SLAP

Succinct Lattice-Based Polynomial Commitment

Schemes from Standard Assumptions
(2023/1469)

- Joint work with: ING’S
Giacomo Fenzi @ =PrL AT Collese

Ngoc Khanh Nguyen LONDON

Oleksandra Lapiha

ROYAL

HOLLOWAY
UNIVERSITY

1 Sz OF LONDON

Motivation

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

| T

0/1

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

| T

0/1

Complete: if (x, w) € R, V accepts.

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

| T

0/1

Complete: if (x, w) € R, V accepts.

Non-interactive: P sends a single message.

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

| T

0/1

Complete: if (x, w) € R, V accepts.
Non-interactive: P sends a single message.

Succinct: | 7| < |w]|and verifier is fast.

3

SNARKSs

(Succinct Non-Interactive ARguments of Knowledge)

X

| T Vv

0/1
Complete: if (x, w) € R, V accepts.
Knowledge Sound: if
Non-interactive: P sends a single message. V(x, 7) = 1, can extract w

Succinct: | 7| << |w|and verifier is fast. such that (x, w) € R

3

Constructing SNARKSs

The modular way™

Constructing SNARKSs

The modular way™

4)

PIOP

Constructing SNARKSs

The modular way™

4)

PIOP

Constructing SNARKSs

The modular way™

4)

PIOP

N -

Constructing SNARKSs

The modular way™

4)

PIOP
N -

Constructing SNARKSs

The modular way™

4)

PIOP
N -
|_>

- B

Constructing SNARKSs

The modular way™

4)

PIOP

rlbrrrl

Constructing SNARKSs

The modular way™

4)

PIOP

rlbrrrl

Constructing SNARKSs

The modular way™

-

PIOP A

H
TLl'ITT

Constructing SNARKSs

The modular way™

-

PIOP A

H
TLl'ITT

Constructing SNARKSs

The modular way™

4)

PIOP

B~
- 03
-

_ J

Constructing SNARKSs

The modular way™

g PIOP A
N -
| | |
| “anp
W+

_ J

Constructing SNARKSs

The modular way™

g PIOP A
N -
| | |
| T
W+

_ J

® Oracles are polynomials

Constructing SNARKSs

The modular way™

g PIOP h
N -
|| -
| T
W+
N y

® Oracles are polynomials
® Security is information-theoretical

Constructing SNARKSs

The modular way™

g PIOP A
N -
| | |
| “anp
W+
_ Y

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)

Constructing SNARKSs

The modular way™

g PIOP A
N -
| | |
| “anp
W+
_ Y

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

Constructing SNARKSs

The modular way™

-

PIOP

M

{1

~

-
-

J

® Oracles are polynomials

® Security is information-theoretical
e Proof length is €2(n) (not succinct)

e Verifiers are very efficient

PCS

Constructing SNARKSs

The modular way™

4) 4

PIOP PCS
fe FX]
N - | ‘
| | -
4 W
—| [I8 —
_ S _

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

Constructing SNARKSs

The modular way™

g PIOP A g PCS
fe FX]
E ‘ ‘ commi}t
|| |
4 N[~
— T |-
_ J _

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

Constructing SNARKSs

The modular way™

) 4

PIOP PCS
fe FX]
E ‘ ‘ commi}t
TR
N] Later, can prove that:
e -
_ J _

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

Constructing SNARKSs

The modular way™

) 4

PIOP PCS
fe FX]
E ‘ ‘ commi}t f
TR
N] Later, can prove that:
—LLH ~ fix)y=y, forx,yelF
_ J _

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

Constructing SNARKSs

The modular way™

) 4

PIOP PCS
fe FX]
E ‘ ‘ commi}t f
TR
N] Later, can prove that:
—LLH ~ fix)y=y, forx,yelF
_ J _

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

e Cryptography goes here!

Constructing SNARKSs

The modular way™

g PIOP h g PCS
fe FX]
E ‘ ‘ commi}t
TR
N] Later, can prove that:
—LLH ~ fix)y=y, forx,yelF
_ J _

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

e Cryptography goes here!
e Computational security

Constructing SNARKSs

The modular way™

PIOP A

w1
] -
= 8
{1 =

N y

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

e

PCS

F</[X]

‘ commit

Later, can prove that:

fix)y=y, forx,yelF

e Cryptography goes here!
e Computational security

® \We can achieve succinctness

Constructing SNARKSs

The modular way™

) 4

PIOP PCS

fe FX]

E ‘ ‘ commi}t f

o &8

V

N + Later, can prove that:
S5 Eanans S

_ J _

fix)y=y, forx,yelF

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

e Cryptography goes here!
e Computational security
® We can achieve succinctness

Constructing SNARKSs

The modular way™ We focus on this!

s PIOP A g 5CS

fe FEX]
E ‘ ‘ commi}t f
o &3
Vv

N + Later, can prove that:

- - RS fix)y=y, forx,yelF
- Y, N\

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

e Cryptography goes here!
e Computational security
® We can achieve succinctness

Zoo of Polynomial Commitments

A very incomplete list...

Zoo of Polynomial Commitments

A very incomplete list...

Zoo of Polynomial Commitments

A very incomplete list...

“Cost”

“Structure”

Zoo of Polynomial Commitments

A very incomplete list...

...PQLine

Practical

“Structure”

Zoo of Polynomial Commitments

A Very incomplete IiSt- " Underlined: succinct verification

*. interactive (no FS)
(T): trusted setup

..PQlLine

0 g Practical
o,

00

“Structure”

5

Zoo of Polynomial Commitments

A Very incomplete IiSt- " Underlined: succinct verification

*. interactive (no FS)
(T): trusted setup

..PQlLine

00

0 g Practical
o,

Pairings DLOG Lattices ROM

“Structure”

5

Zoo of Polynomial Commitments

A Very incomplete IiSt- " Underlined: succinct verification

*. interactive (no FS)
(T): trusted setup

..PQlLine

Practical

00

Bulletproofs
KZG (T)

Pairings DLOG Lattices ROM

“Structure”

5

Zoo of Polynomial Commitments

A Very incomplete IiSt- " Underlined: succinct verification

*. interactive (no FS)
(T): trusted setup

. _
£ Lattice
o: Bulletproofs®,
- [BCS23Y,
R Dory .
U Practical
3 e
O
Bulletproofs
KZG (T) .
Pairings DLOG Lattices ROM
“Structure”

5

Zoo of Polynomial Commitments

A Very incomplete IiSt- " Underlined: succinct verification

*. interactive (no FS)
(T): trusted setup

Q.]
£ Lattice
o: Bulletproofs®,
- [BCS23Y,
R Dory .
n Practical
B
9 Ligero
FRI
Bulletproofs §
KZG (T) STIR <
Pairings DLOG Lattices ROM
“Structure”

5

Zoo of Polynomial Commitments

A Very incomplete IiSt- " Underlined: succinct verification

*. interactive (no FS)
(T): trusted setup

Q.]
£ Lattice
o: Bulletproofs®,
- [BCS23Y,
R Dory .
n Practical
B
9 L Ligero
Why is this
empty??? FRI
Bulletproofs : I STIR <
KZG (T) - =
Pairings DLOG Lattices ROM
“Structure”

5

Our Results

SLAP: Succinct Lattice-Based Polynomial Commitments from
Standard Assumptions

Martin R. Albrecht Giacomo Fenzi
martin.albrecht@{kcl.ac.uk,sandboxaq.com} giacomo.fenzi@epfl.ch
King’s College London and SandboxAQ EPFL
Oleksandra Lapiha, Ngoc Khanh Nguyen
sasha.lapiha.2021@live.rhul.ac.uk khanh.nguyen@epfl.ch
Royal Holloway, University of London EPFL

SLAP: Succinct Lattice-Based Polynomial Commitments from
Standard Assumptions

Martin R. Albrecht Giacomo Fenzi
martin.albrecht@{kcl.ac.uk,sandboxaq.com} giacomo.fenzi@epfl.ch
King’s College London and SandboxAQ EPFL
Oleksandra Lapiha Ngoc Khanh Nguyen
sasha.lapiha.2021@live.rhul.ac.uk khanh.nguyen@Qepfl.ch
Royal Holloway, University of London EPFL

We construct a non-interactive lattice-based polynomial commitment with:

‘ \\\)(

W

SLAP: Succinct Lattice-Based Polynomial Commitments from
Standard Assumptions

Martin R. Albrecht Giacomo Fenzi
martin.albrecht@{kcl.ac.uk,sandboxaq.com} giacomo.fenzi@epfl.ch
King’s College London and SandboxAQ EPFL
Oleksandra Lapiha Ngoc Khanh Nguyen
sasha.lapiha.2021@live.rhul.ac.uk khanh.nguyen@epfl.ch
Royal Holloway, University of London EPFL

We construct a non-interactive lattice-based polynomial commitment with:

1. Succinct proofs

W

U

SLAP: Succinct Lattice-Based Polynomial Commitments from
Standard Assumptions

Martin R. Albrecht Giacomo Fenzi
martin.albrecht@{kcl.ac.uk,sandboxaq.com} giacomo.fenzi@epfl.ch
King’s College London and SandboxAQ EPFL
Oleksandra Lapiha Ngoc Khanh Nguyen
sasha.lapiha.2021@live.rhul.ac.uk khanh .nguyen@epfl.ch
Royal Holloway, University of London EPFL

We construct a non-interactive lattice-based polynomial commitment with:
1. Succinct proofs

2. Succinct verification time N\

\
N

SLAP: Succinct Lattice-Based Polynomial Commitments from
Standard Assumptions

Martin R. Albrecht Giacomo Fenzi
martin.albrecht@{kcl.ac.uk,sandboxaq.com} giacomo.fenzi@epfl.ch
King’s College London and SandboxAQ EPFL
Oleksandra Lapiha, Ngoc Khanh Nguyen
sasha.lapiha.2021@live.rhul.ac.uk khanh .nguyen@epfl.ch
Royal Holloway, University of London EPFL

We construct a non-interactive lattice-based polynomial commitment with:
1. Succinct proofs

2. Succinct verification time N\
(7

\
3. Binding under (M)SIS \\

YV

Techniques

Lattice-Based SNARKs

How to get around [GW11]?

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits
using QAPs

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits
using QAPs

|Rinocchio: SNARKSs for Ring Arithmetic

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits
using QAPs

iRinocchio: SNARKSs for Ring Arithmetic

Amortized Efficient zk-SNARK
from Linear-Only RLWE Encodings

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits
using QAPs

SNARKSs for Ring Arithmetic

. . | Rinocchio:
Amortized Efficient zk-SNARK |
from Lineaf-only RLWE EnCOdin& Private Re-Randomization for Module LWE and

Applications to Quasi-Optimal ZK-SNARKSs

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits
using QAPs

SNARKSs for Ring Arithmetic

Amortized Efficient zZk-SNARK L—"

from Linear-Only RLWE Encodings || private Re-Randomization for Module LWE and
Applications to Quasi-Optimal ZK-SNARKSs

Lattice-Based zk-SNARKSs from Square Span Programs

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits
using QAPs

SNARKSs for Ring Arithmetic

. . | Rinocchio:
Amortized Efficient zk-SNARK |
from Lineaf-only RLWE EnCOdin& Private Re-Randomization for Module LWE and

Applications to Quasi-Optimal ZK-SNARKSs

Lattice-Based zk-SNARKSs from Square Spgw—Rxacxuaxaa I
Shorter and Faster Post-Quantum

Designated-Verifier zkSNARKSs from Lattices*

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Dast-Ouyantum zk-SNARK for Arithmetic Circuits

Shorter and Fagre

Designated-Verifier zkSNARKSs from Lattices*

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling Knowledge k-RI-SIS

Dast-Ouyantum zk-SNARK for Arithmetic Circuits

Shorter and Fagre

Designated-Verifier zkSNARKSs from Lattices*

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling Knowledge k-RI-SIS

Dast-Ouyantum zk-SNARK for Arithmetic Circuits

Lattice-Based SNARKSs: Publicly Verifiable, Preprocessing, and

Recursively Composable
(Full Version)

Shorter and Fagre

Designated-Verifier zkSNARKSs from Lattices*

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling Knowledge k-RI-SIS

Lattice-Based SNARKSs: Publicly Verifiable, Preprocessing, and

Recursively Composable
(Full Version)

Lattice-based Succinct Arguments from Vanishing Polynomials
(Full Version)

Shorter and T ag e I ost=eyere
Designated-Verifier zkSNARKSs from Lattices*

Lattice-Based SNARKs

How to get around [GW11]?
[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling Knowledge k-RI-SIS

, POURIA FALLAHPOUR 2

, AN - ,
Lattice-Based zk-SNARKSs tro D DAMIEN STEHLE 2.3

Shorter and Fagre

Designated-Verifier zkSNARKSs from Lattices*

Lattice Assumptions ¢ ROM

Lattice Assumptions ¢ ROM

 Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

Lattice Assumptions ¢ ROM

 Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

« ROM takes care of extraction and non-interactivity.

10

Lattice Assumptions ¢ ROM

 Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

« ROM takes care of extraction and non-interactivity.

Special Sound

Interactive Protocol

10

Lattice Assumptions ¢ ROM

 Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

« ROM takes care of extraction and non-interactivity.

Special Sound Fiat-Shamir

Interactive Protocol Transform

10

Lattice Assumptions ¢ ROM

 Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

« ROM takes care of extraction and non-interactivity.

Special Sound Fiat-Shamir Knowledge Sound

Interactive Protocol Transform PCS

10

Lattice Assumptions ¢ ROM

 Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

« ROM takes care of extraction and non-interactivity.

Special Sound Fiat-Shamir Knowledge Sound

Interactive Protocol Transform PCS

 Use lattices to get succinctness in the interactive protocol.

10

Lattice Assumptions ¢ ROM

 Knowledge assumptions in “lattice-land”: hard to define and easy-ish to break

« ROM takes care of extraction and non-interactivity.

Special Sound Fiat-Shamir Knowledge Sound

Interactive Protocol Transform PCS

 Use lattices to get succinctness in the interactive protocol.

 Open Question: ROM alone is sufficient for efficient PCS (e.g. STIR), can we
gain by using lattices?

10

Building succinct PCS

Building succinct PCS

Commitment Scheme

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

« Commitment t, opening S

11

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

« Commitment t, opening S

* Binding under lattice assumption

11

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

« Commitment t, opening S

* Binding under lattice assumption

e Need commitment |t| < d

11

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

« Commitment t, opening S

* Binding under lattice assumption

e Need commitment |t| < d

» Must be binding for f of arbitrary
norm

11

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

« Commitment t, opening S

* Binding under lattice assumption

e Need commitment |t| < d

» Must be binding for f of arbitrary
norm

11

Evaluation Protocol

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

« Commitment t, opening S

* Binding under lattice assumption

e Need commitment |t| < d

» Must be binding for f of arbitrary
norm

11

Evaluation Protocol

t,u,v

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

« Commitment t, opening S

* Binding under lattice assumption

e Need commitment |t| < d

» Must be binding for f of arbitrary
norm

11

Evaluation Protocol

s t,u,v

Building succinct PCS

Commitment Scheme

« Committo avectorf € 9?3’

« Commitment t, opening S

* Binding under lattice assumption

e Need commitment |t| < d

» Must be binding for f of arbitrary
norm

11

Evaluation Protocol

s t,u,v

<
<

>
> .
>

Building succinct PCS

- Evaluation Protocol
Commitment Scheme

t.u.v
|](;S % %
« Committo avectorf & 9?3’ n)

’
“| know f such that f(#) = v and an
opening s for f := coeff(f) to t”

« Commitment t, opening S

* Binding under lattice assumption

e Need commitment |t| < d

» Must be binding for f of arbitrary
norm

11

Building succinct PCS

- Evaluation Protocol
Commitment Scheme

t.u.v
|](;S % %
« Committo avectorf & 9?3’ n)

’
“| know f such that f(#) = v and an
opening s for f := coeff(f) to t”

« Commitment t, opening S

* Binding under lattice assumption

» Need itment |t d
eed commitment [t] < « Need V’s running time to be < d
» Must be binding for f of arbitrary
norm

11

Building succinct PCS

- Evaluation Protocol
Commitment Scheme

t.u.v
|](;S % %
« Committo avectorf & 9?3’ n)

’
“| know f such that f(#) = v and an
opening s for f := coeff(f) to t”

« Commitment t, opening S

* Binding under lattice assumption

e N it t [t
eed commitment |t]| < d « Need V’s running time to be < d

» Must be binding for f of arbitrary » Need communication complexity << d
norm

11

PRISIS Commitments |
A starting point [FMN23]

12

PRISIS Commitments |
A starting point [FMN23]

wlA ... -G
Given B = and trapdoor 1 for B

wTlA -G

12

PRISIS Commitments |
A starting point [FMN23]

wlA ... -G
Given B = and trapdoor 1 for B
w/TIA =G

Use T to sample short S5 -2 Sp_1> t such that:

12

PRISIS Commitments |
A starting point [FMN23]

wlA ... -G
Given B = and trapdoor 1 for B

wTlA -G

Use T to sample short S5 -2 Sp_1> t such that:

S0

: —fow'e,
B|. . — :
Sy_1 ' -
¢ —fo_ W' e
T \

preimage target |

PRISIS Commitments |
A starting point [FMN23]

wlA ... -G
Given B = and trapdoor 1 for B

wiTlA -G

Use T to sample short S5 -2 Sp_1> t such that:

S0 _ e The commitment is t := Gt and the
B | O: 1 openings are (S;)..
Se-1| | £—1
¢ —fr_ W'
T \

preimage target |

PRISIS Commitments |
A starting point [FMN23]

wlA ... -G
Given B = and trapdoor 1 for B

wiTlA -G

Use T to sample short S5 -2 Sp_1> t such that:

50 — w0 The commitment is t := Gt and the
Bl * | = O; 1 openings are (S;)..
Se—1| '
¢ ~fe v’y To open check that
T \

preimage target |

PRISIS Commitments |
A starting point [FMN23]

wlA ... -G
Given B = and trapdoor 1 for B

wiTlA -G

Use T to sample short S5 -2 Sp_1> t such that:

50 — w0 The commitment is t := Gt and the
Bl * |2 O; 1 openings are (S;)..
Se—1| '
{ ~foow e To open check that
preirLage \target § As; + f,e, = w™'t and s; short

PRISIS Commitments |l

Pros 4 and Cons X

PRISIS Commitments |l

Pros 4 and Cons X

e Commitment is succinct.

PRISIS Commitments |l

Pros 4 and Cons X

e Commitment is succinct.

e Supports committing to messages of
arbitrary size.

13

PRISIS Commitments |l

Pros 4 and Cons X

e Commitment is succinct.

e Supports committing to messages of
arbitrary size.

* Algebraic structure enables efficient
evaluation protocol.

13

PRISIS Commitments |l

Pros 4 and Cons X

« Commitment is succinct. * Binding under non-standard PRISIS

assumption.
e Supports committing to messages of

arbitrary size.

* Algebraic structure enables efficient
evaluation protocol.

13

PRISIS Commitments |l

Pros 4 and Cons X
« Commitment is succinct. * Binding under non-standard PRISIS
assumption.
e Supports committing to messages of
arbitrary size. Time to commit is quadratic.

* Algebraic structure enables efficient
evaluation protocol.

13

PRISIS Commitments |l

Pros 4 and Cons X
« Commitment is succinct. * Binding under non-standard PRISIS
assumption.
e Supports committing to messages of
arbitrary size. Time to commit is quadratic.

 Algebraic structure enables efficient ¢ Common reference string is quadratic.
evaluation protocol.

13

PRISIS Commitments |l

Pros 4 and Cons X

« Commitment is succinct. * Binding under non-standard PRISIS

assumption.
e Supports committing to messages of
arbitrary size. Time to commit is quadratic.

 Algebraic structure enables efficient ¢ Common reference string is quadratic.

evaluation protocol.
* Trusted setup

13

PRISIS Commitments |l

Pros 4 and Cons X

« Commitment is succinct. * Binding under non-standard PRISIS

assumption.
e Supports committing to messages of
arbitrary size. Time to commit is quadratic.

 Algebraic structure enables efficient ¢ Common reference string is quadratic.

evaluation protocol.
* Trusted setup

Can we do better?

13

Small-Dimension PRISIS

Small-Dimension PRISIS

[FMN23]: 7 = 2 reduces to MSIS

Small-Dimension PRISIS
[FMN23]: 7 = 2 reduces to MSIS

Lemma 3.6 (PRISIS = MSIS). Letn > 0,m > n and denotet = (n+1)§. Let g = w(N). Take
e € (0,1/3) and s > max(1/NIn(8Nq) - ¢*/2T¢, w(N3/21n3/2 N)) such that 219N¢=LN] is negligible.
Let

o> (5\/tN - (N252m + 2t) - w(y/N lognN).
Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

14

Small-Dimension PRISIS
[FMN23]: 7 = 2 reduces to MSIS

Lemma 3.6 (PRISIS = MSIS). Letn > 0,m > n and denotet = (n+1)§. Let g = w(N). Take
e € (0,1/3) and s > max(1/NIn(8Nq) - ¢*/2T¢, w(N3/21n3/2 N)) such that 219N¢=LN] is negligible.
Let

o> (5\/tN - (N252m + 2t) - w(y/N lognN).
Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

Multi-Instance BASIS

14

Small-Dimension PRISIS
[FMN23]: 7 = 2 reduces to MSIS

Lemma 3.6 (PRISIS = MSIS). Letn > 0,m > n and denotet = (n+1)§. Let g = w(N). Take
e € (0,1/3) and s > max(1/NIn(8Nq) - ¢*/2T¢, w(N3/21n3/2 N)) such that 219N¢=LN] is negligible.
Let

o> (5\/tN - (N252m + 2t) - w(y/N lognN).
Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

Multi-Instance BASIS

h-instance BASIS Game

14

Small-Dimension PRISIS
[FMN23]: 7 = 2 reduces to MSIS

Lemma 3.6 (PRISIS = MSIS). Letn > 0,m > n and denotet = (n+1)§. Let g = w(N). Take
e € (0,1/3) and s > max(1/NIn(8Nq) - ¢*/2T¢, w(N3/21n3/2 N)) such that 219N¢=LN] is negligible.
Let

o> (5\/tN - (N252m + 2t) - w(y/N lognN).
Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

Multi-Instance BASIS

h-instance BASIS Game

* * mxn
AT, .. AT < 9?6]

14

Small-Dimension PRISIS
[FMN23]: 7 = 2 reduces to MSIS

Lemma 3.6 (PRISIS = MSIS). Letn > 0,m > n and denotet = (n+1)§. Let g = w(N). Take
e € (0,1/3) and s > max(1/NIn(8Nq) - ¢*/2T¢, w(N3/21n3/2 N)) such that 219N¢=LN] is negligible.
Let

o> (5\/tN - (N252m + 2t) - w(y/N lognN).
Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

Multi-Instance BASIS

h-instance BASIS Game

* * mxn
AT, .. AT < 9?6]

aux; < Samp(AY) fori € [h]

14

Small-Dimension PRISIS
[FMN23]: 7 = 2 reduces to MSIS

Lemma 3.6 (PRISIS = MSIS). Letn > 0,m > n and denotet = (n+1)§. Let g = w(N). Take
e € (0,1/3) and s > max(1/NIn(8Nq) - ¢*/2T¢, w(N3/21n3/2 N)) such that 219N¢=LN] is negligible.
Let

o> (5\/tN - (N252m + 2t) - w(y/N lognN).
Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

Multi-Instance BASIS

h-instance BASIS Game

* * mxn
AT, .. AT < 9?6]

aux; < Samp(AY) fori € [h]

return (A, aux;),) to &/

14

Small-Dimension PRISIS
[FMN23]: 7 = 2 reduces to MSIS

Lemma 3.6 (PRISIS = MSIS). Letn > 0,m > n and denotet = (n+1)§. Let g = w(N). Take
e € (0,1/3) and s > max(1/NIn(8Nq) - ¢*/2T¢, w(N3/21n3/2 N)) such that 219N¢=LN] is negligible.
Let

o> (5\/tN - (N252m + 2t) - w(y/N lognN).
Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

Multi-Instance BASIS

h-instance BASIS Game

AT’ “"Alj - L%Zszn of wins if it finds X:
- [AT,..,AT]-x=0

aux; < Samp(Af) fori € [A] e O0<|x| <P

return (A, aux;),) to &/

14

Small-Dimension PRISIS

[FMN23]: 7 = 2 reduces to MSIS

Lemma 3.6 (PRISIS = MSIS). Letn > 0,m > n and denotet = (n+1)§. Let g = w(N). Take
e € (0,1/3) and s > max(1/NIn(8Nq) - ¢*/2T¢, w(N3/21n3/2 N)) such that 219N¢=LN] is negligible.
Let

o> (5\/tN - (N252m + 2t) - w(y/N lognN).
Then, PRISIS;, 1. N 2,08 % hard under the MSIS,, ., N 4.8 assumption.

Multi-Instance BASIS

h-instance BASIS Game

AT’ “"Alj - L%Zszn of wins if it finds X:
- [AT,..,AT]-x=0
s O0< x| <P

For £ = O(1), if PRISIS,

aux; < Samp(A¥) fori € [A] is hard so is h-PRISIS !

return (A, aux;),) to &/

14

Merkle-PRISIS |

Example with d = 8

Merkle-PRISIS |

Example with d = 8

Merkle-PRISIS |

Example with d = 8

Merkle-PRISIS |

Example with d = 8

15

Merkle-PRISIS |

Example with d = 8

é.b

Merkle-PRISIS |

Example with d = 8

-

Merkle-PRISIS |

Example with d = 8

5000 5001

-

Merkle-PRISIS |

Example with d = 8

5000 5001 50105 5011 51005 9101 511055111

3 o

15

Merkle-PRISIS |

Example with d = 8

5000 5001 51005 9101 511055111

f()OO flOl flll

15

Merkle-PRISIS |

Example with d = 8

5000 5001 51005 9101 511055111

f()OO flOl flll

15

Merkle-PRISIS i

How to check an opening

Merkle-PRISIS i

How to check an opening

. Each layer has its own crs; := (Aj, w;, T;) forj € [h = logd]

16

Merkle-PRISIS i

How to check an opening
. Each layer has its own crs; := (Aj, w;, T;) forj € [h = logd]

. Check that all local openings are correct. |.e. check that, for b € {0,1}"

16

Merkle-PRISIS i

How to check an opening
. Each layer has its own crs; := (Aj, w;, T;) forj € [h = logd]

. Check that all local openings are correct. |.e. check that, for b € {0,1}"

b.
JE[]

16

Merkle-PRISIS i

How to check an opening
. Each layer has its own crs; := (Aj, w;, T;) forj € [h = logd]

. Check that all local openings are correct. |.e. check that, for b € {0,1}"

b.
JE[]

» And, of course, that all the openings S, are short for be {01 }Sh

16

Merkle-PRISIS i

How to check an opening
. Each layer has its own crs; := (Aj, w;, T;) forj € [h = logd]

. Check that all local openings are correct. |.e. check that, for b € {0,1}"

b.
JE[]

» And, of course, that all the openings S, are short for be {01 }Sh

* Binding: subtract two verification equation:

16

Merkle-PRISIS i

How to check an opening
. Each layer has its own crs; := (Aj, w;, T;) forj € [h = logd]

. Check that all local openings are correct. |.e. check that, for b € {0,1}"
by
Z WIAS,; + e =t
JELA]
» And, of course, that all the openings S, are short for be {01 }Sh

* Binding: subtract two verification equation:

reduces to h-PRISIS, i.e. MSIS!

16

Merkle-PRISIS Il

Pros 4 and Cons X

Merkle-PRISIS Il

Pros 4 and Cons X

e Commitment is succinct.

Merkle-PRISIS Il

Pros 4 and Cons X

e Commitment is succinct.

e Supports committing to messages of
arbitrary size.

Merkle-PRISIS Il

Pros 4 and Cons X

e Commitment is succinct.

e Supports committing to messages of
arbitrary size.

e Time to commit is quasi-linear.

Merkle-PRISIS Il

Pros 4 and Cons X

e Commitment is succinct.

e Supports committing to messages of
arbitrary size.

e Time to commit is quasi-linear.

« Common reference string is logarithmic.

17

Merkle-PRISIS Il

Pros 4 and Cons X

e Commitment is succinct.

e Supports committing to messages of
arbitrary size.

e Time to commit is quasi-linear.
« Common reference string is logarithmic.

* Binding under standard SIS assumption.

17

Merkle-PRISIS Il

Pros 4 and Cons X

« Commitment is succinct. * Trusted setup

e Supports committing to messages of
arbitrary size.

e Time to commit is quasi-linear.
« Common reference string is logarithmic.

* Binding under standard SIS assumption.

17

Merkle-PRISIS Il

Pros 4 and Cons X

« Commitment is succinct. * Trusted setup

e Supports committing to messages of

a rb It ra ry S I Ze . Polynomial Commitments from Lattices: Post-Quantum Security, Fast
Verification and Transparent Setup
- . . - - Valerio Cini!, Giulio Malavolta?, Ngoc Khanh Nguyen?, and Hoeteck Wee!l
* Time to commit is quasi-linear. ookt

L NTT Research, Sunnyvale, CA, USA
2 Bocconi University, Milan, Italy

3 King’s College London, London, UK

« Common reference string is logarithmic.

* Binding under standard SIS assumption.

17

Merkle-PRISIS Il

Pros 4 and Cons X

« Commitment is succinct. * Trusted setup

e Supports committing to messages of
a rb itra ry S i Ze . Polynomial Commitments from Lattices: Post-Quantum Security, Fast

Verification and Transparent Setup

® Ti m e tO C O m m it i S q u a s i - I i n ea r . Valerio Cini', Giulio MalavoltaZ, Ngoc Khanh Nguyen?®, and Hoeteck Wee'!

L NTT Research, Sunnyvale, CA, USA
2 Bocconi University, Milan, Italy
3 King’s College London, London, UK

« Common reference string is logarithmic.

* Binding under standard SIS assumption.
Can we do an efficient

evaluation protocol?

17

Evaluation Protocol
FRI Inspired folding + CWSS

Basic J/’-Protocol

Prover Verifier
F(X) = fo(X*) + Xf1(X?)
z; = fi(u?) for i € Zy ?0,%1,80,51 Check: zg + uz; =7 z; Check: sg,s; short
g(X) = agfo(X) + a3 f1(X) < &0, &1 g, o0 — { X :i€Z}
._ <h-1 g,(zb)b = (A
Zb ‘= O0Sb,0 T X1Sb,1 for b € Zg > Crs .= (1+ty Wi14t, T1—|—t)t€[h—1]

t/ — QO - (t — wcl)AlsO) + Q- (t — ’w%Alsl)
w=u 2 =g 20+ ag - 2
Check: g(u') = 2’

Check: Open(crs’,t’, g, (zp)p) = 1

18

Are we done?

Are we done?

» Apply protocol recursively log d times and send final opening O(1).

19

Are we done?

» Apply protocol recursively log d times and send final opening O(1).

 Knowledge soundness follows from coordinate-wise special soundness.

19

Are we done?

» Apply protocol recursively log d times and send final opening O(1).

 Knowledge soundness follows from coordinate-wise special soundness.

e Commitment is succinct, verifier also succinct.

19

Are we done?

» Apply protocol recursively log d times and send final opening O(1).

 Knowledge soundness follows from coordinate-wise special soundness.

e Commitment is succinct, verifier also succinct.

 Problem (: Knowledge soundness error is 1/poly(4).

19

Are we done?

» Apply protocol recursively log d times and send final opening O(1).

Knowledge soundness follows from coordinate-wise special soundness.

Commitment is succinct, verifier also succinct.

Problem ©): Knowledge soundness error is 1/poly(A).

Can be made negligible by parallel repetition, but then no Fiat-Shamir!

19

Are we done?

» Apply protocol recursively log d times and send final opening O(1).

Knowledge soundness follows from coordinate-wise special soundness.

Commitment is succinct, verifier also succinct.

Problem ©): Knowledge soundness error is 1/poly(A).

Can be made negligible by parallel repetition, but then no Fiat-Shamir!

Change the challenge space?

19

Are we done?

» Apply protocol recursively log d times and send final opening O(1).

Knowledge soundness follows from coordinate-wise special soundness.

Commitment is succinct, verifier also succinct.

Problem ©): Knowledge soundness error is 1/poly(A).

Can be made negligible by parallel repetition, but then no Fiat-Shamir!

Change the challenge space?

* Non-subtractive challenge space => Blowup In extraction, cannot do more than
log log d recursions => only quasi-polylogarithmic sizes.

19

Are we done?

» Apply protocol recursively log d times and send final opening O(1).

Knowledge soundness follows from coordinate-wise special soundness.

Commitment is succinct, verifier also succinct.

Problem ©): Knowledge soundness error is 1/poly(A).

Can be made negligible by parallel repetition, but then no Fiat-Shamir!

Change the challenge space?

* Non-subtractive challenge space => Blowup In extraction, cannot do more than
log log d recursions => only quasi-polylogarithmic sizes.

» Subtractive challenge space => Challenge space of size at most poly(4) [AL21]

19

Claim bundling |

Let’s prove something harder!

Claim bundling |

Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

20

Claim bundling |

Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

* Asin [FMNZ23], our protocol can be easily extended to deal with this.

20

Claim bundling |

Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

* Asin [FMNZ23], our protocol can be easily extended to deal with this.

Split

20

Claim bundling |

Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

* Asin [FMNZ23], our protocol can be easily extended to deal with this.

20

Claim bundling |

Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

* Asin [FMNZ23], our protocol can be easily extended to deal with this.

Randomness IS now:

Q0.1,.0° X0.R.00 X1.1.00 A1 R.0

2r
e (¢")
Q.11 X R1>A1.L.1> X1.R.1

20

Claim bundling |

Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

* Asin [FMNZ23], our protocol can be easily extended to deal with this.

Randomness IS now:

A7 0.0 oo Xp 70 O
0.L.0° %0.R.0° X1.1.0> X1 RO - (Cg,,)z,, O‘zichdds f”,
Q.11 X R1>A1.L.1> X1.R.1 into g
K

20

Claim bundling |

Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

* Asin [FMNZ23], our protocol can be easily extended to deal with this.

Randomness IS now:

A7 0.0 oo Xp 70 O
0.L.0° %0.R.0° X1.1.0> X1 RO - (Cg,,)z,, O‘zichdds f”,
Q.11 X R1>A1.L.1> X1.R.1 into g

K

20

Claim bundling |

Let’s prove something harder!

» Instead of proving f(#) = v, show that, for1 € [r], f(u) = v,

* Asin [FMNZ23], our protocol can be easily extended to deal with this.

Randomness IS now:

A7 0.0 oo Xp 70 O
0.L.0° %0.R.0° X1.1.0> X1 RO - (Cg,,)z,, O‘zichdds f”,
Q.11 X R1>A1.L.1> X1.R.1 into g

K

Folded polynomial:

Fold
“ l - g0 = Ay rofor+ Arofor T X rofiLt X roSiR
81

g1 = 1Jor Tt drifor T 0 in T X riSiR

20

Claim bundling Il

What did we gain?

Claim bundling Il

What did we gain?

« Now, protocol is 27 coordinate-wise special sound with challenge space of
size roughly poly(4)”

21

Claim bundling Il

What did we gain?

« Now, protocol is 27 coordinate-wise special sound with challenge space of
size roughly poly(4)”

» Setting r to be polylog(4), we achieve negligible knowledge error!

21

Claim bundling Il

What did we gain?

« Now, protocol is 27 coordinate-wise special sound with challenge space of
size roughly poly(4)”

» Setting r to be polylog(4), we achieve negligible knowledge error!

* QOur protocol can now be made non-interactive using FS.

21

Claim bundling Il

What did we gain?

« Now, protocol is 27 coordinate-wise special sound with challenge space of
size roughly poly(4)”

» Setting r to be polylog(4), we achieve negligible knowledge error!

* QOur protocol can now be made non-interactive using FS.

» To prove a single claim f(u) = v, simply set f,f. =fand v, ...,v. = V.

21

Conclusion

SO\

A non-interactive lattice-based
olynomial commitment with succinct
roofs and verification time, from

stangard lattice assumptions.

There 1S more!

What we did not talk about

There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS

24

There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS

* Folding more at each step

24

There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS
* Folding more at each step

 Coordinate-wise special soundness

24

There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS
* Folding more at each step
 Coordinate-wise special soundness

* Honest-verifier zero knowledge for our PCS

24

There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS
* Folding more at each step
 Coordinate-wise special soundness

* Honest-verifier zero knowledge for our PCS

 Transforming PCS for &£ g in those for Z g (efficient packing)

24

There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS
* Folding more at each step
 Coordinate-wise special soundness

* Honest-verifier zero knowledge for our PCS

 Transforming PCS for &£ g in those for Z g (efficient packing)

o Twin-k-M-ISIS is no easier than 2k-M-ISIS

24

There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS
* Folding more at each step
 Coordinate-wise special soundness

* Honest-verifier zero knowledge for our PCS

 Transforming PCS for &£ g in those for Z g (efficient packing)

o Twin-k-M-ISIS is no easier than 2k-M-ISIS

» Setting concrete parameters

24

There 1S more!

What we did not talk about

* Succinct evaluation protocol for Merkle-PRISIS
* Folding more at each step
 Coordinate-wise special soundness

* Honest-verifier zero knowledge for our PCS
 Transforming PCS for &£ g in those for Z g (efficient packing)
» Twin-k-M-ISIS is no easier than 2k-M-ISIS

» Setting concrete parameters

e Reductions... all the reductions

24

Th er e i S m Or e! SLAP: Succinct Latglc;]j:jgdAislllﬁ;i?;ils Commitments from

Martin R. Albrecht Giacomo Fenzi
martin.albrecht@{kcl.ac.uk,sandboxaq.com} giacomo.fenzi@epfl.ch
What we did not talk about
Oleksandra Lapiha Ngoc Khanh Nguyen

sasha.lapiha.2021@live.rhul.ac.uk khanh.nguyen@epfl.ch

® SUCCinCt evaluatiOn prOtOCOI for Merkle_PRISIS Royal Holloway, University of London EPFL

* Folding more at each step ia.cr/2023/1469

 Coordinate-wise special soundness

* Honest-verifier zero knowledge for our PCS Details here!

 Transforming PCS for &£ g in those for Z g (efficient packing)

SLAP: Succinct Lattice-Based Polynomial

« Twin-k-M-ISIS is no easier than 2k-M-ISIS Commitments from Standard Assumptions

September 2023 - Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, Ngoc Khanh
Nguyen - EUROCRYPT 2024 - ePrint: 2023/1469

® S ett i n g CO n C rete p a ra m ete rS This blog-post is a short introduction to our new work: “SLAP: Succinct Lattice-Based

Polynomial Commitments from Standard Assumptions”. This is joint work with Martin

Albrecht, Oleksandra Lapiha and Ngoc Khanh Nguyen, and the full version is available on
ePrint . Here are also some slides that might be helpful.

e Reductions... all the reductions o
afenzi.io/papers/slap

24

http://ia.cr/2023/1469
http://gfenzi.io/papers/slap

Open Questions

Open Questions

 Can we get succinct lattice-based polynomial commitments under 100KB?

25

Open Questions
 Can we get succinct lattice-based polynomial commitments under 100KB?

« Can we get negl(4) knowledge error in one-shot (no claim bundling)?

25

Open Questions

 Can we get succinct lattice-based polynomial commitments under 100KB?
« Can we get negl(4) knowledge error in one-shot (no claim bundling)?

» Is PRISIS, with £ > 2 still secure?

25

Open Questions &

 Can we get succinct lattice-based polynomial commitments under 100KB?

« Can we get negl(4) knowledge error in one-shot (no claim bundling)?

» Is PRISIS, with £ > 2 still secure?

Thank you!

Extra slides

Evaluation Protocol |
Strategy

Evaluation Protocol |
Strategy

Evaluation Protocol |
Strategy

Prover knows:

Evaluation Protocol |
Strategy

Prover knows:
 Polynomial f € %;d[X] and
openings (Sp)y,

28

Evaluation Protocol |
Strategy

Prover knows:
 Polynomial f € %;d[X] and
openings (Sp)y,

28

Evaluation Protocol |

Strategy Verifier knows:

Prover knows:
 Polynomial f € %;d[X] and
openings (Sp)y,

28

Evaluation Protocol |

Strategy Verifier knows:

« Common reference string crs
Prover knows:
. Polynomial f € %;d[X] and
openings (Sp)y,

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: e Commitment t

 Polynomial f € %;d[X] and
openings (Sp)y,

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

.

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

.

Prover now Knows:

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

Prover now knows:
« Polynomial g € %;d/z[X] and
openings (zy)y,

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

Verifier now knows:
Prover now Knows:

« Polynomial g € %;d/z[X] and
openings (zy)y,

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

Verifier now knows:

Prover now knows: » Common reference string crs’
« Polynomial g € %;d/z[X] and

openings (zy)y,

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

Verifier now knows:

Prover now knows: » Common reference string crs’
« Polynomial g € %;d/z[X] and

openings (zy)y,

e Commitmentt’

28

Evaluation Protocol |

Strategy Verifier knows:

e Common reference string crs

Prover knows: « Commitment t
 Polynomial f € %;d[X] and « Claim: f(u) = v and
openings (Sy)y, Open(crs, t, 1, (Sp)y) = 1

Verifier now knows:

Prover now knows: » Common reference string crs’
« Polynomial g € %;d/z[X] and

openings (zy)y,

e Commitment t’
* New claim: g(u') = v’ and
Open(crs, t', g, (zy),,) = 1

28

Evaluation Protocol li
Split and fold (Evaluations)

Evaluation Protocol Ii
Split and fold (Evaluations)

Evaluation Protocol li
Split and fold (Evaluations)

29

Evaluation Protocol li
Split and fold (Evaluations)

Split

29

J(X) =fL(X2) + X 'fR(XZ)

Evaluation Protocol li
Split and fold (Evaluations)

Split

fr€ RSPIX | fre RIIX]

29

J(X) =fL(X2) + X 'fR(XZ)

. Solomer
Evaluation Protocol Il [, " e
Split and fold (Evaluations)

Split fX) = f,(X%) + X - fo(X?)

fr€ RSPIX | fre RIIX]
%0, X n

29

. Solomer
Evaluation Protocol Il [, " e
Split and fold (Evaluations)

Split fX) = f,(X%) + X - fo(X?)

Qp,
Fold

8(X) = apf1(X) + a; fr(X)

29

= SO]OUIOH . |
Evaluation Protocol I [, " itens;
Split and fold (Evaluations)

Split fX) = f,(X%) + X - fo(X?)

Qp, X n

800 = o, (X) + ayfeX)

29

m ‘SO]() on
Evaluation Protocol Il [z, " e
Split and fold (Evaluations)

Split fX) = f,(X%) + X - fo(X?)

X, A n

800 = o, (X) + ayfeX)

Ask prover to send 7 = f;(1?%), z; = fo(u?). Check zy + uz; = z

29

m ‘SO]() on
Evaluation Protocol Il [z, " e
Split and fold (Evaluations)

Split fX) = f,(X%) + X - fo(X?)

X, A n

800 = o, (X) + ayfeX)

Ask prover to send 7 = f;(1?%), z; = fo(u?). Check zy + uz; = z

If f(u) = v, then g(u?) = ayzy + ;2.

Evaluation Protocol Il
Split and fold (Openings)

Evaluation Protocol i
Split and fold (Openings)

Evaluation Protocol i
Split and fold (Openings)

l Split

Evaluation Protocol i
Split and fold (Openings)

l Split
fL € RZUIX1 | fr € RGVIX]

Jo| Ll JalJe | L | 3|]| f

Evaluation Protocol i
Split and fold (Openings)

l Split
fL € RZUIX1 | fr € RGVIX]

Jo| Ll JalJe | L | 3|]| f

l Fold

Evaluation Protocol i
Split and fold (Openings)

l Split
fL € RZUIX1 | fr € RGVIX]

Jo| Ll JalJe | L | 3|]| f

l Fold

30

Evaluation Protocol i
Split and fold (Openings)

S, S
S00> 501 oo
f € R;X]
f S010> S011

$100> 5101 511005111

Jo | | L

\ f4]ps f6][7 50005 5001 i
l Split
Jo | | Ja| Sfo | | | S5 |

l Fold

30

Evaluation Protocol i
Split and fold (Openings)

S, S
S00> 501 oo
f € R;X]
f S010> S011

$100> 5101 511005111

-

apSo1 T+ X181

Jo | | L

\ f4]ps f6][7 S000° 5001 i
l Split
fo| b h| | fi|h |55 -

n

ApSoo0 T 215100 ApSo10 T X1S110>

l Fold
<2y XpSp01 T A15101
g€ F,

XpSo11 T A18111

30

Evaluation Protocol IV
Split and fold (Commitment)

Evaluation Protocol IV
Split and fold (Commitment)

* We have shown how to compute new evaluations and openings

31

Evaluation Protocol IV
Split and fold (Commitment)

* We have shown how to compute new evaluations and openings

» If a; are short, the new openings also are.

31

Evaluation Protocol IV
Split and fold (Commitment)

* We have shown how to compute new evaluations and openings

» If a; are short, the new openings also are.

 How does the verifier compute new commitment? With some magic:

31

Evaluation Protocol IV
Split and fold (Commitment)

* We have shown how to compute new evaluations and openings

» If a; are short, the new openings also are.

 How does the verifier compute new commitment? With some magic:

b, .

31

Evaluation Protocol IV
Split and fold (Commitment)

* We have shown how to compute new evaluations and openings

» If a; are short, the new openings also are.

 How does the verifier compute new commitment? With some magic:

by
« Prover reveals S, S,. Verifier sets RHS as new updated commitment.

31

BASIS Game

BASIS Game
A* «— %an
q

BASIS Game
A* «— %an
q

aux < Samp(A™*)

BASIS Game
A* «— %an
q

aux < Samp(A™*)

return (A™, aux) to <f

32

BASIS Game
A* «— %an
q
aux < Samp(A™*)

return (A™, aux) to <f

o/ wins if it finds X:
« A =0
» O0<[x| <P

32

Samp, . (A™)

return L

BASIS Game

A* %?Xn < wins if it finds X:
¢« A*x=0

aux < Samp(A™*) . 0<|x|<f

return (A™, aux) to <f

32

Samp, . (A™)

return L

BASIS Game

A* %?Xn < wins if it finds X:
¢« A*x=0

aux < Samp(A™*) . 0<|x|<f

return (A™, aux) to <f

SampBASIs,f(A*)

32

BASIS-¢4
[WW23]

Samp, . (A™)

return L

BASIS Game
A* «— %an
q
aux < Samp(A™*)

return (A™, aux) to <f

o/ wins if it finds X:
« A =0

- O0< x| </

SampBASIs,f(A*)

Sample a, A,, ... A,

32

BASIS-¢4
[WW23]

Samp, . (A™)

return L

BASIS Game
A* «— %an
q

aux < Samp(A™*)

return (A™, aux) to <f

o/ wins if it finds X:
« A =0

- O0< x| </

SampBASIs,f(A*)

Sample a, A,, ... A,

32

BASIS-¢

o/ wins if it finds X:
« A =0
» O0<[x| <P

Sample a, A,, ... A,

A

Al .= [a*] , B =
A

return (a, (A))., B~1(G))

[WW23] BASIS Game
A* «— %an
q
Sampg;(A™) aux < Samp(A™)
return L return (A*, aux) to &f
SampBASIs,f(A*)

32

BASIS-¢

o/ wins if it finds X:
« A =0

- O0< x| </

Sample a, A,, ... A,

A

Al .= [a*] , B =
A

return (a, (A))., B~1(G))

[WW23] BASIS Game
A* «— %an
q
Sampg;(A™) aux < Samp(A™)
return L return (A*, aux) to &f
SampBASIs,f(A*) SampPRISIS,f(A*)

32

BASIS-¢

o/ wins if it finds X:
« A =0

- O0< x| </

Sample a, A,, ... A,

A

Al .= [a*] , B =
A

return (a, (A))., B~1(G))

[WW23] BASIS Game
A* «— %an
q
Sampg;(A™) aux < Samp(A™)
return L return (A*, aux) to &f
SampBASIs,f(A*) SampPRISIS,f(A*)

Sample a, w

32

BASIS-¢

Sample a, A,, ... A,

A

Al .= [a*] , B =
A

return (a, (A))., B~1(G))

[WW23] BASIS Game
A* %?Xn 2/ wins if it finds X;
¢« A*'x =0
SampSIS(A*) aux <« SamP(A*) - 0<|x|<p
return L return (A*, aux) to &f
Sampg s AA™) Samppeyers AA™)

Sample a, w
-G wO A -G
A = [a] B =
A~ _
A, -G w/TlIA -G

32

BASIS-¢

Sample a, A,, ... A,

A

Al .= [a*] , B =
A

return (a, (A))., B~1(G))

[WW23] BASIS Game
A* %?Xn 2/ wins if it finds X;
¢« A*'x =0
SampSIS(A*) aux <« SamP(A*) - 0<|x|<p
return L return (A*, aux) to &f
Sampg s AA™) Samppeyers AA™)

Sample a, w
-G wiA .. -G
A = [a] B =
A* _
A, -G w/TlIA -G

return (a, w, B~1(G))

32

Recap:
What we talked about

33

Recap:
What we talked about

e PRISIS and Merkle-PRISIS commitments

33

Recap:
What we talked about

e PRISIS and Merkle-PRISIS commitments

 Multi-instance PRISIS assumptions

33

Recap:
What we talked about

e PRISIS and Merkle-PRISIS commitments

 Multi-instance PRISIS assumptions

» h-PRISIS, reduces to MSIS

33

Recap:
What we talked about

e PRISIS and Merkle-PRISIS commitments

 Multi-instance PRISIS assumptions

» h-PRISIS, reduces to MSIS

e Succinct evaluation protocol for Merkle-PRISIS

33

Recap:
What we talked about

e PRISIS and Merkle-PRISIS commitments

 Multi-instance PRISIS assumptions

» h-PRISIS, reduces to MSIS

e Succinct evaluation protocol for Merkle-PRISIS

* Boosting soundness via claim bundling

33

Trapdoors [MP12]

Trapdoors [MP12]

 Let G be a “gadget matrix”

Trapdoors [MP12]

 Let G be a “gadget matrix”

« Can sample (A, R) such that AR = G, with R short.

Trapdoors [MP12] “Not nice’

A+ (A)
 Let G be a “gadget matrix”

« Can sample (A, R) such that AR = G, with R short.

34

Trapdoors [MP12] “Not nice’

A+ (A)
 Let G be a “gadget matrix”

« Can sample (A, R) such that AR = G, with R short.
AH(G)
“Nice”

34

Trapdoors [MP12] “Not nice’

A+ (A)
 Let G be a “gadget matrix”
R
« Can sample (A, R) such that AR = G, with R short.
AH(G)

“Nice”

34

Trapdoors [MP12] “Not nice’

A+ (A)
 Let G be a “gadget matrix”
R
« Can sample (A, R) such that AR = G, with R short.
AH(G)

» Given A, R, v, can sample short s such that As = v. “Nice”

34

Trapdoors [MP12] “Not nice’

A+ (A)
 Let G be a “gadget matrix”
R
« Can sample (A, R) such that AR = G, with R short.
. AH(G)
« Given A, R, v, can sample short S such that As = v. Nice”

Trapdoor Resampling [WW23]

Trapdoors [MP12] “Not nice’

A+ (A)
 Let G be a “gadget matrix”
R
« Can sample (A, R) such that AR = G, with R short.
. AH(G)
« Given A, R, v, can sample short S such that As = v. Nice”

Trapdoor Resampling [WW23]

« Given (A, R), can sample new trapdoor T for some matrix B “related” to A

34

Trapdoors [MP12] “Not nice’

A+ (A)
 Let G be a “gadget matrix”
R
« Can sample (A, R) such that AR = G, with R short.
. AH(G)
« Given A, R, v, can sample short S such that As = v. Nice”

Trapdoor Resampling [WW23]

« Given (A, R), can sample new trapdoor T for some matrix B “related” to A

 BASIS style assumption say:

“Given A, B, T, hard to find short x for Ax = ()”

34

