aux) to \mathscr{A}

 $\mathcal A$ wins if it finds $\mathbf x$:

- $\mathbf{A}^{\star}\mathbf{x} = 0$
- $0 < |\mathbf{x}| \le \beta$

 $\mathsf{Samp}_{\mathsf{BASIS},\mathscr{E}}(\mathbf{A}^{\star})$

Sample $\mathbf{a}, \mathbf{A}_2, ... \mathbf{A}_\ell$

return $(\mathbf{a}, (\mathbf{A}_i)_i, \mathbf{B}^{-1}(\mathbf{G}))$

$$\mathbf{A}_{1} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} \mathbf{A}_{1} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & \mathbf{A}_{d} & -\mathbf{G} \end{bmatrix}$$

Samp_{PRISIS, ℓ}(\mathbf{A}^*)
Sample \mathbf{a}, w

$$\mathbf{A} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \end{bmatrix}$$

return $(\mathbf{a}, w, \mathbf{B}^{-1}(\mathbf{G}))$

What we talked about

PRISIS and Merkle-PRISIS commitments

- PRISIS and Merkle-PRISIS commitments
- Multi-instance PRISIS assumptions

- PRISIS and Merkle-PRISIS commitments
- Multi-instance PRISIS assumptions
- h-PRISIS₂ reduces to MSIS

- PRISIS and Merkle-PRISIS commitments
- Multi-instance PRISIS assumptions
- h-PRISIS₂ reduces to MSIS
- Succinct evaluation protocol for Merkle-PRISIS

- PRISIS and Merkle-PRISIS commitments
- Multi-instance PRISIS assumptions
- h-PRISIS₂ reduces to MSIS
- Succinct evaluation protocol for Merkle-PRISIS
- Boosting soundness via claim bundling

• Let G be a "gadget matrix"

- Let G be a "gadget matrix"
- Can sample (A, R) such that AR = G, with R short.

"Not nice" $\Lambda^{\perp}(\mathbf{A})$

- Let G be a "gadget matrix"
- Can sample (A, R) such that AR = G, with R short.

- "Not nice"
 - $\Lambda^{\perp}(\mathbf{A})$

- Let G be a "gadget matrix"
- Can sample (A, R) such that AR = G, with R short.

- $\Lambda^{\perp}(\mathbf{G})$
- "Nice"

- Let G be a "gadget matrix"
- Can sample (A, R) such that AR = G, with R short.

"Not nice"

$$\Lambda^{\perp}(\mathbf{A})$$
 \mathbf{R}
 $\Lambda^{\perp}(\mathbf{G})$
"Nice"

- Let G be a "gadget matrix"
- Can sample (A, R) such that AR = G, with R short.
- Given A, R, v, can sample short s such that As = v.

"Not nice"

$$\Lambda^{\perp}(\mathbf{A})$$
 \mathbf{R}
 $\Lambda^{\perp}(\mathbf{G})$
"Nice"

- Let G be a "gadget matrix"
- Can sample (A, R) such that AR = G, with R short.
- Given A, R, v, can sample short s such that As = v.

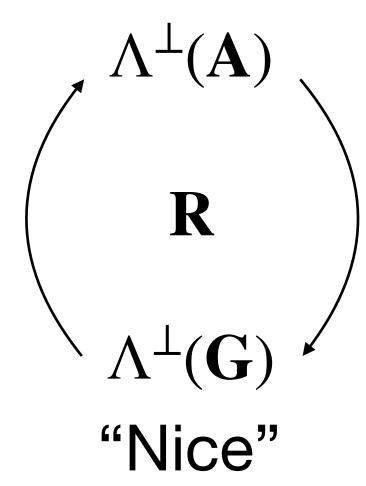
Trapdoor Resampling [WW23]

"Not nice"

$$\Lambda^{\perp}(\mathbf{A})$$
 \mathbf{R}
 $\Lambda^{\perp}(\mathbf{G})$
"Nice"

- Let G be a "gadget matrix"
- Can sample (A, R) such that AR = G, with R short.
- Given A, R, v, can sample short s such that As = v.

"Not nice"

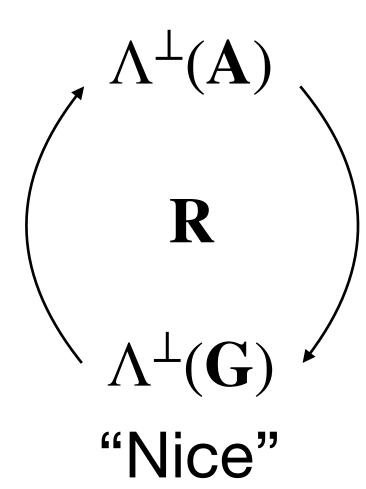


Trapdoor Resampling [WW23]

- Given (\mathbf{A},\mathbf{R}) , can sample new trapdoor \mathbf{T} for some matrix \mathbf{B} "related" to \mathbf{A}

- Let G be a "gadget matrix"
- Can sample (A, R) such that AR = G, with R short.
- Given A, R, v, can sample short s such that As = v.

"Not nice"



Trapdoor Resampling [WW23]

- Given (\mathbf{A},\mathbf{R}) , can sample new trapdoor T for some matrix B "related" to A
- BASIS style assumption say:

"Given A, B, T, hard to find short x for Ax = 0"