# Perfect (Parallel) Broadcast in Constant **Expected Time via Statistical VSS**

**Gilad Asharov** 

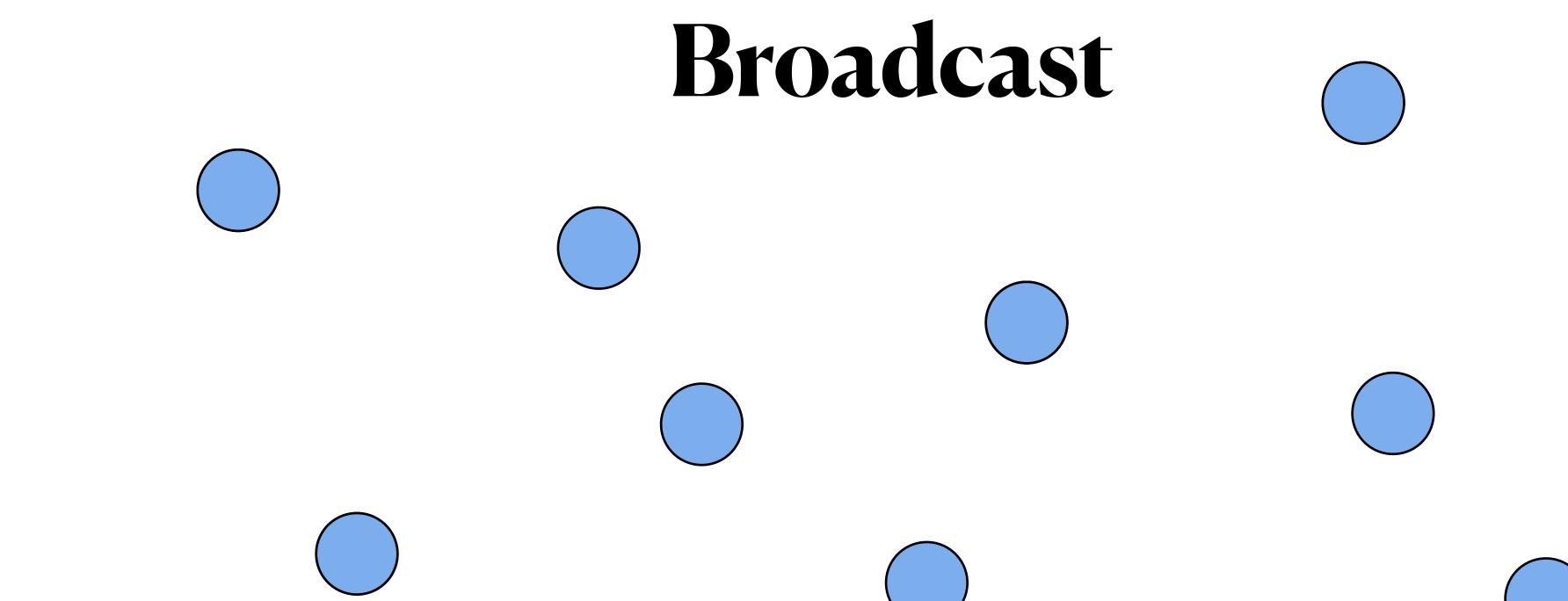


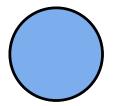
#### Anirudh Chandramouli

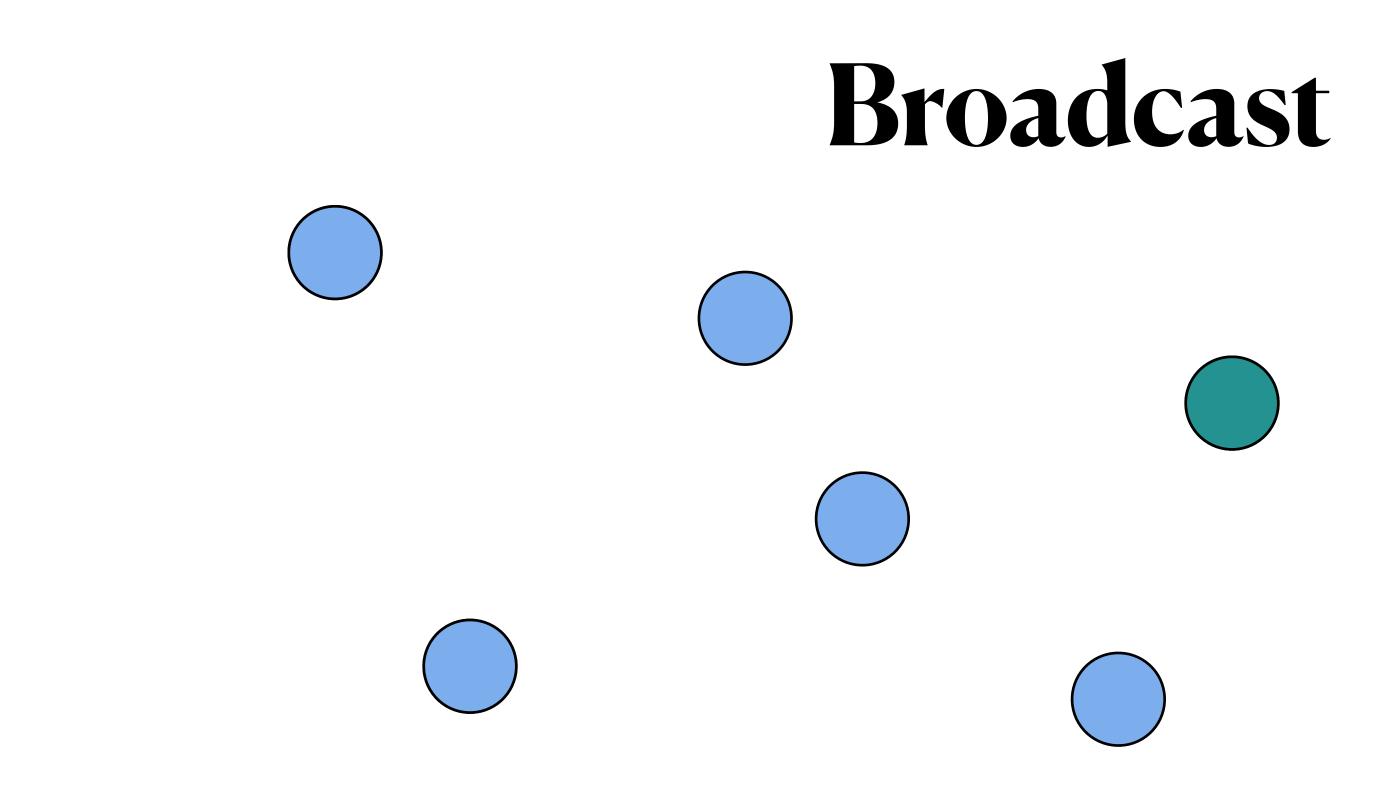
#### Bar-Ilan University

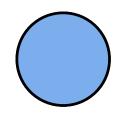


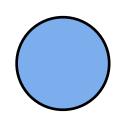


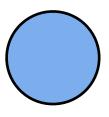


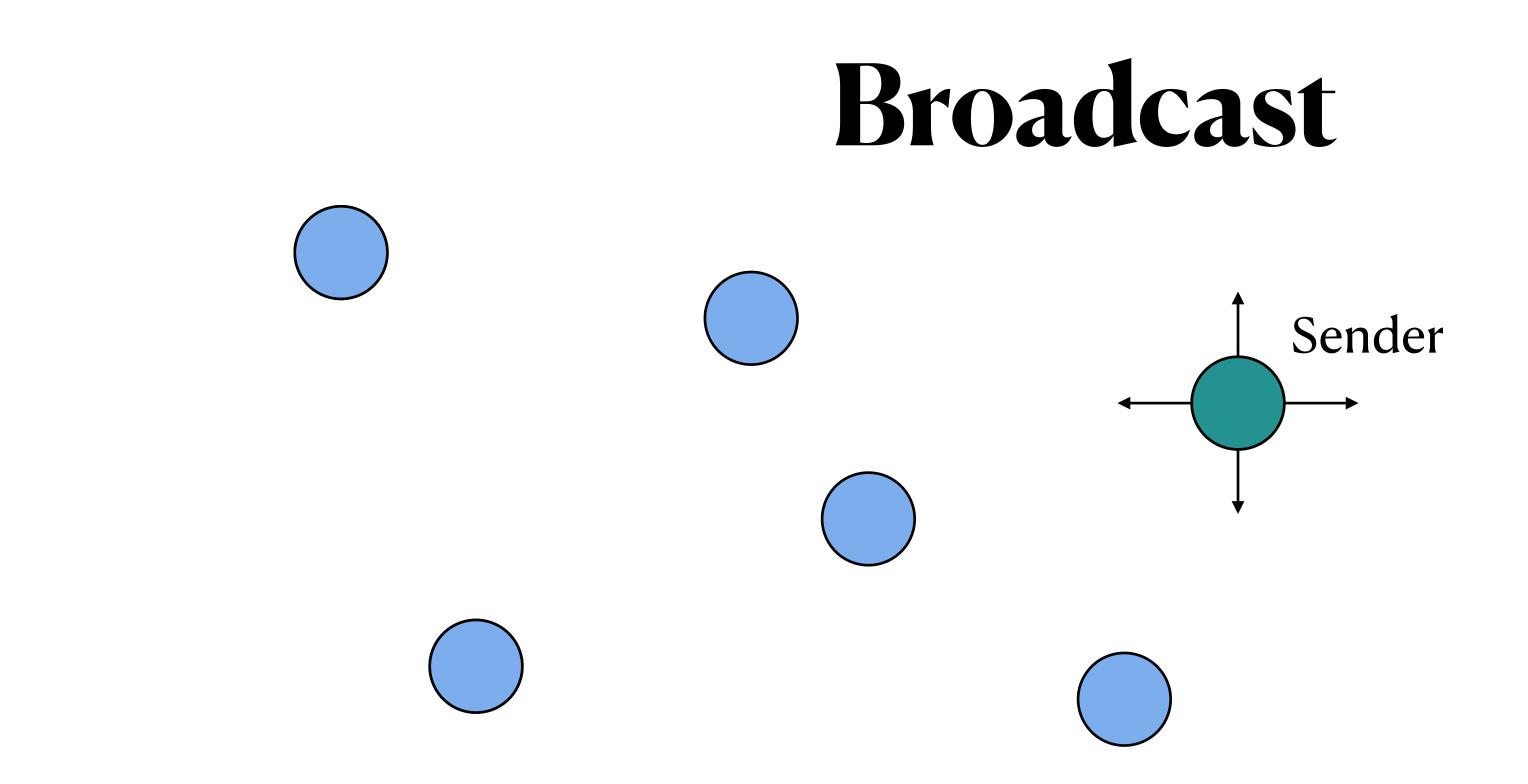


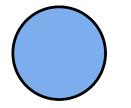


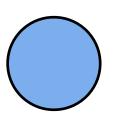


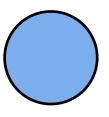


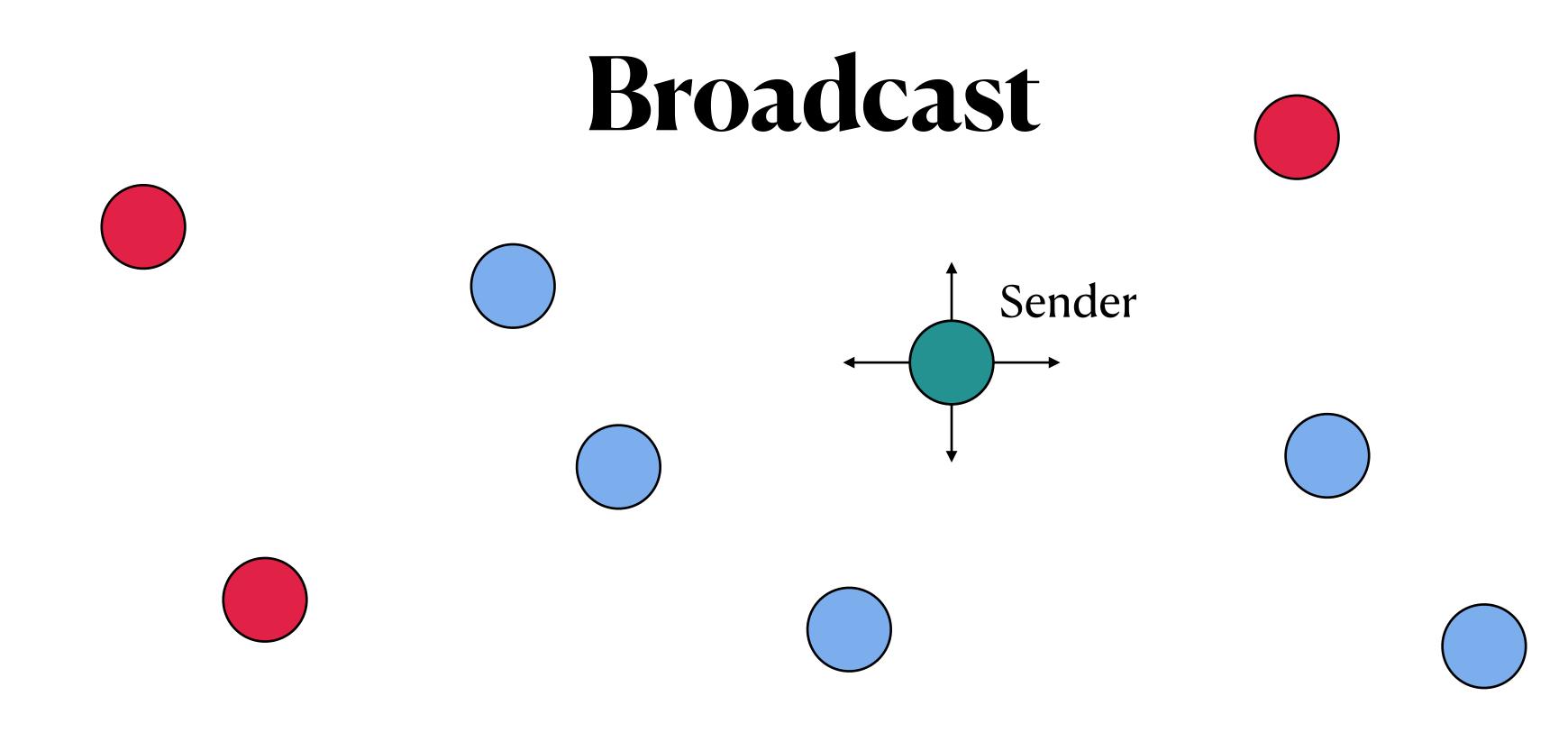




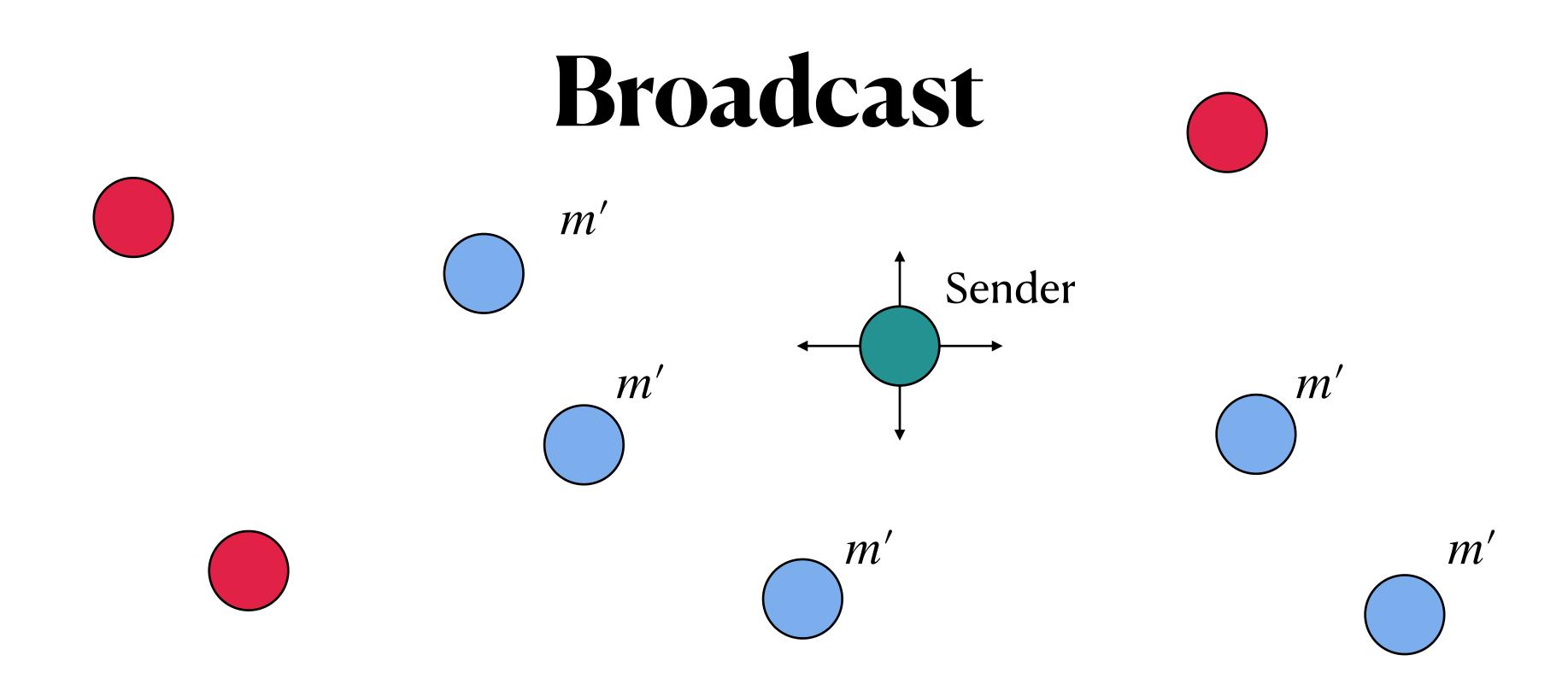




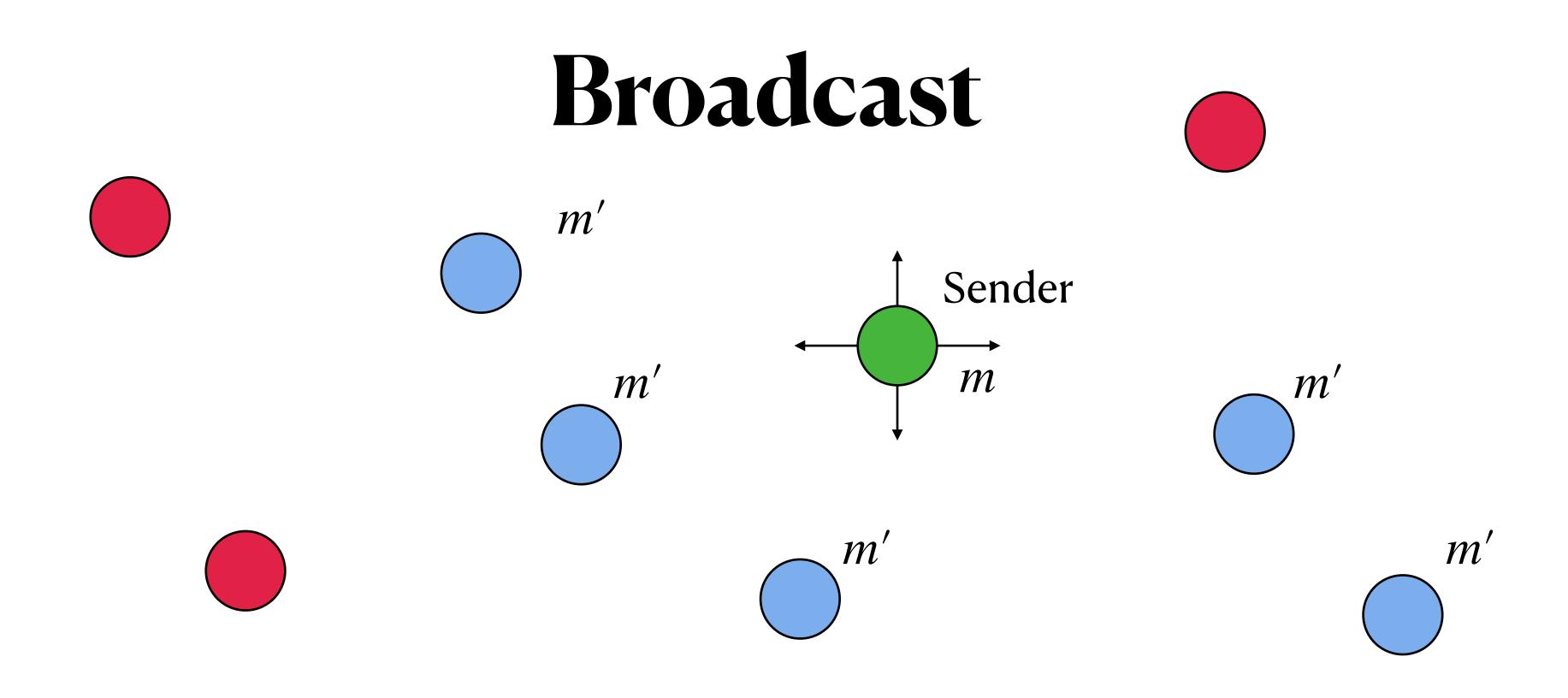




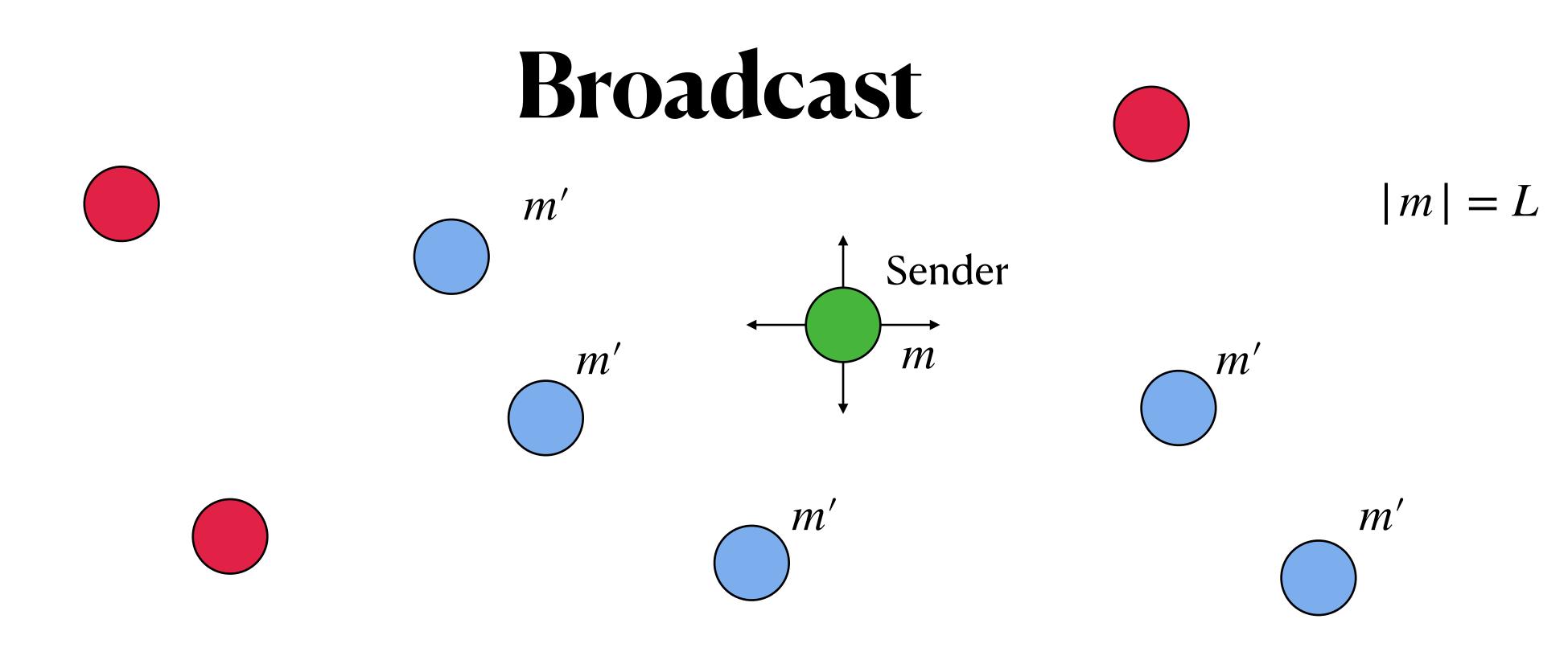
### t corrupted parties/sender may deceive the honest parties



- Agreement: Everyone outputs the same message *m*'
- t corrupted parties/sender may deceive the honest parties



- Agreement: Everyone outputs the same message *m*'
- Validity: For honest sender *m*'=*m*
- t corrupted parties/sender may deceive the honest parties



- Agreement: Everyone outputs the same message *m*'
- Validity: For honest sender *m*'=*m*
- t corrupted parties/sender may deceive the honest parties





- No computational hardness assumptions
- Zero probability of error

# • Realize broadcast on ideal pair-wise private and authenticated channels



- Realize broadcast on ideal pair-wise private and authenticated channels • No computational hardness assumptions
- Zero probability of error

**Lower Bounds** 



- Realize broadcast on ideal pair-wise private and authenticated channels No computational hardness assumptions
- Zero probability of error

- **Resilience:** t < n/3 is necessary [PSL80,LSP82]
- **Rounds:** Deterministic  $\Omega(n)$  [FL82]
- **Communication:**  $\Omega(n^2)$  messages [DR82] (also [ACD+23])

**Lower Bounds** 



- Realize broadcast on ideal pair-wise private and authenticated channels No computational hardness assumptions
- Zero probability of error

- **Resilience:** t < n/3 is necessary [PSL80,LSP82]
- **Rounds:** Deterministic  $\Omega(n)$  [FL82]
- **Communication:**  $\Omega(n^2)$  messages [DR82] (also [ACD+23])

**Lower Bounds** 

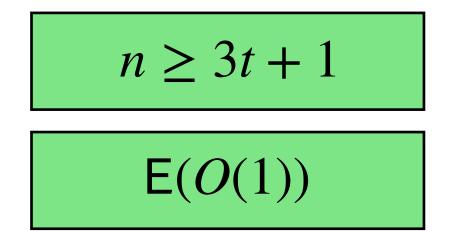
 $n \ge 3t + 1$ 



- Realize broadcast on ideal pair-wise private and authenticated channels No computational hardness assumptions
- Zero probability of error

- **Resilience:** t < n/3 is necessary [PSL80,LSP82]
- **Rounds:** Deterministic  $\Omega(n)$  [FL82]
- **Communication:**  $\Omega(n^2)$  messages [DR82] (also [ACD+23])

**Lower Bounds** 





- Realize broadcast on ideal pair-wise private and authenticated channels No computational hardness assumptions
- Zero probability of error

- **Resilience:** t < n/3 is necessary [PSL80,LSP82]
- **Rounds:** Deterministic  $\Omega(n)$  [FL82]
- Communication:  $\Omega(n^2)$  messages [DR82] (also [ACD+23])

**Lower Bounds** 

$$n \ge 3t + 1$$
$$E(O(1))$$
$$O(nL + n^2)$$

Succinct with High Latency

Succinct with High Latency

More Comm. but with expected Low Latency

### Succinct with High Latency



# More Comm. but with expected Low Latency

Communication

### **Succinct with High** Latency



 $O(nL + n^2 \log n)$ 

 $\Omega(n)$ 

#### More Comm. but with expected Low Latency

Communication

#### **Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(nL + n^2 \log n)$ 

 $\Omega(n)$ 

#### More Comm. but with **expected Low Latency**

Communication

#### **Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(nL + n^2 \log n)$ 

 $\Omega(n)$ 

#### More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$ 

[FM88]





#### **Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(nL + n^2 \log n)$ 

 $\Omega(n)$ 

More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$ 

 $O(n^2L) + \mathsf{E}(O(n^6\log n))$ 

**[FM88] [KK06]** 

Rounds

#### **Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(nL + n^2 \log n)$ 

 $\Omega(n)$ 

More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$ 

 $O(n^2L) + \mathsf{E}(O(n^6\log n))$ 

 $O(nL) + E(O(n^4 \log n))$ 

**[FM88] [KK06]** [AAPP22]

Rounds



#### **Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(nL + n^2 \log n)$ 

 $\Omega(n)$ 

More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$ 

 $O(n^2L) + \mathsf{E}(O(n^6\log n))$ 

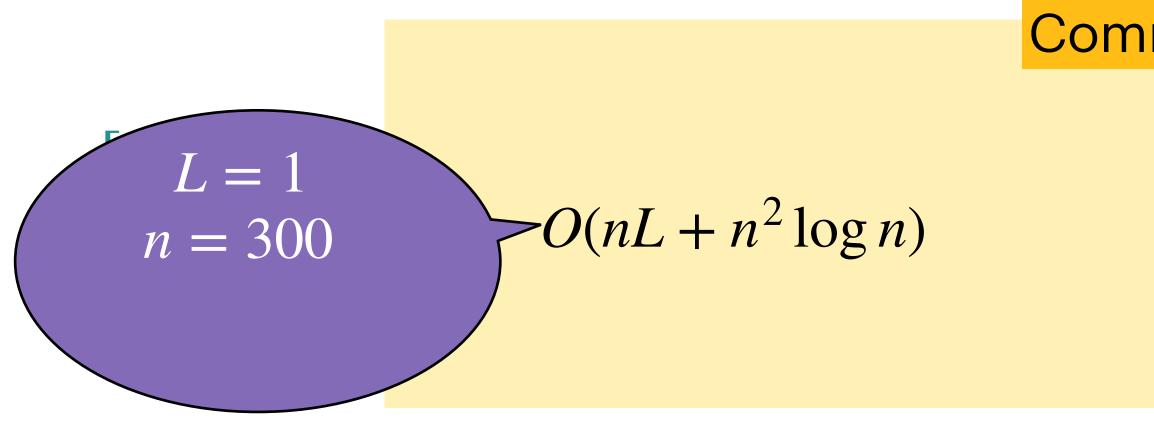
 $O(nL) + E(O(n^4 \log n))$ 

**[FM88] [KK06]** [AAPP22]

Rounds



#### **Succinct with High** Latency



 $\Omega(n)$ 

More Comm. but with expected Low Latency

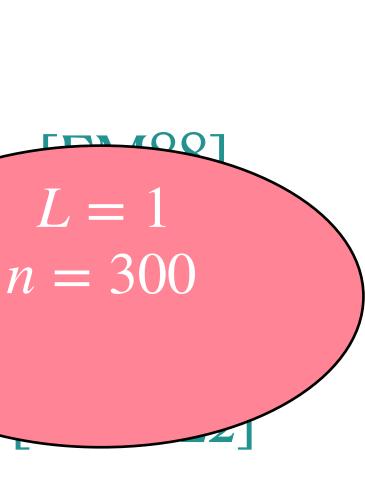
Communication

 $O(n^2L) + E(poly(n))$ 

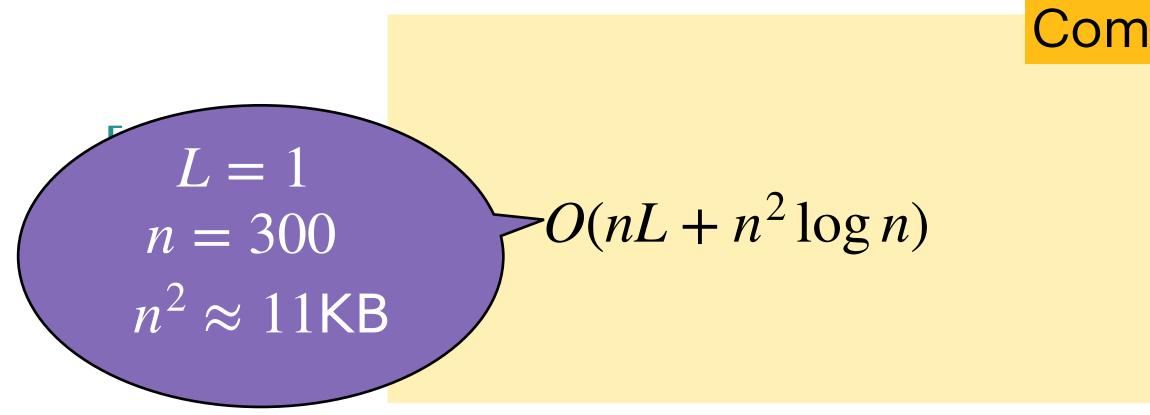
 $O(n^{2}L) + E(O(n^{6}\log n))$  $O(nL) + E(O(n^{4}\log n))$ 

Rounds

#### E(O(1))



#### **Succinct with High** Latency



 $\Omega(n)$ 

More Comm. but with expected Low Latency

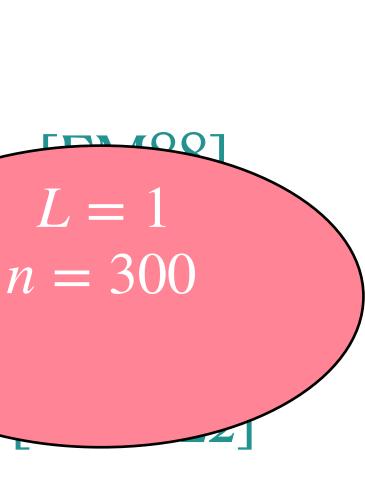
Communication

 $O(n^2L) + E(poly(n))$  $O(n^2L) + \mathsf{E}(O(n^6\log n))$ 

 $O(nL) + E(O(n^4 \log n))$ 

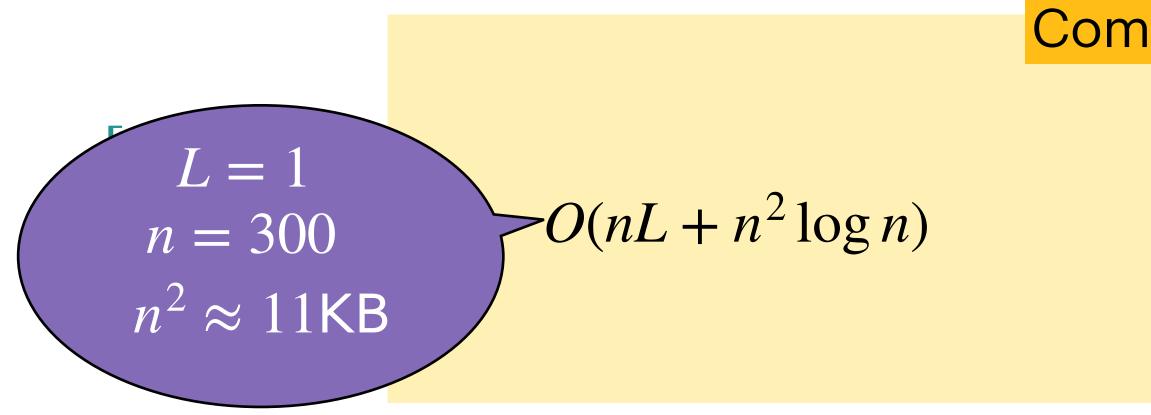
Rounds

#### E(O(1))



L = 1

#### **Succinct with High** Latency



 $\Omega(n)$ 

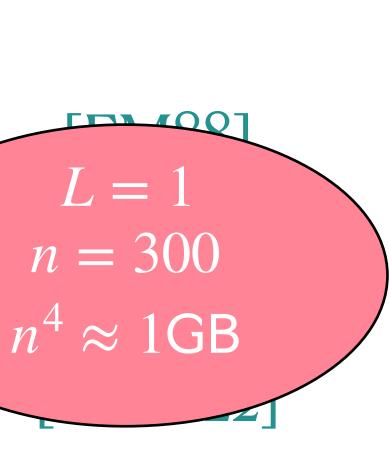
More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$  $O(n^{2}L) + E(O(n^{6}\log n))$  $O(nL) + E(O(n^{4}\log n))$ 

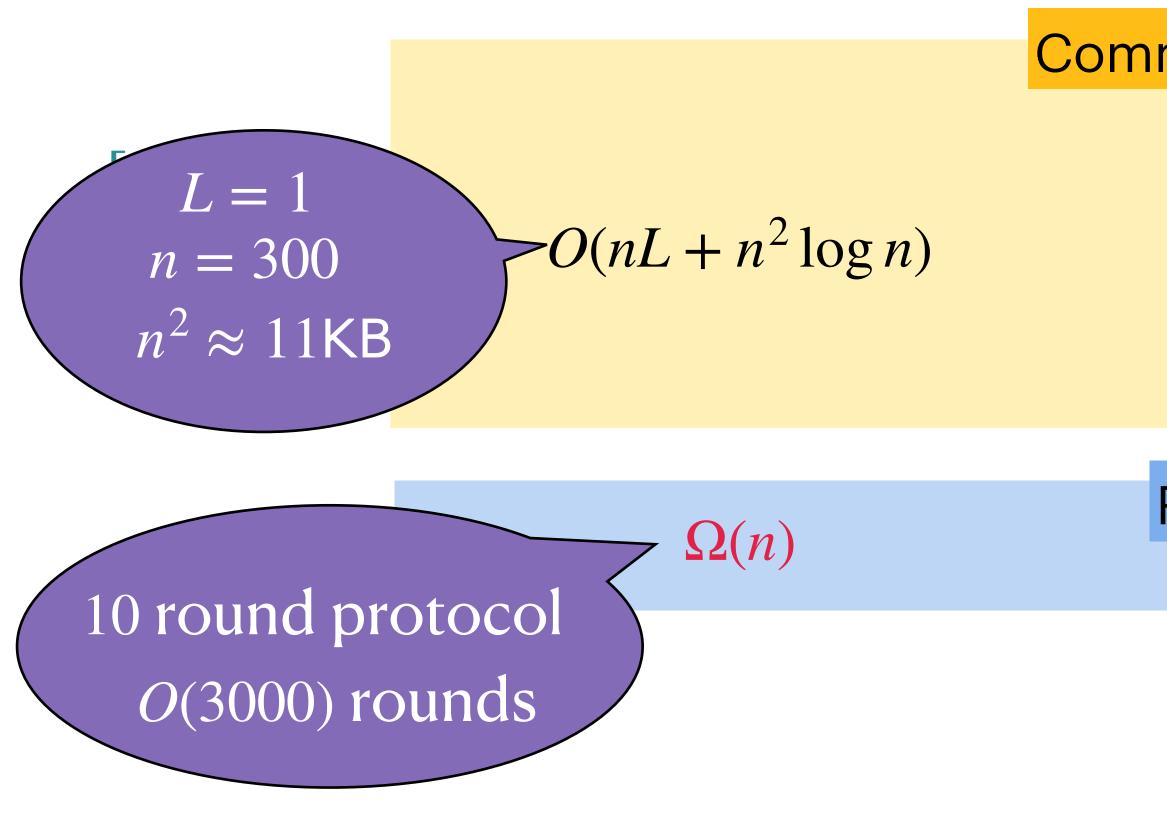
Rounds

#### E(O(1))



L = 1

#### **Succinct with High** Latency



More Comm. but with **expected Low Latency** 

Communication

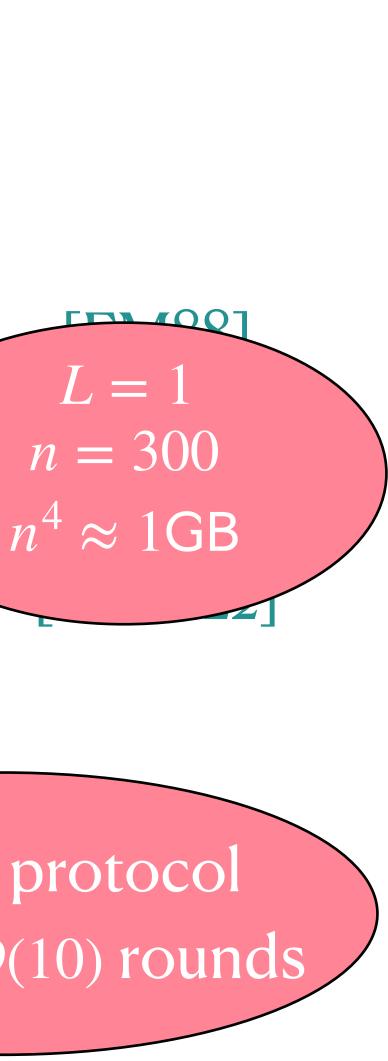
 $O(n^2L) + E(poly(n))$  $O(n^2L) + \mathsf{E}(O(n^6\log n))$ 

 $O(nL) + E(O(n^4 \log n))$ 

Rounds

E(O(1))

10 round protocol Expected O(10) rounds



L = 1

# Succinct Broadcast with Expected Low Latency?

### **Our Results #1: Broadcast**

#### **Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(nL + n^2 \log n)$ 



#### More Comm. but with expected Low Latency

Communication

 $O(nL) + E(O(n^4 \log n))$ 

 $O(nL + n^2)$ 

[AAPP22] Best we can hope for

Rounds



### **Our Results #1: Broadcast**

#### **Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(nL + n^2 \log n)$ 



#### More Comm. but with expected Low Latency

Communication

 $O(nL) + E(O(n^4 \log n))$ 

 $O(nL + n^2)$ 

 $O(nL) + \mathsf{E}(O(n^3 \log^2 n))$ 

[AAPP22] Best we can hope for This work

Rounds



- Secure computation protocols assume broadcast
- [BGW88] Verifiable Secret Sharing:
  - Complain about the dealer
  - Vote on the dealer

- Secure computation protocols assume broadcast
- [BGW88] Verifiable Secret Sharing:
  - Complain about the dealer
  - Vote on the dealer

**Communication Pattern** 

- Secure computation protocols assume broadcast
- [BGW88] Verifiable Secret Sharing:
  - Complain about the dealer
  - Vote on the dealer

**Communication Pattern** 

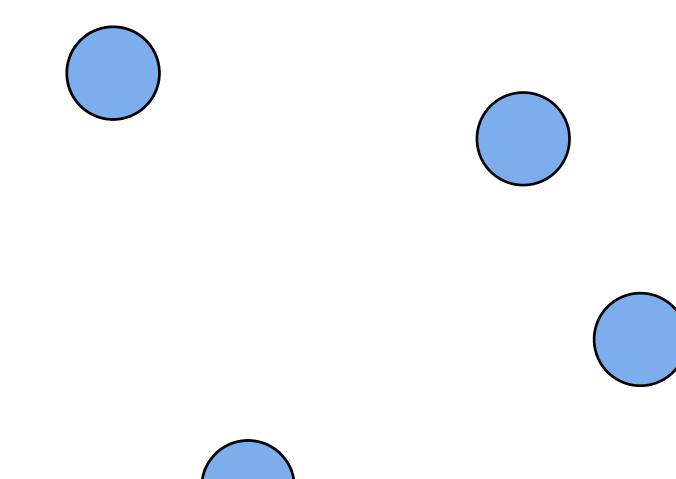
 $1 \times BC(L)$ 

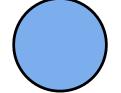
- Secure computation protocols assume broadcast
- [BGW88] Verifiable Secret Sharing:
  - Complain about the dealer
  - Vote on the dealer

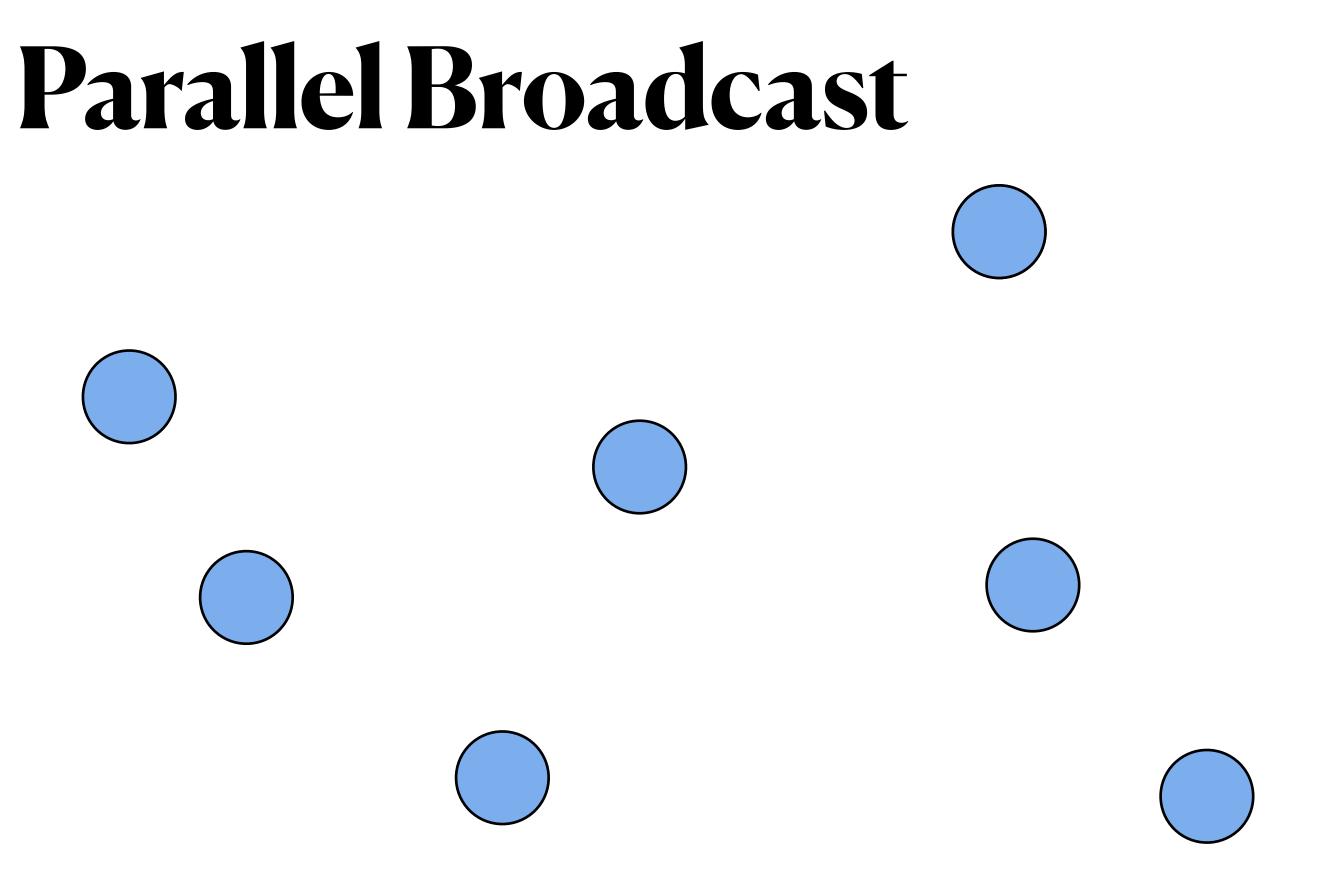
**Communication Pattern** 

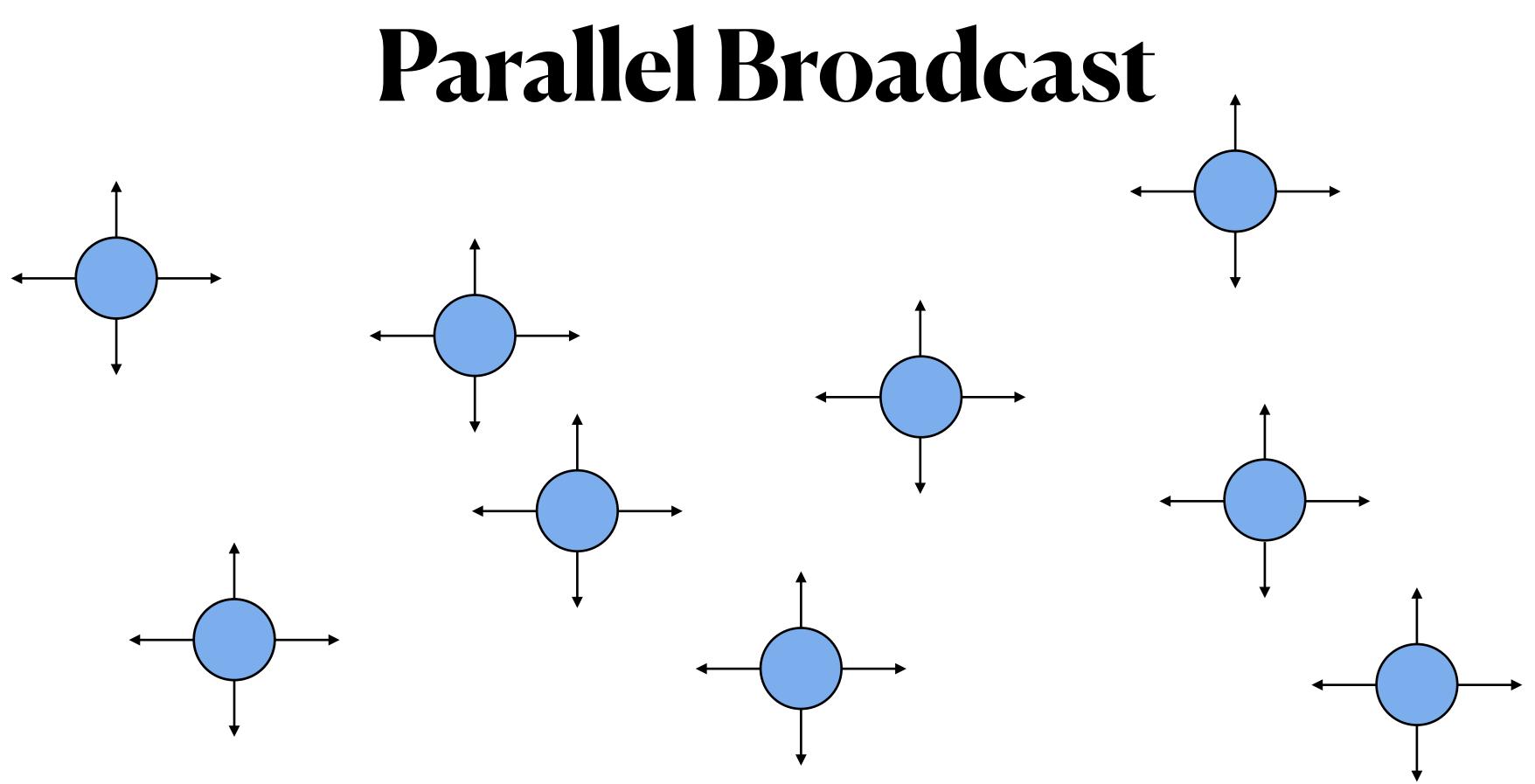
 $1 \times \mathsf{BC}(L) \qquad \qquad n \times \mathsf{BC}(L)$ 

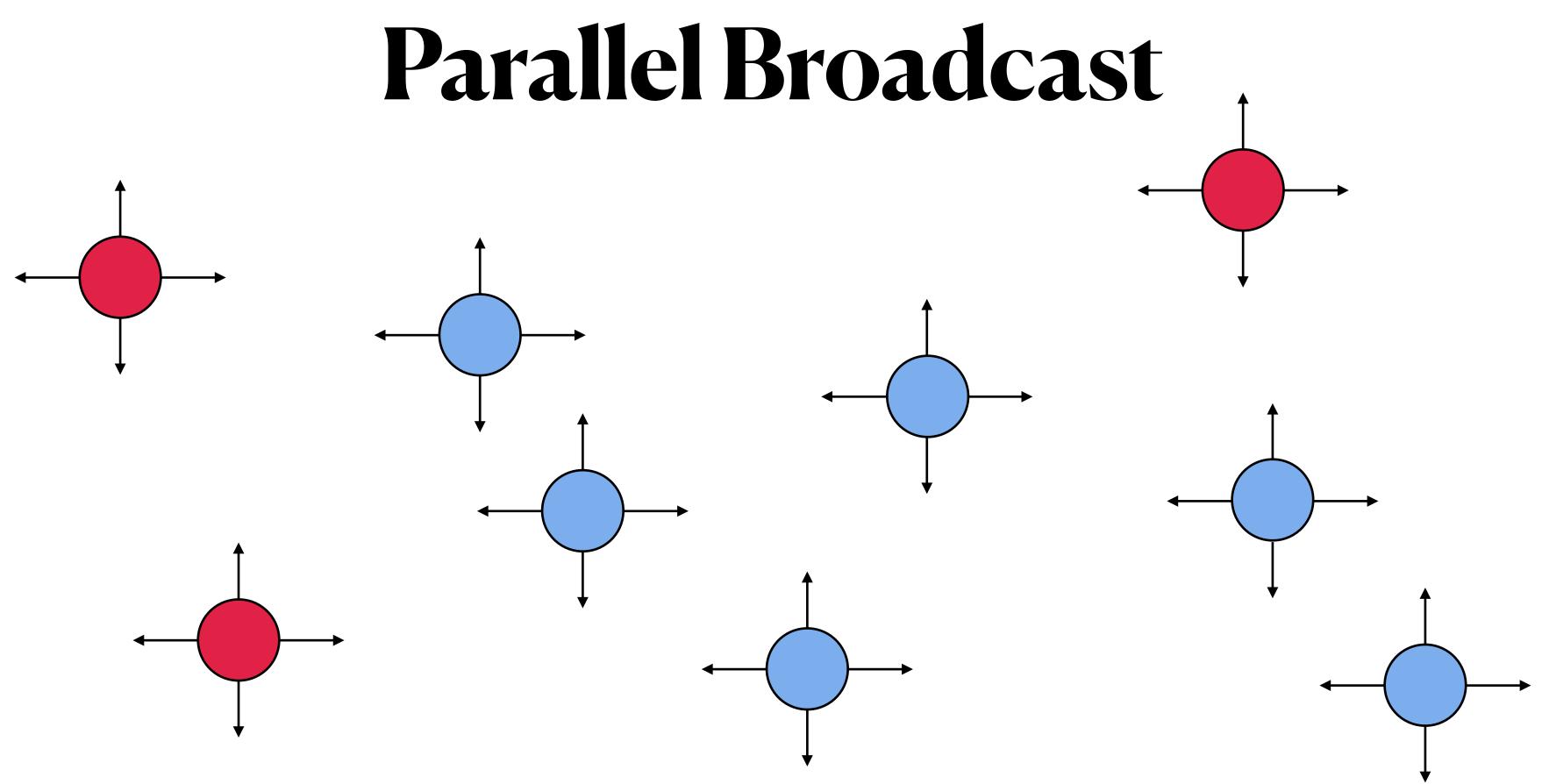


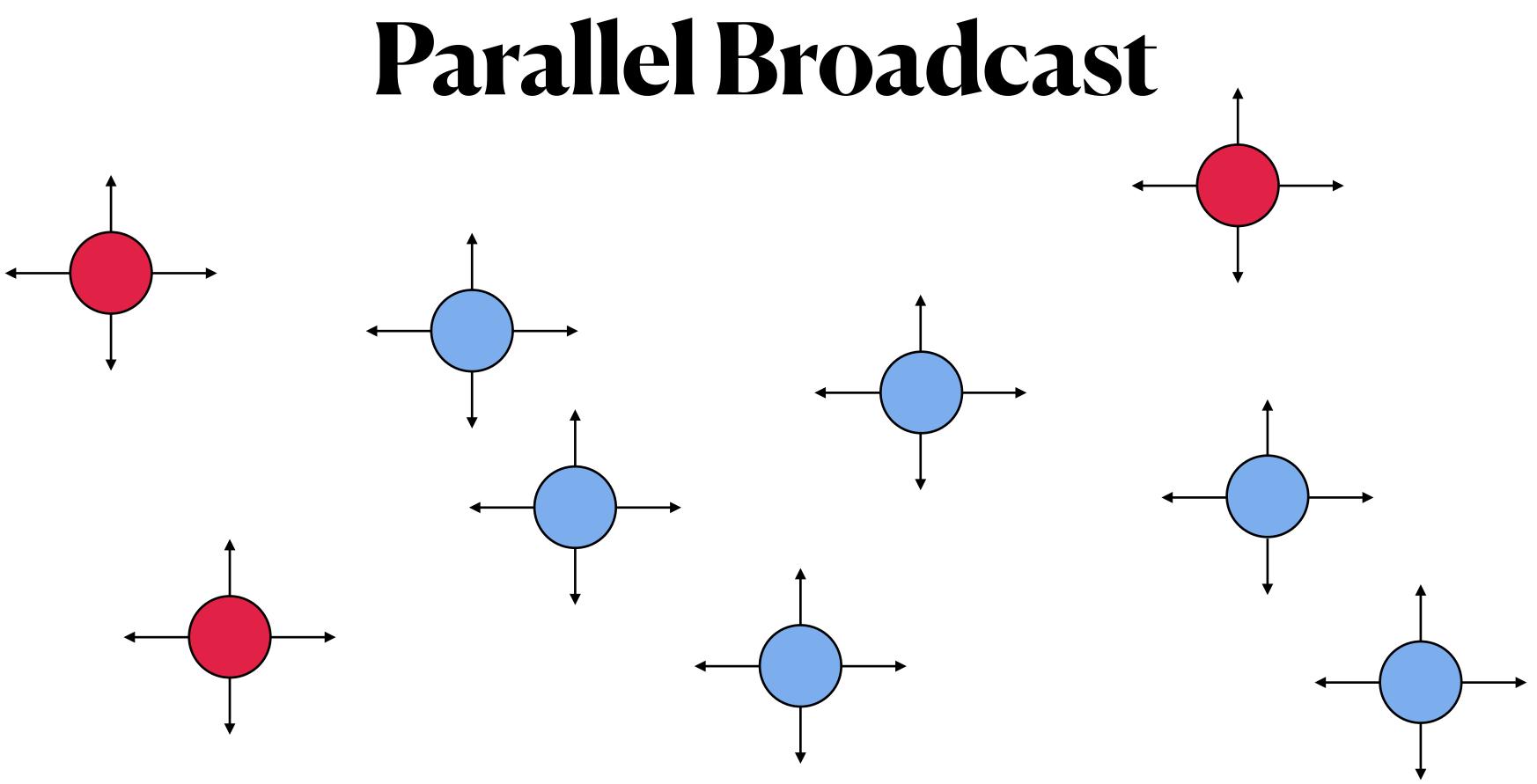












• Agreement: On the messages of all senders • Validity: Output each honest sender's message

Succinct with High Latency

Succinct with High Latency

More Comm. but with expected Low Latency

### Succinct with High Latency

Communication

More Comm. but with expected Low Latency

Succinct with High Latency

Communication

 $O(n^2L + n^3\log n)$ 

 $\Omega(n)$ 

More Comm. but with expected Low Latency

Rounds

Succinct with High Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3\log n)$ 

 $\Omega(n)$ 

More Comm. but with expected Low Latency

Communication

Rounds

Succinct with High Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3\log n)$ 

 $\Omega(n)$ 

More Comm. but with expected Low Latency

Communication

 $O(n^2L) + \mathsf{E}(\mathsf{poly}(n))$ 

Rounds

**Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3\log n)$ 

 $\Omega(n)$ 

[FGo<sub>3</sub>]

### More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$ 

**[FM88]** 

Rounds



Succinct with High Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3\log n)$ 

 $\Omega(n)$ 

[FGo3]

More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$ 

 $O(n^2L) + \mathsf{E}(O(n^6\log n))$ 

[FM88] [KK06]

Rounds

**E**(*O*(1))

# 8]

**Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3 \log n)$ 

 $\Omega(n)$ 

More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$ 

 $O(n^2L) + \mathsf{E}(O(n^6\log n))$ 

 $O(n^2L) + \mathsf{E}(O(n^4\log n))$ 

**[FM88] [KK06]** [AAPP22]

Rounds



**Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3 \log n)$ 

 $\Omega(n)$ 

More Comm. but with expected Low Latency

Communication

 $O(n^2L) + E(poly(n))$ 

 $O(n^2L) + \mathsf{E}(O(n^6\log n))$ 

 $O(n^2L) + \mathsf{E}(O(n^4\log n))$ 

**[FM88] [KK06]** [AAPP22]

Rounds



# Succinct (Parallel) Broadcast with Expected Low Latency?

**Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3\log n)$ 



[FGo<sub>3</sub>]

### More Comm. but with expected Low Latency

Communication

 $O(n^2L) + \mathsf{E}(O(n^4\log n))$ 

 $O(n^2L)$ 

[AAPP22] Best we can hope for





**Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3\log n)$ 



[FGo<sub>3</sub>]

### More Comm. but with expected Low Latency

Communication

 $O(n^2L) + \mathsf{E}(O(n^4\log n))$  $O(n^2L)$  $O(n^2L) + \mathsf{E}(O(n^3\log^2 n))$ 

[AAPP22] Best we can hope for This work





**Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3\log n)$ 



[FGo<sub>3</sub>]

### More Comm. but with expected Low Latency

Communication

 $O(n^2L) + \mathsf{E}(O(n^4\log n))$  $O(n^2L)$  $O(n^2L) + \mathsf{E}(O(n^3\log^2 n))$ 

[AAPP22] Best we can hope for This work





**Succinct with High** Latency

[CW89], [BGP92] + [Che21]

 $O(n^2L + n^3\log n)$ 



[FGo<sub>3</sub>]

### More Comm. but with expected Low Latency

Communication

 $O(n^2L) + \mathsf{E}(O(n^4\log n))$  $O(n^2L)$  $O(n^2L) + \mathsf{E}(O(n^3\log^2 n))$ 

[AAPP22] Best we can hope for This work

### Rounds

**E**(*O*(1))

We are optimal for  $L \ge n \log^2 n$ 





# Broadcast





### [KKo6] Framework



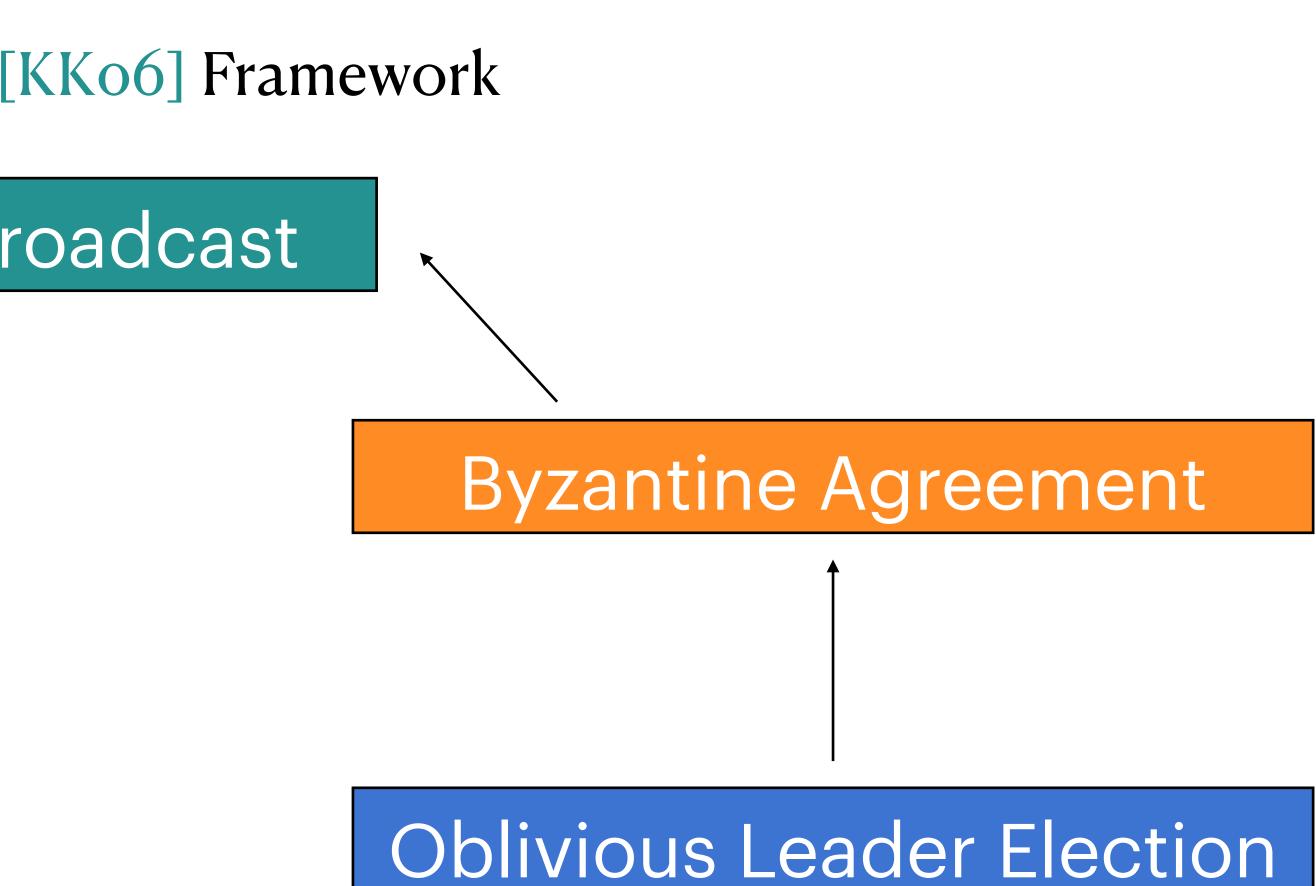


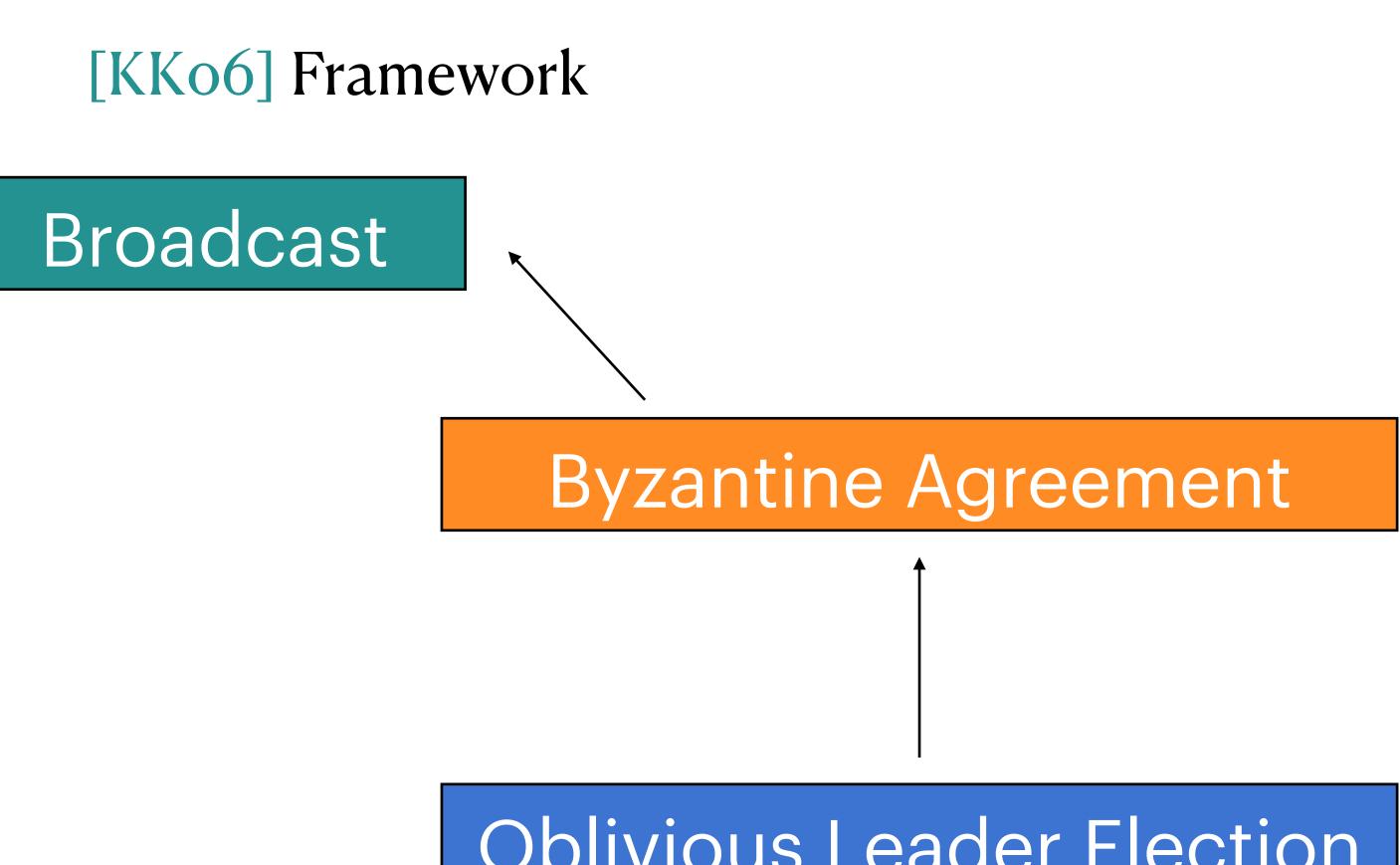
### [KKo6] Framework

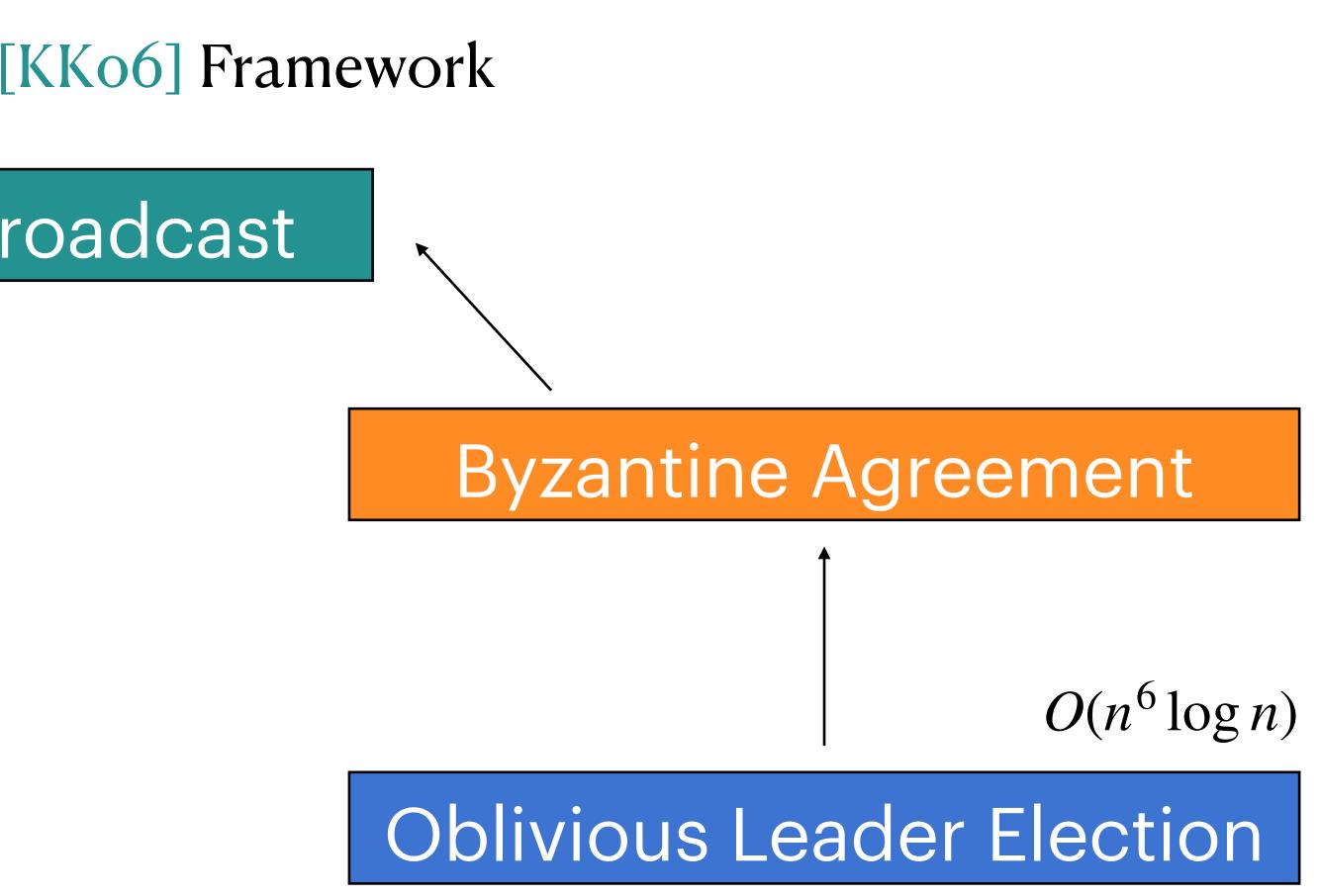


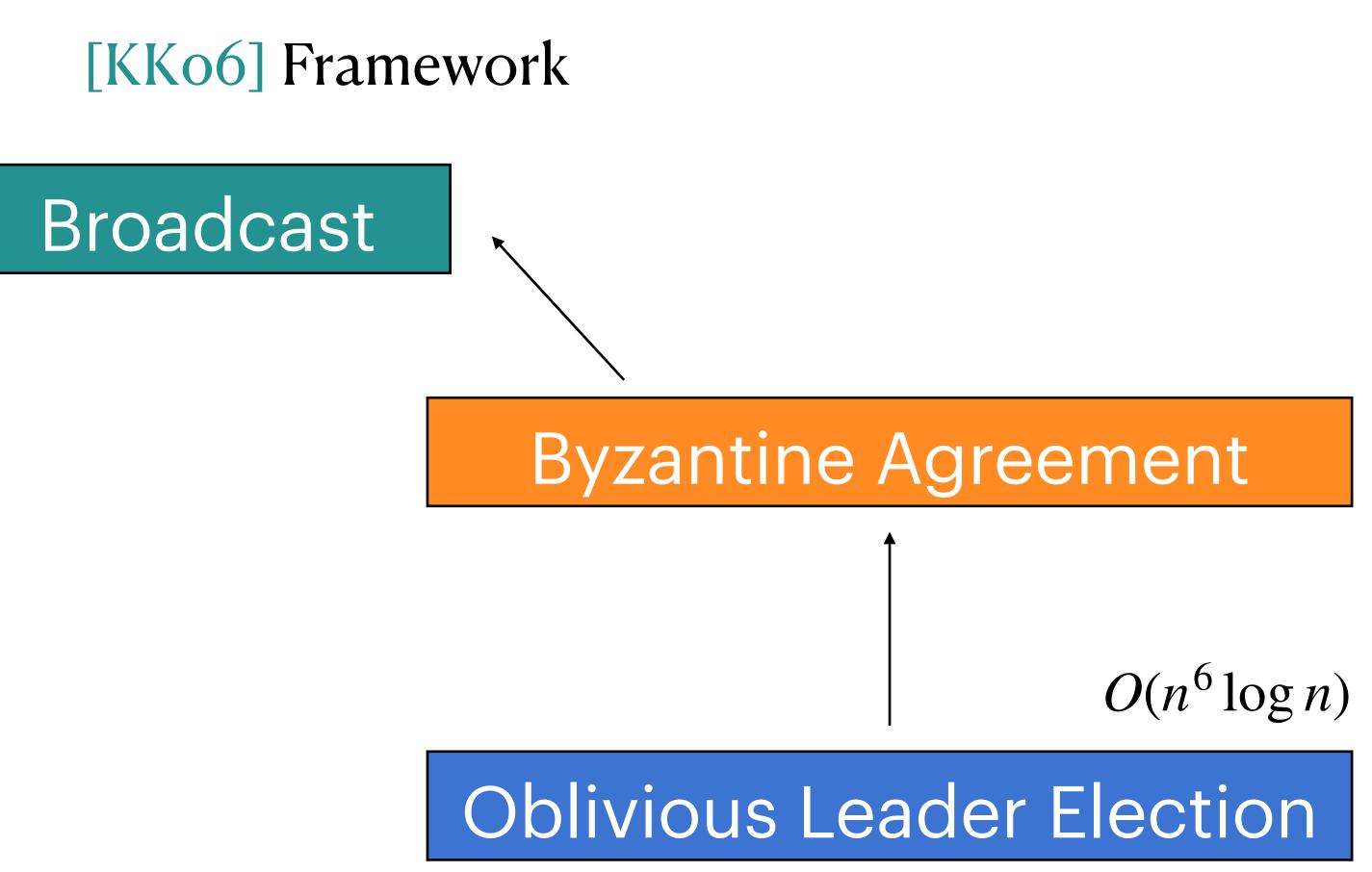


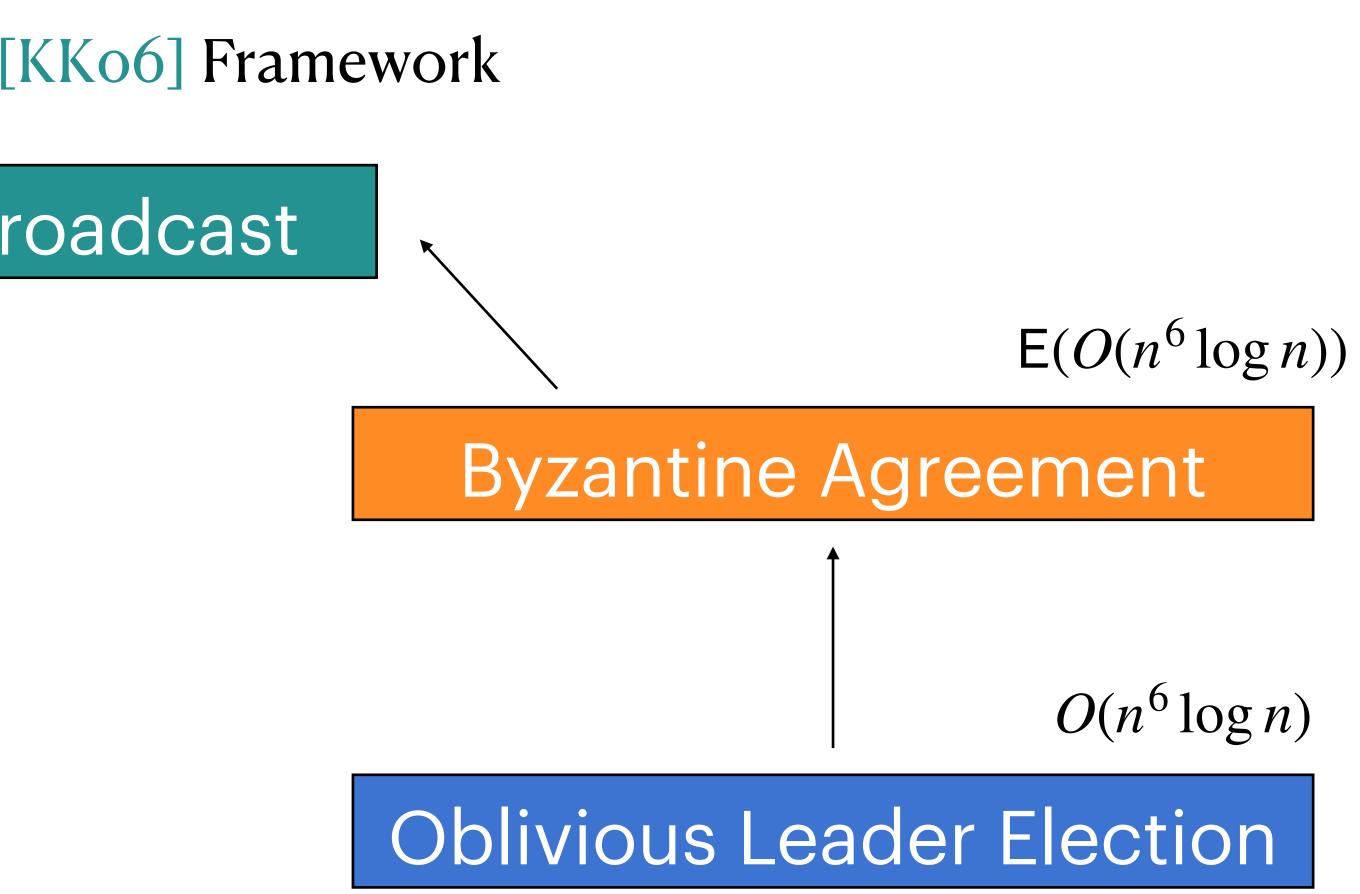
### Byzantine Agreement

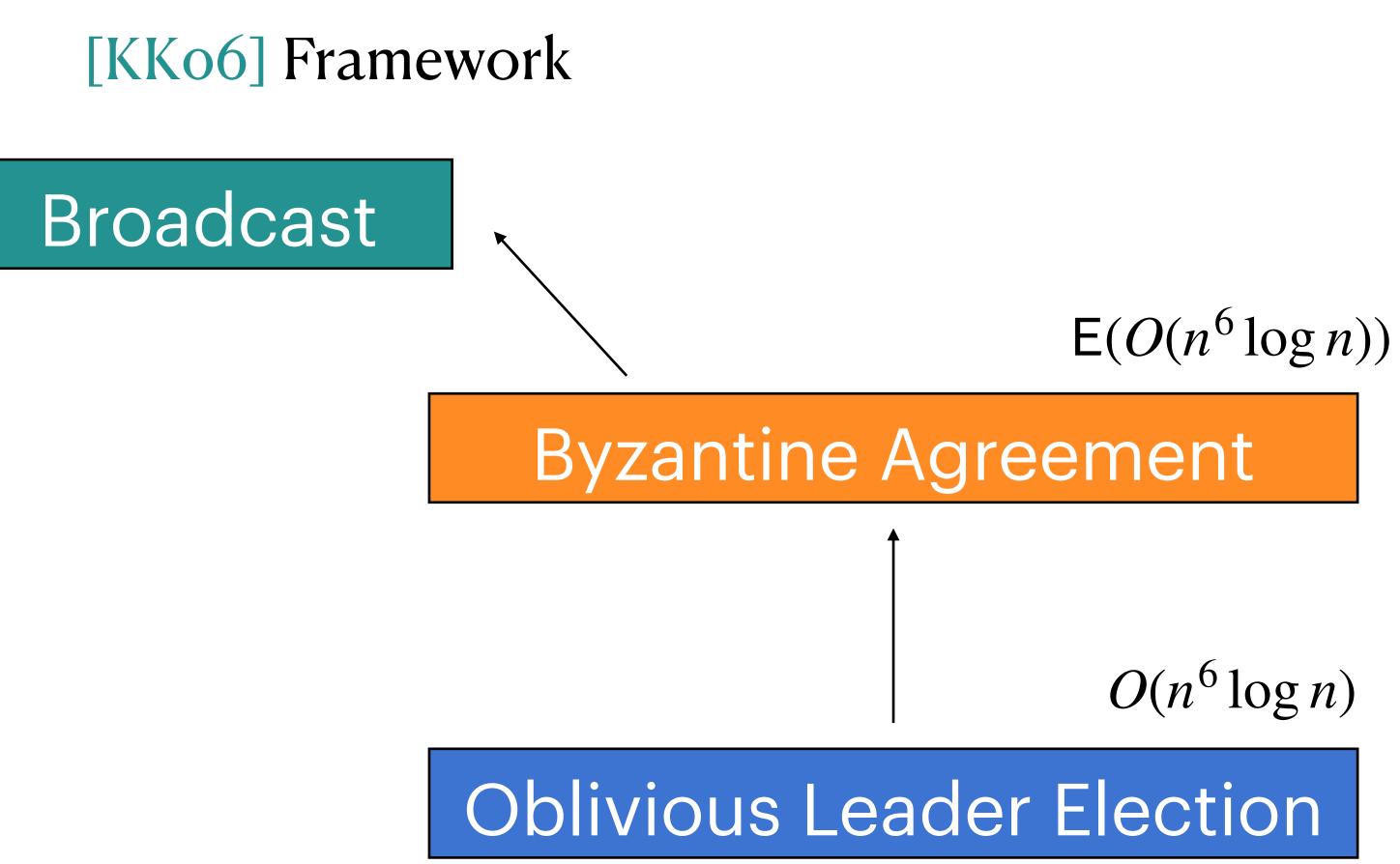


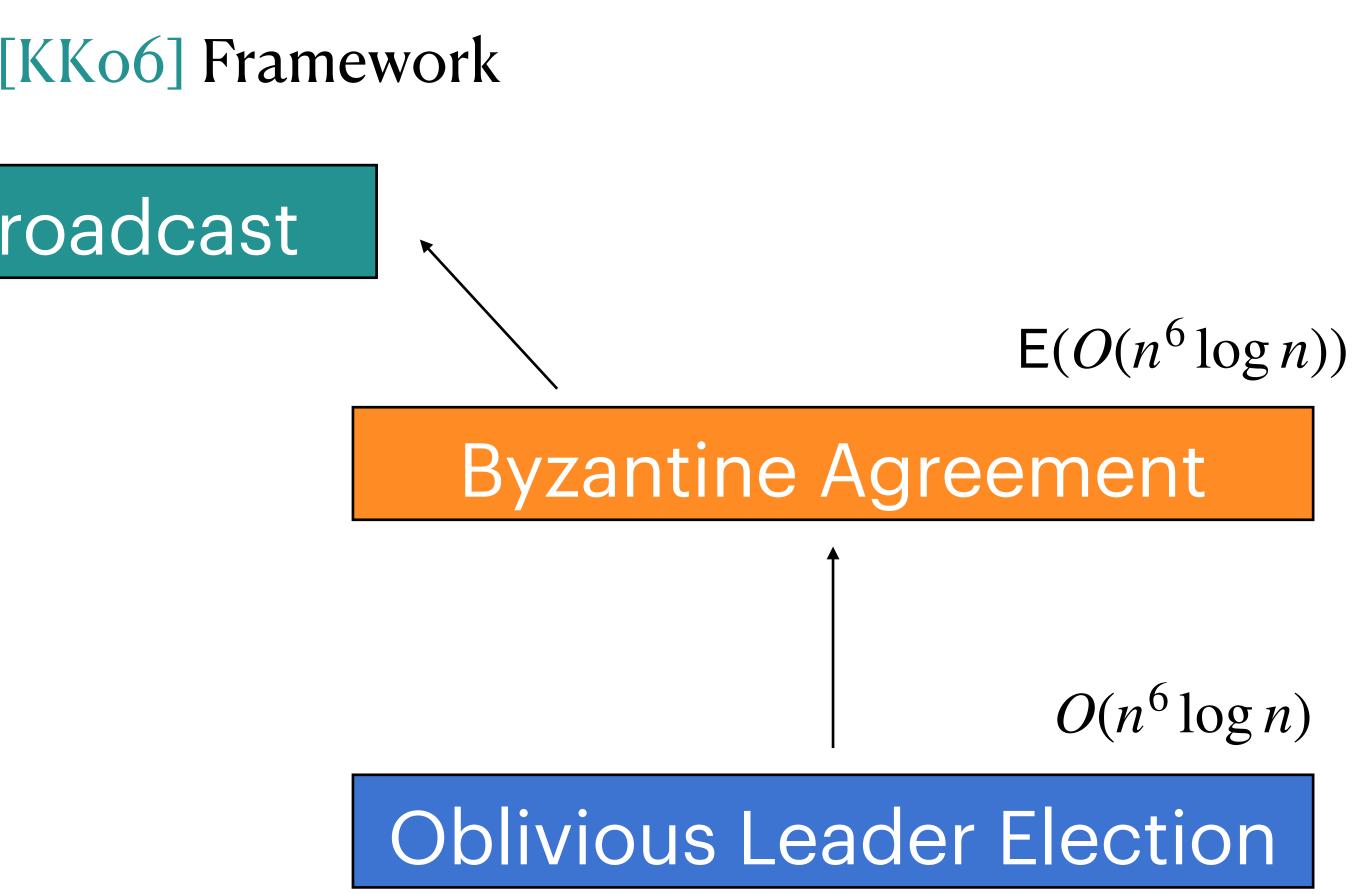


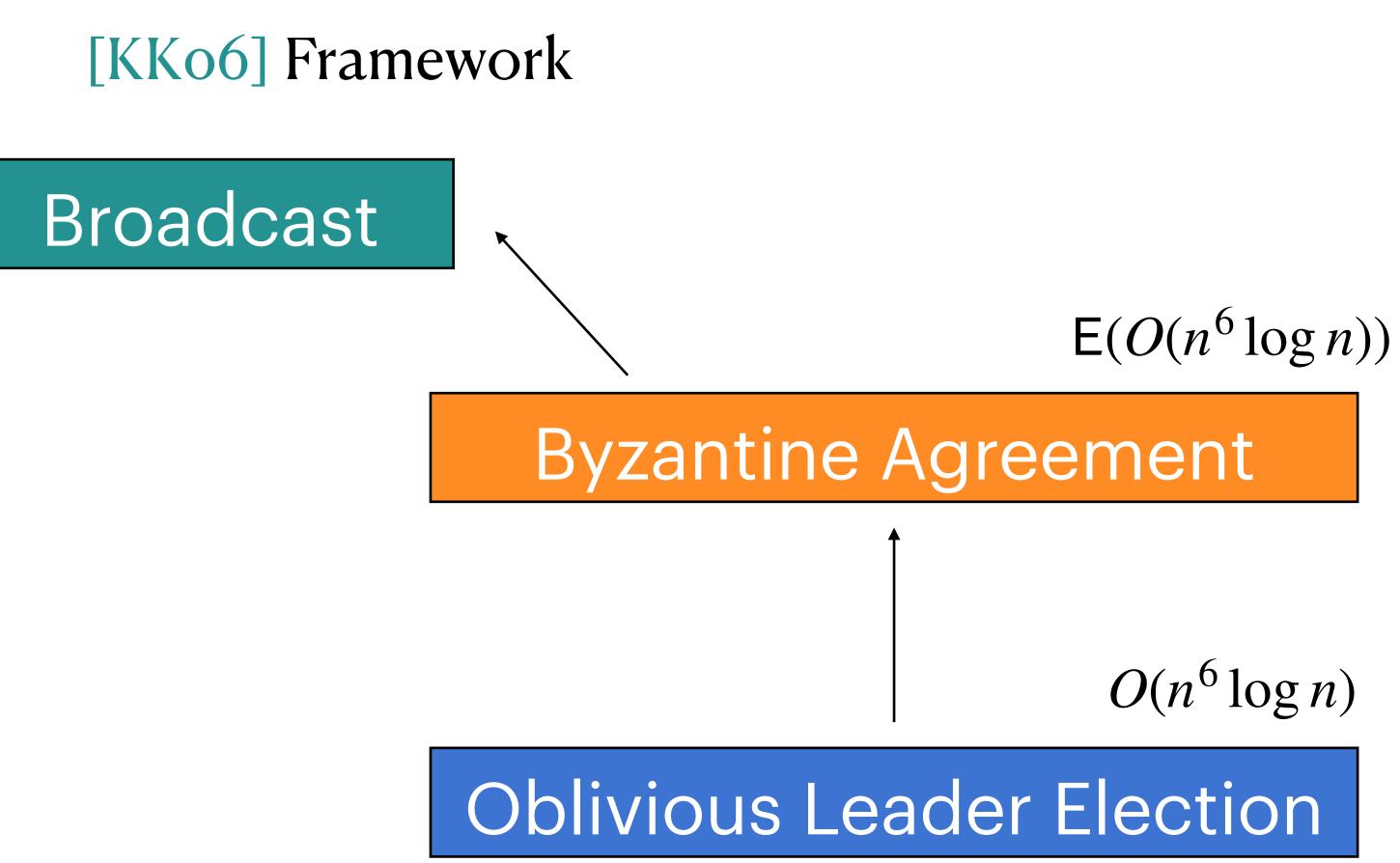




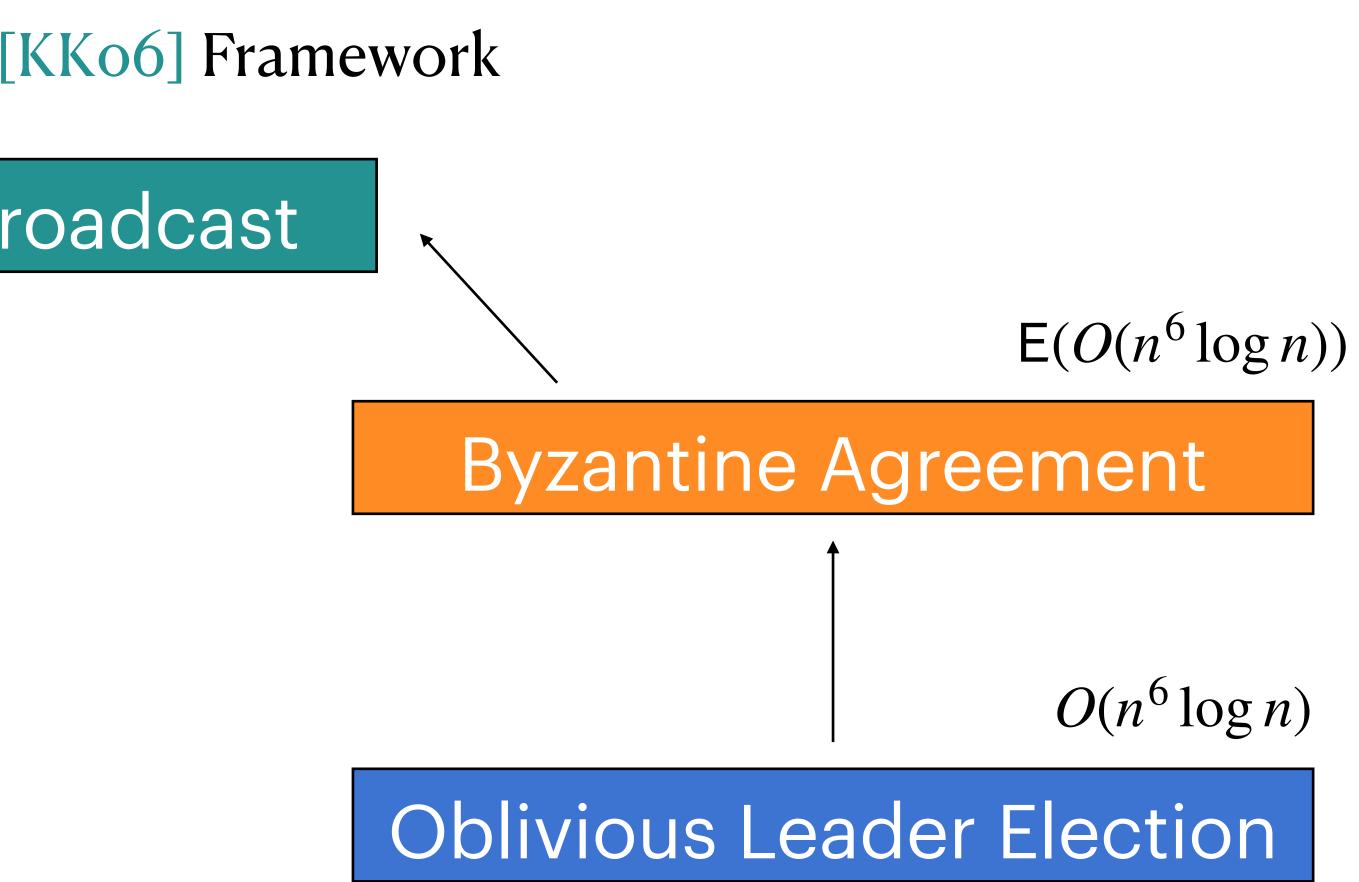


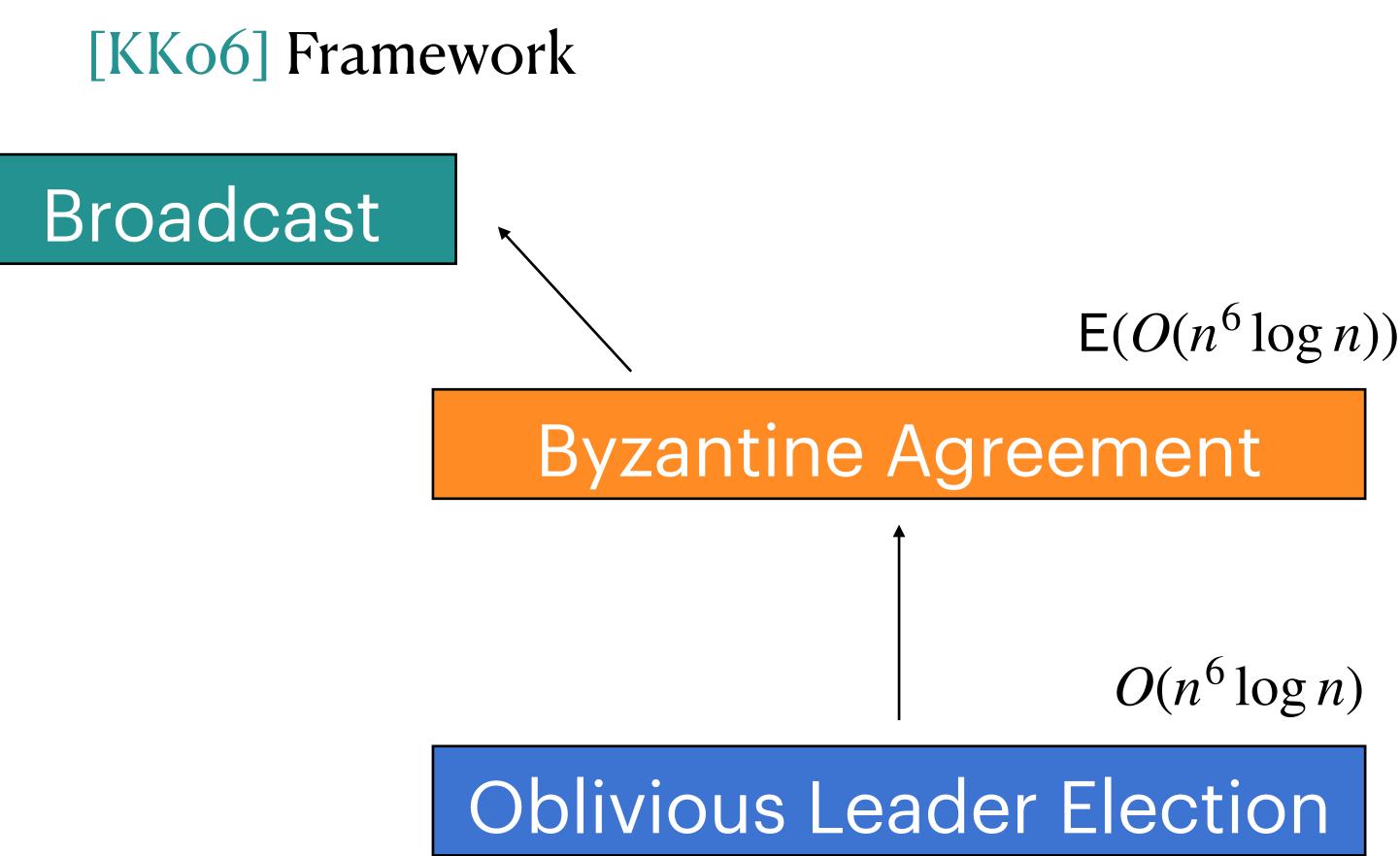




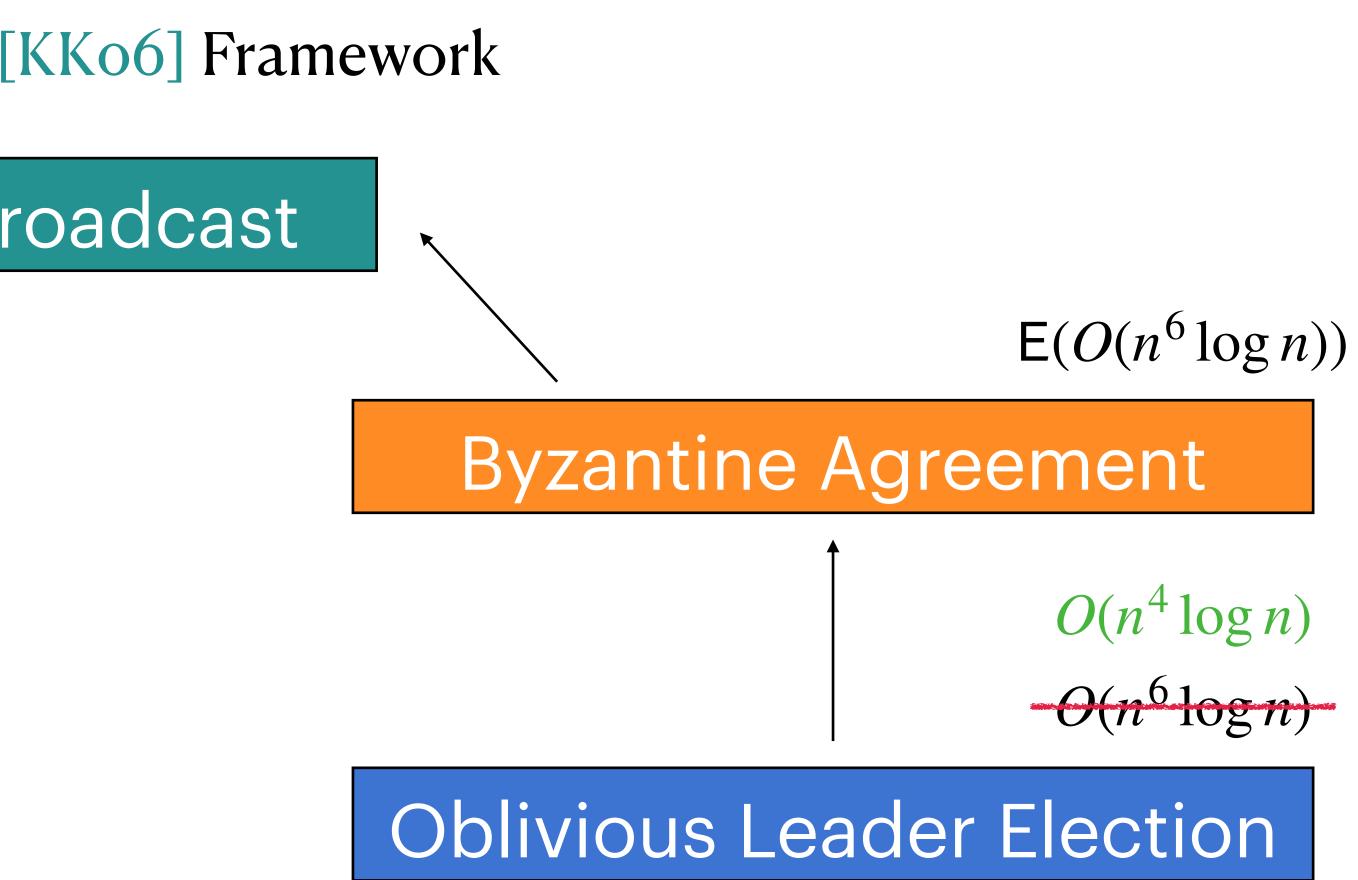


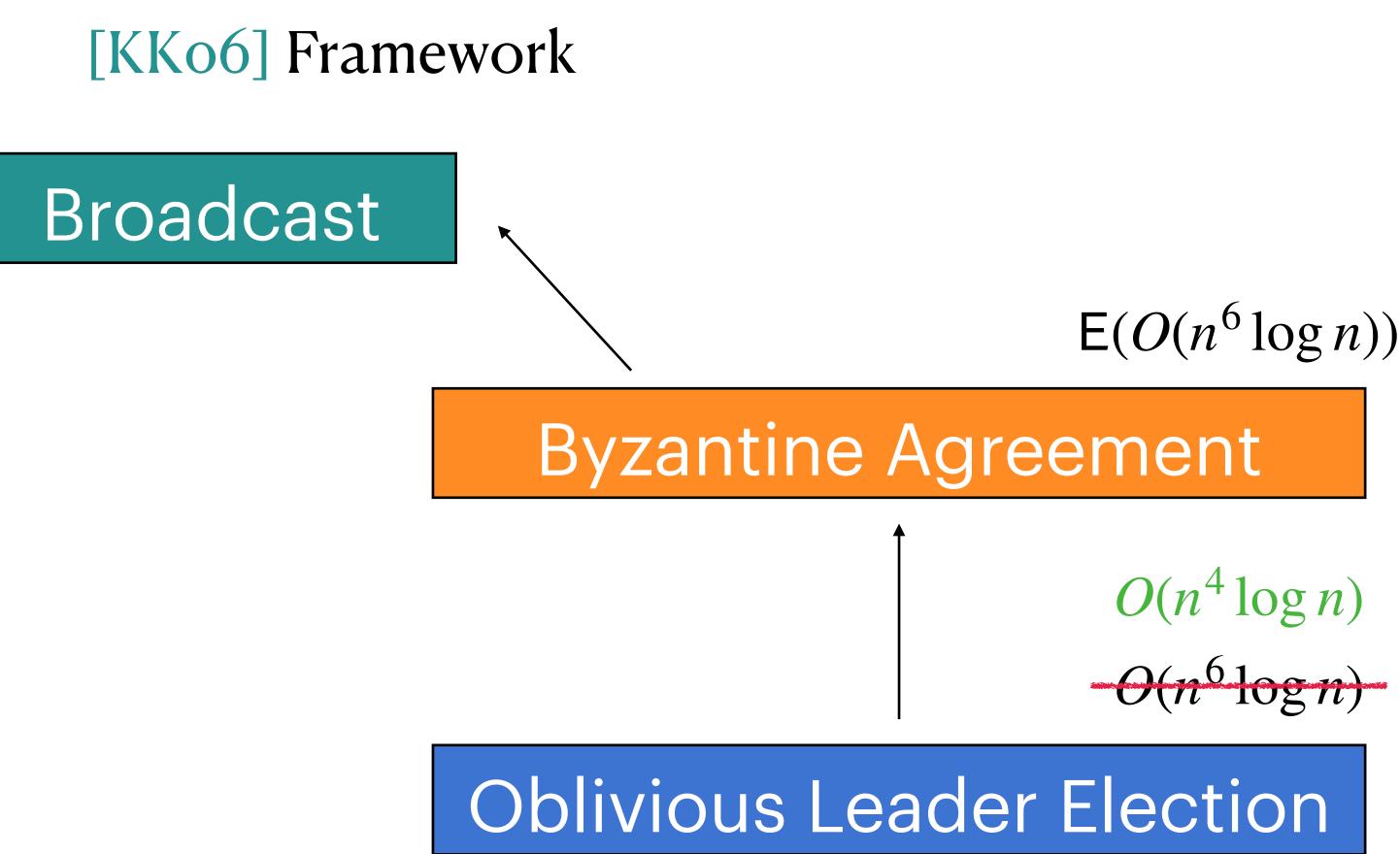




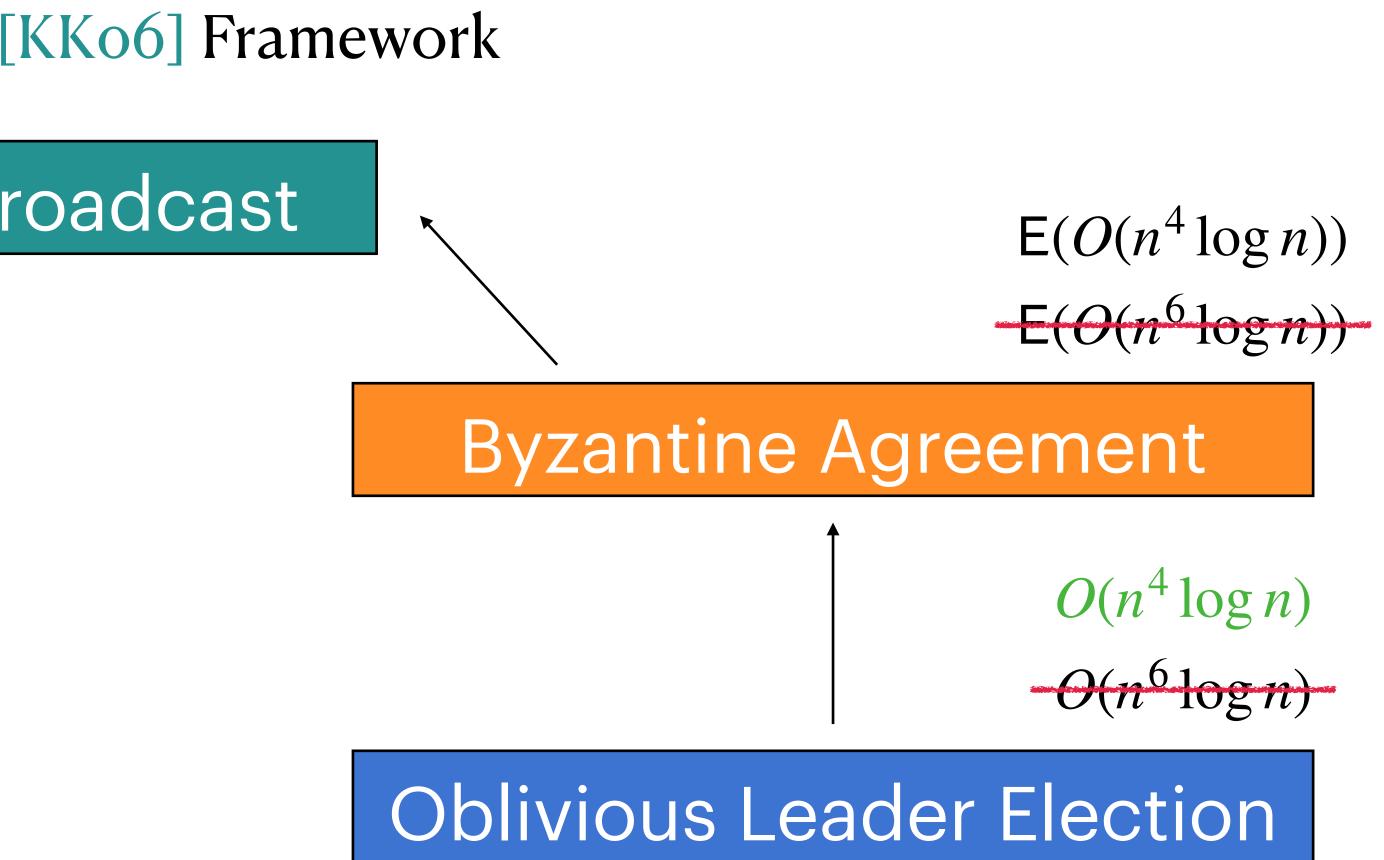


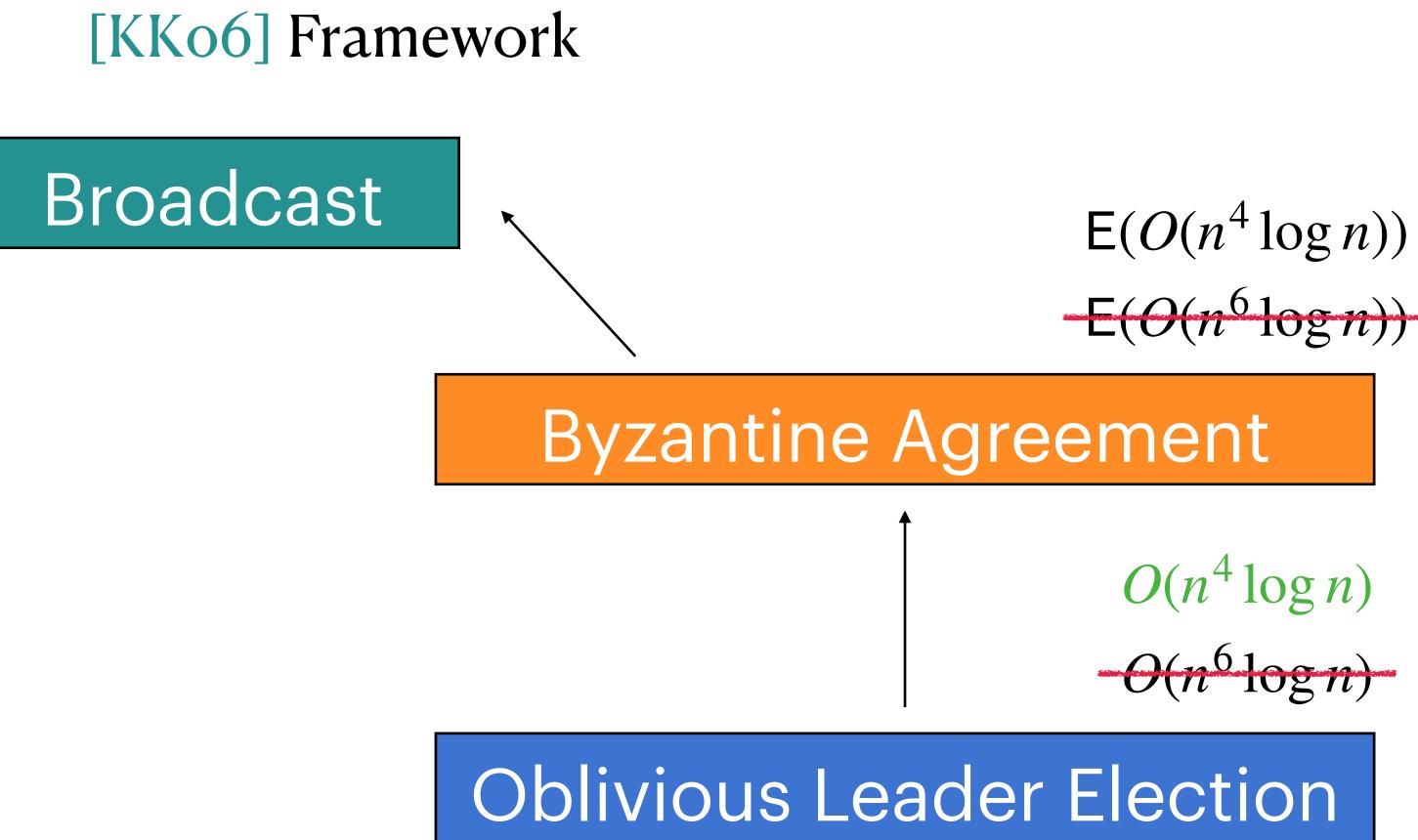




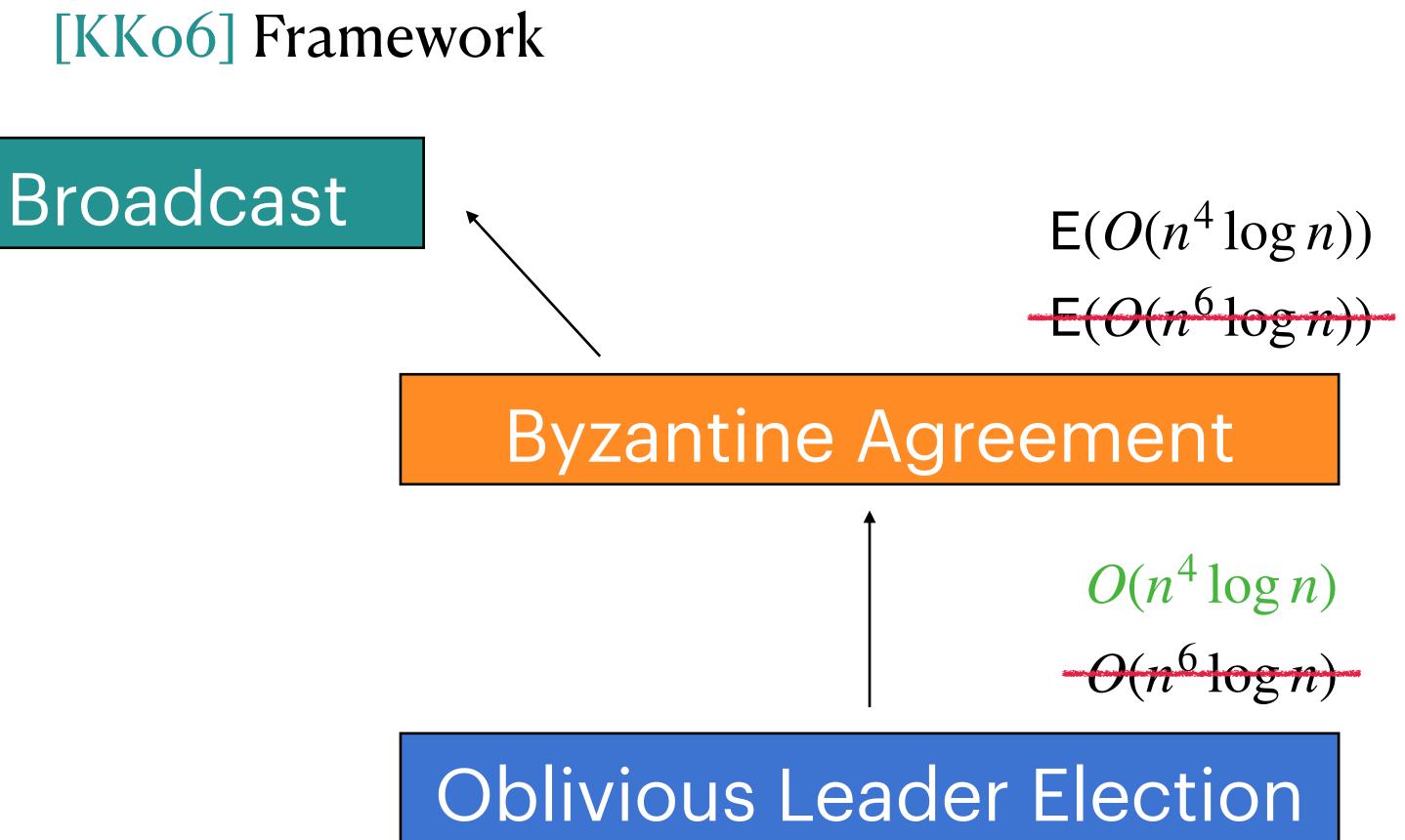


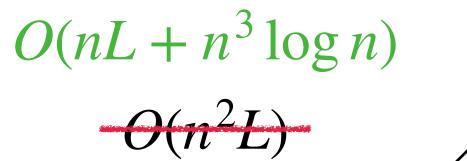


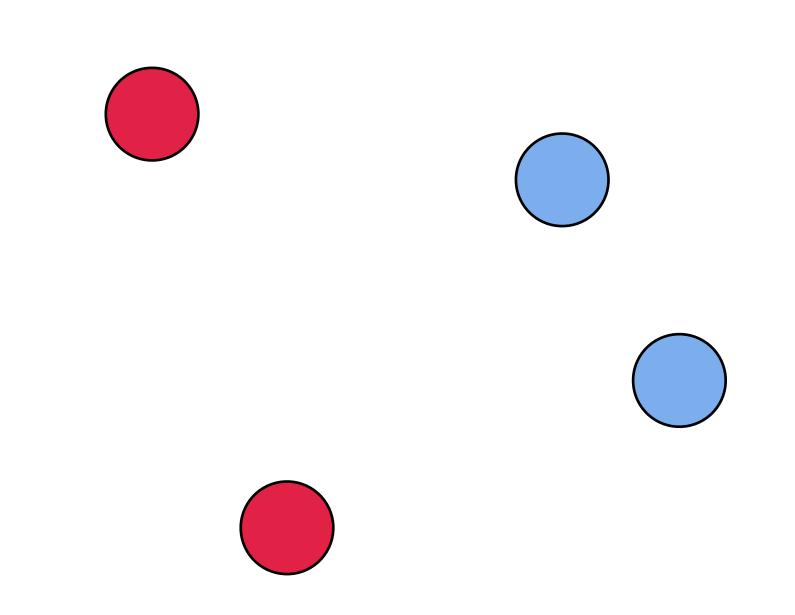




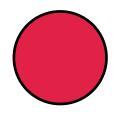


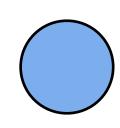


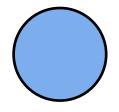


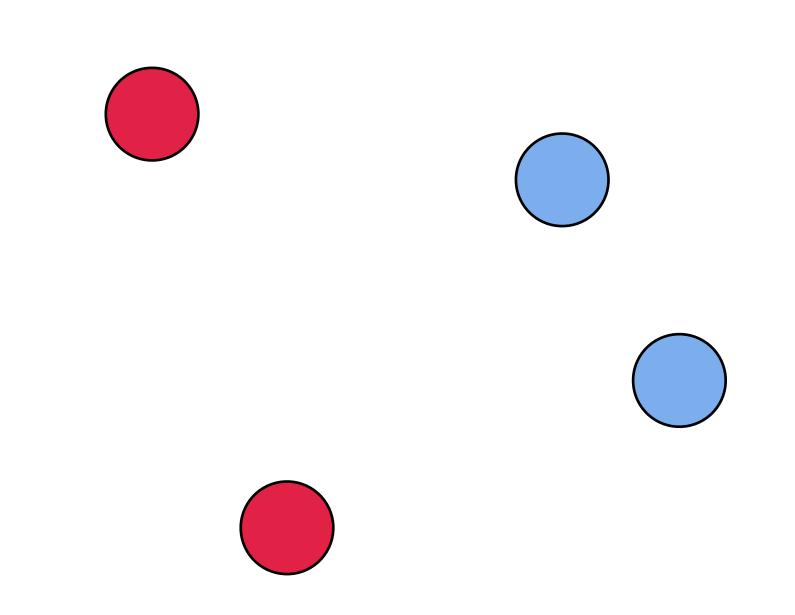




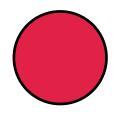


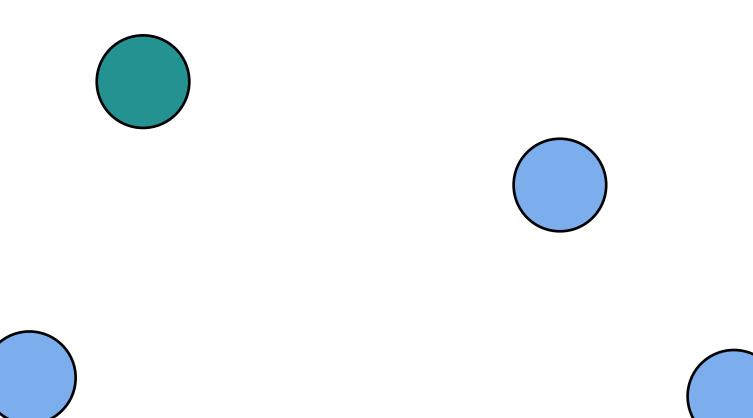


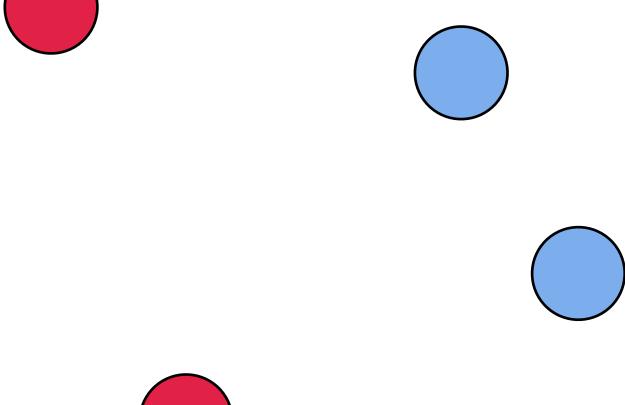


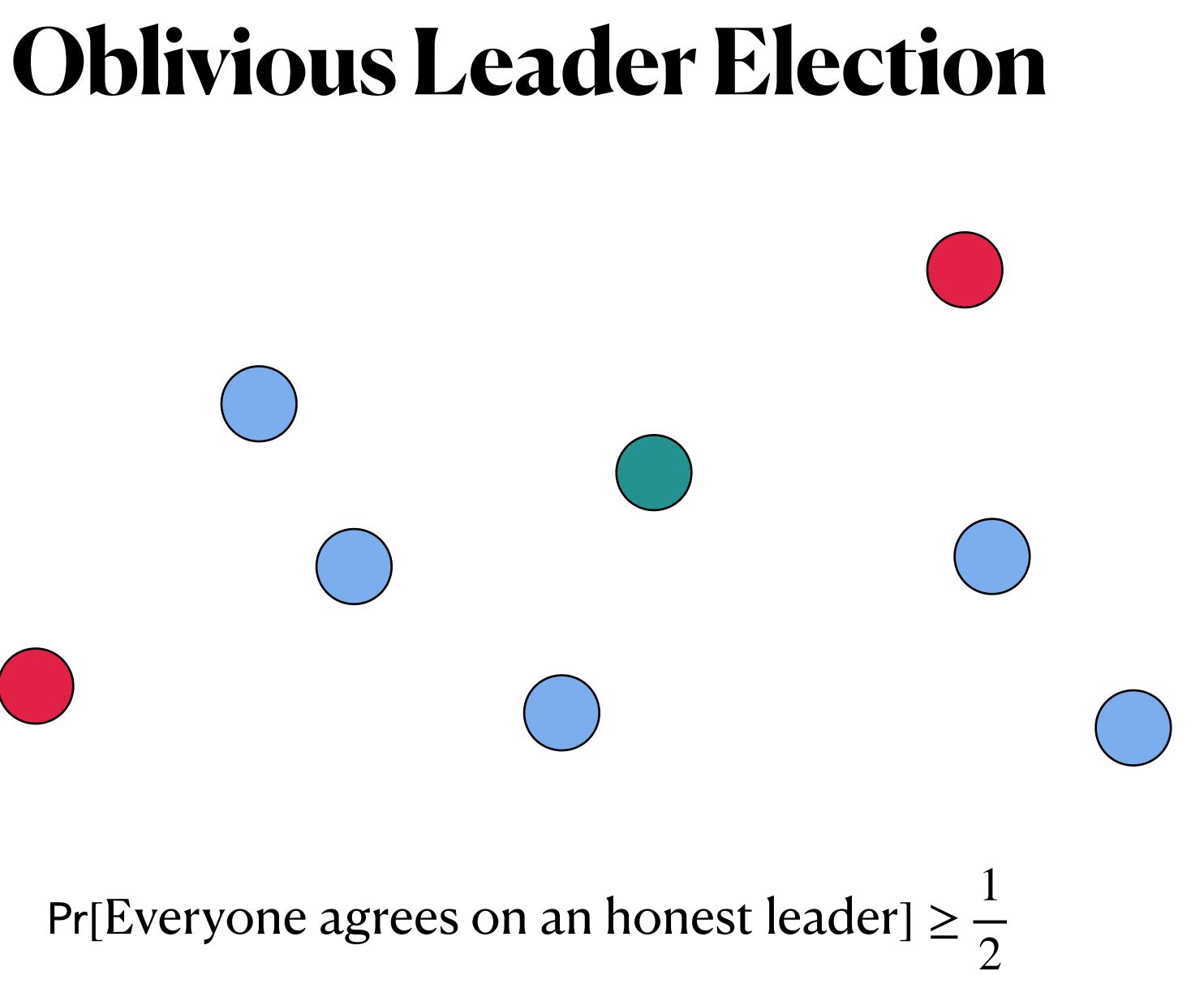


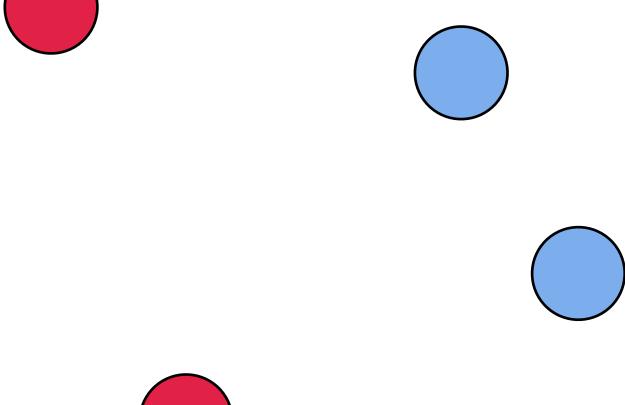


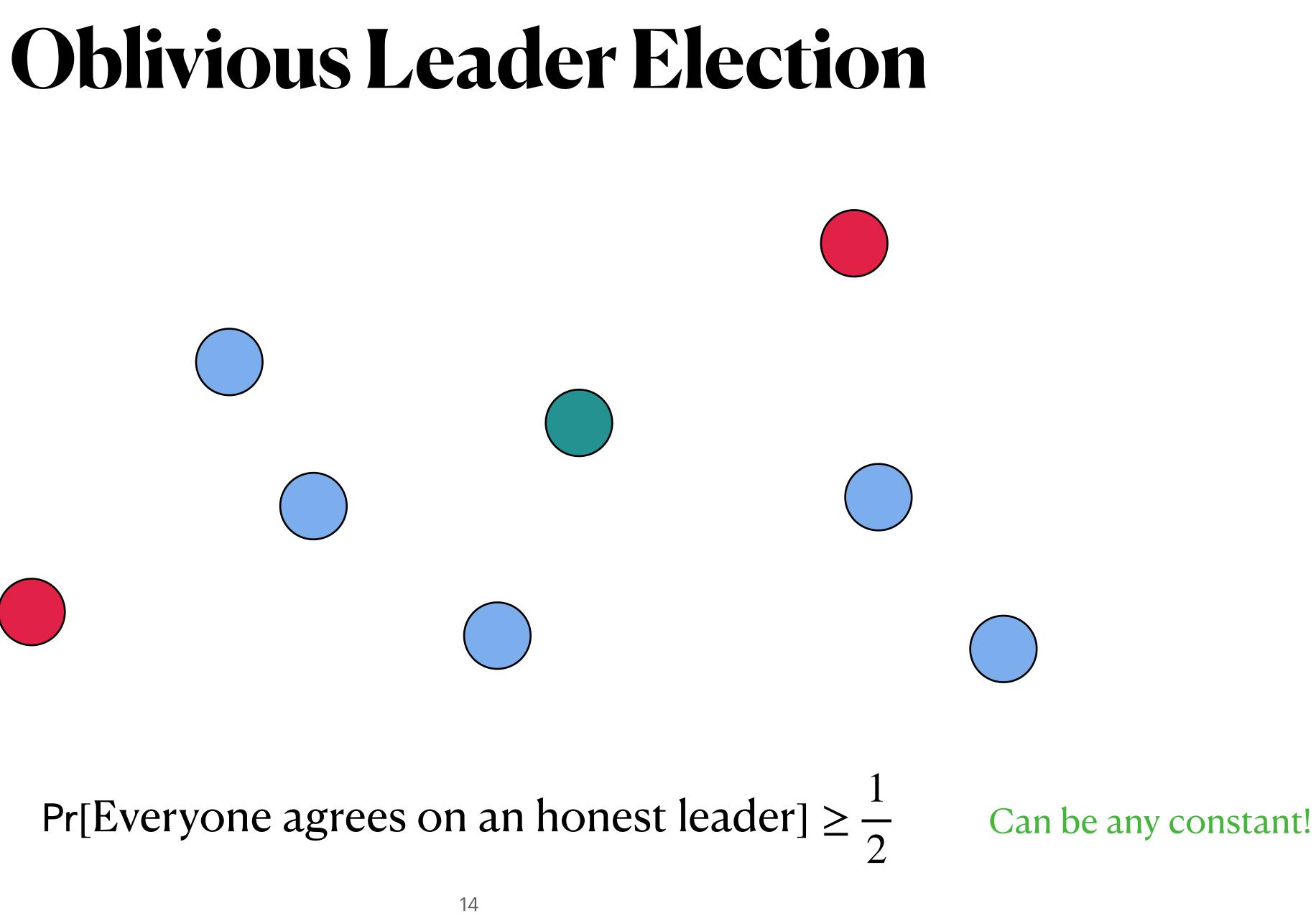




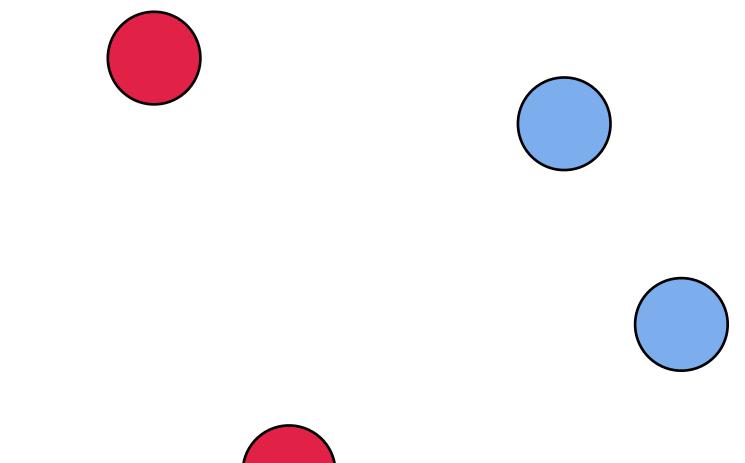


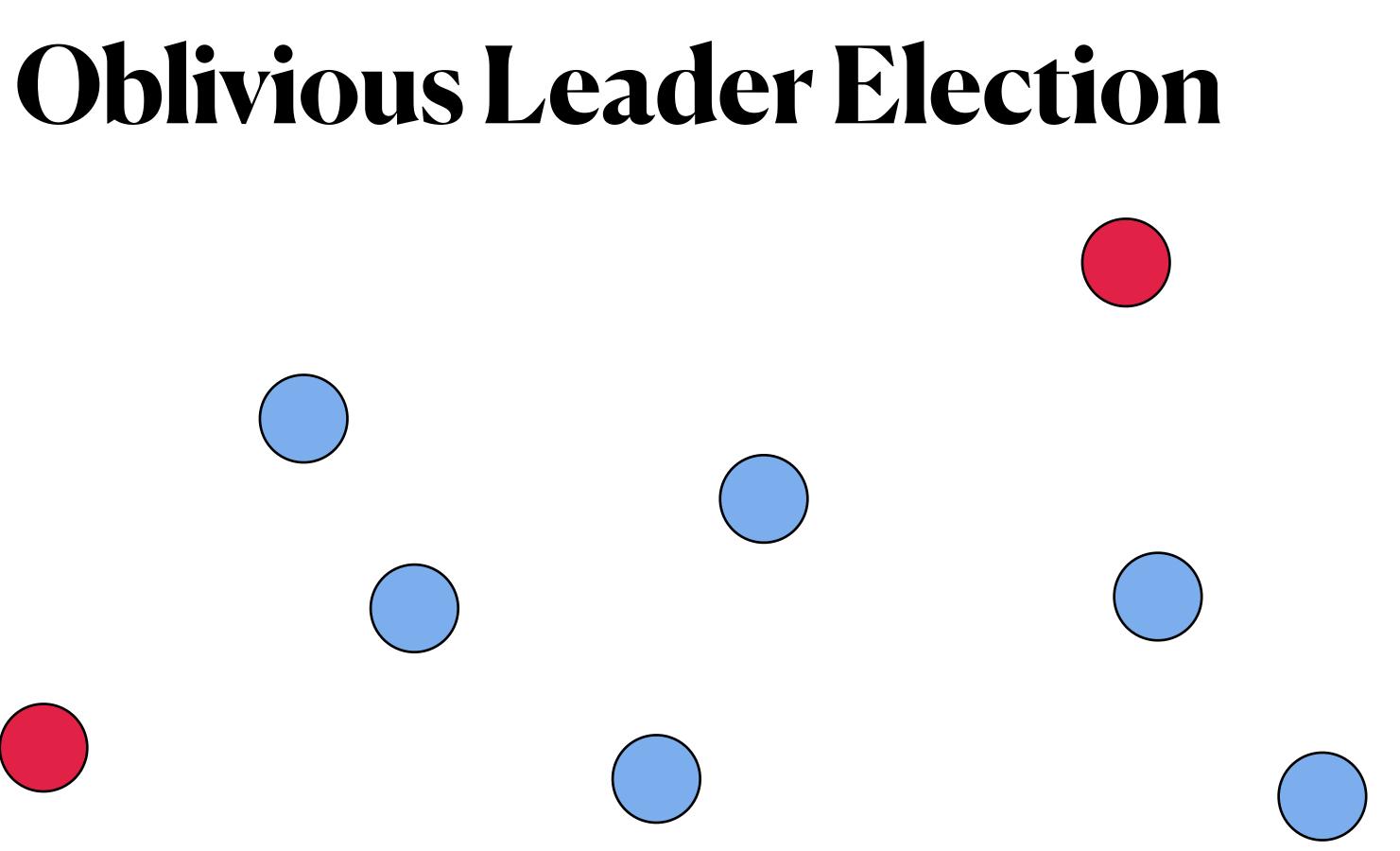


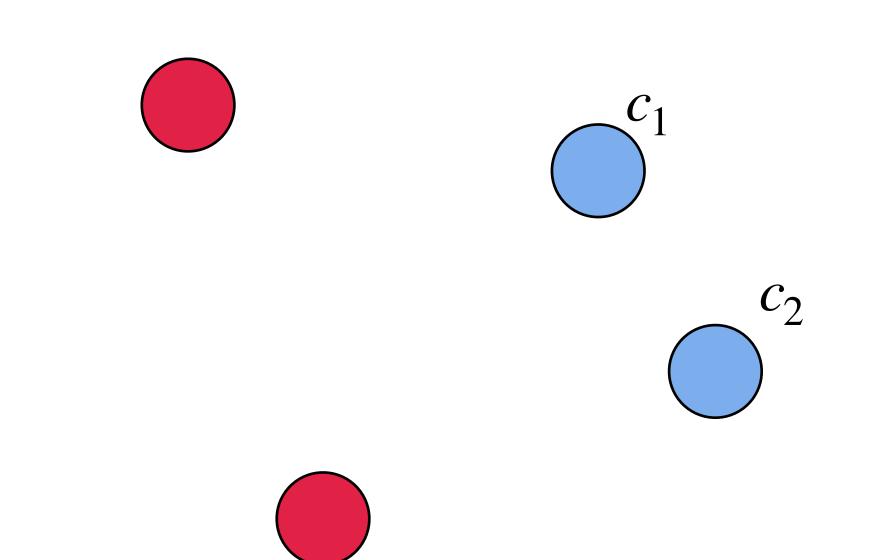




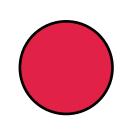


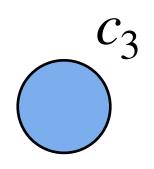


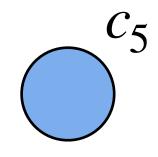


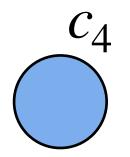


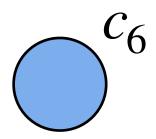


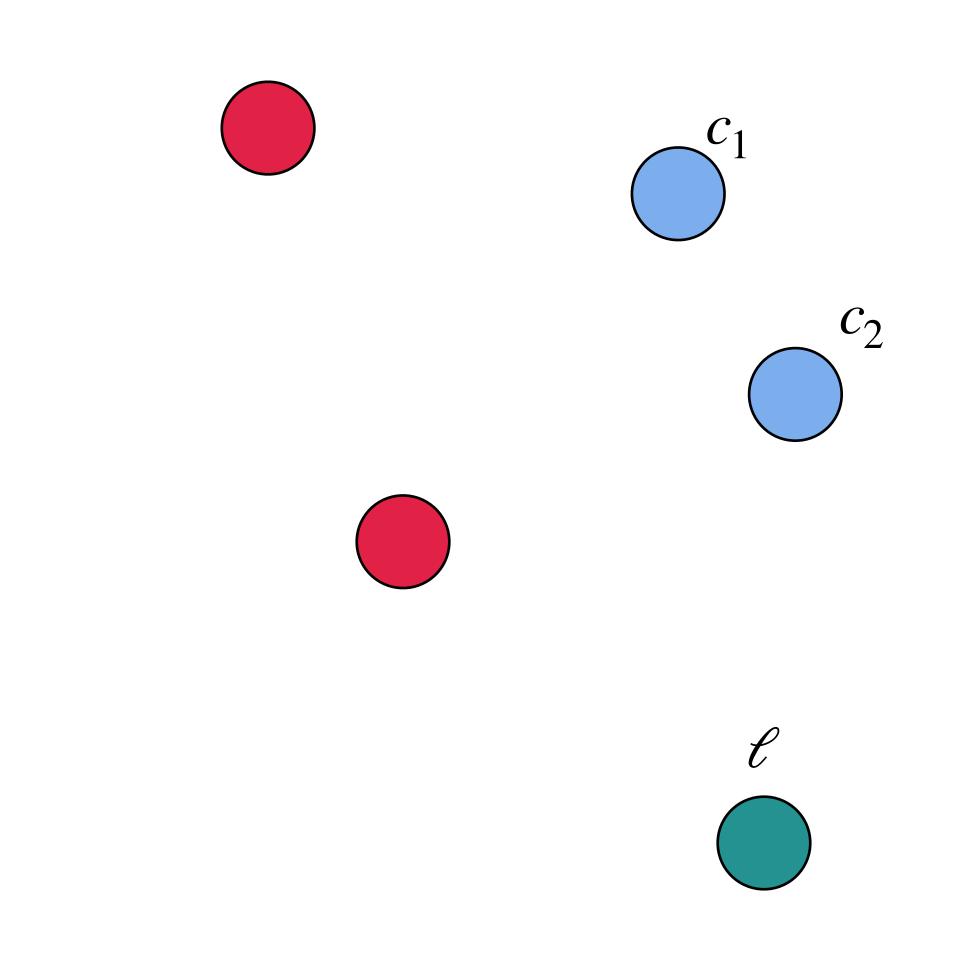




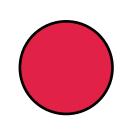


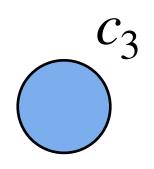


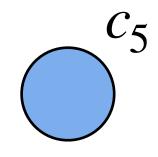


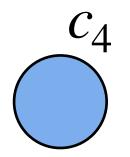


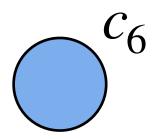


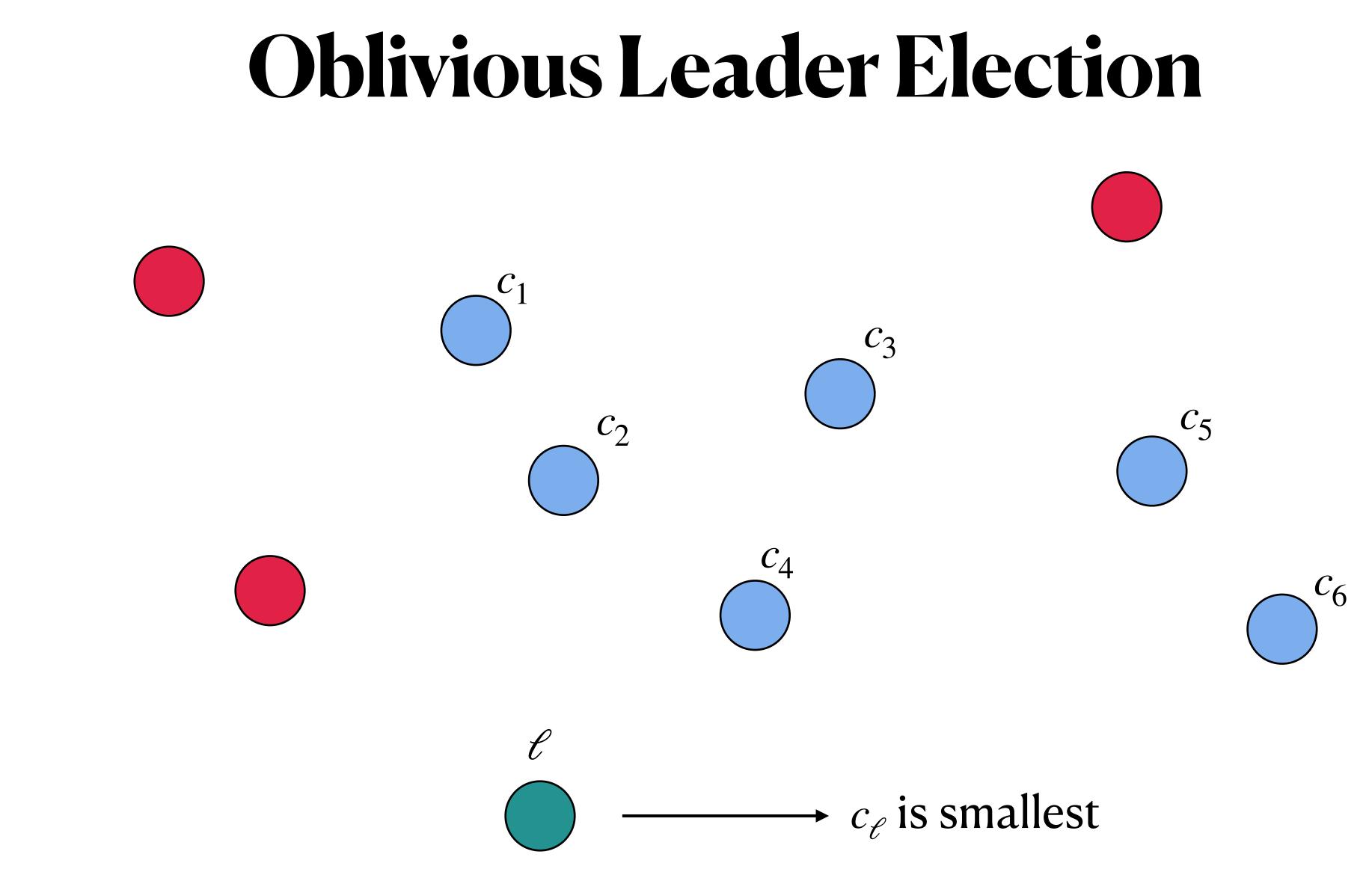


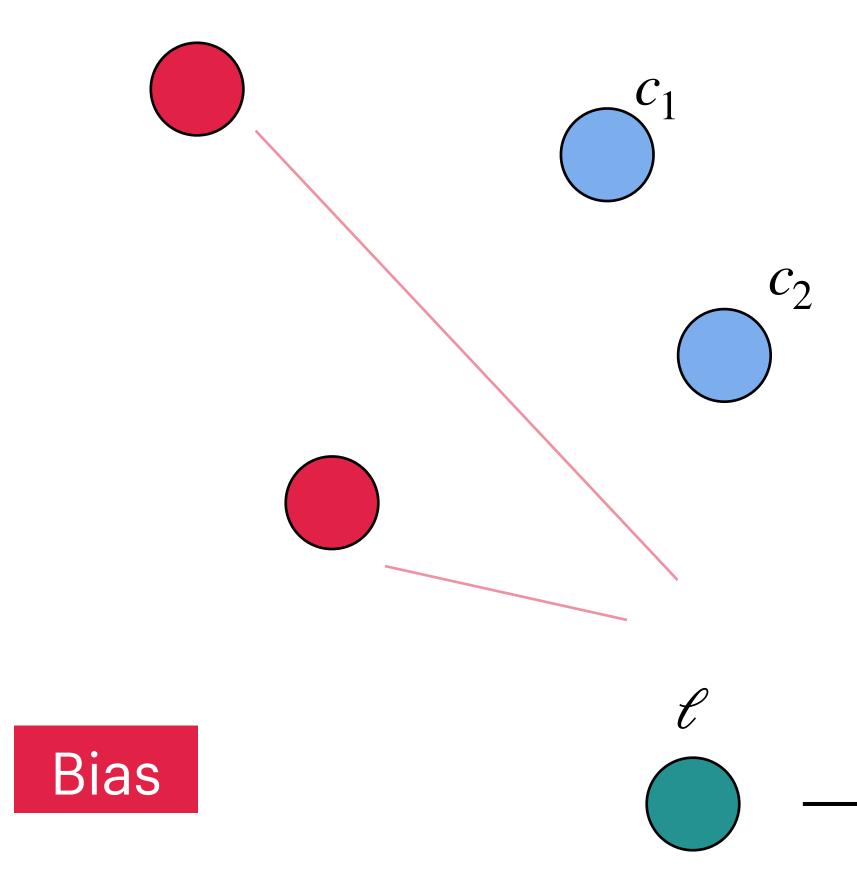


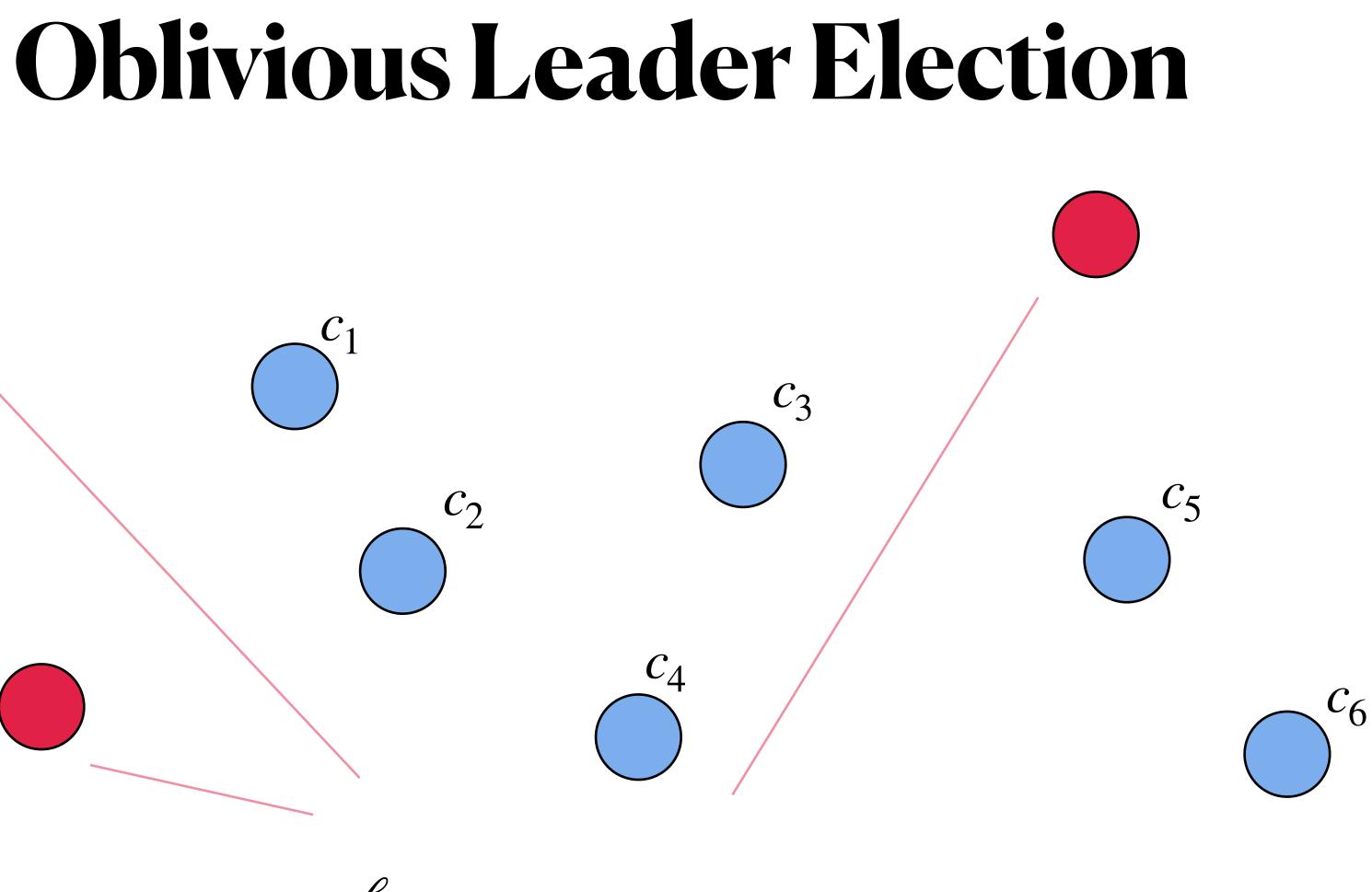






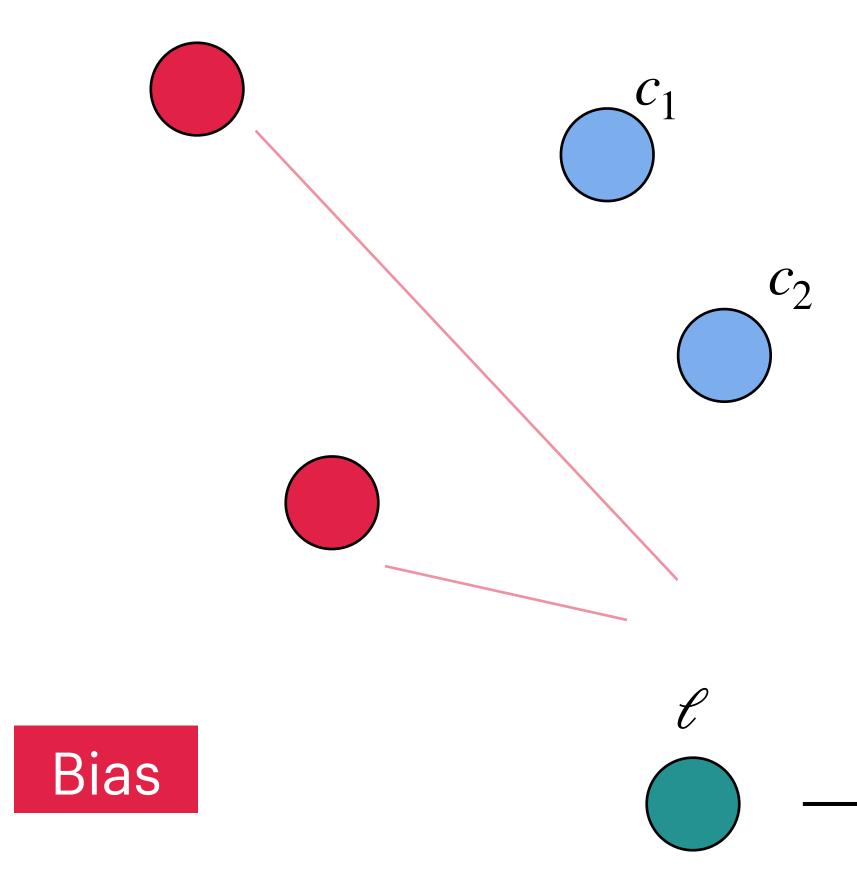




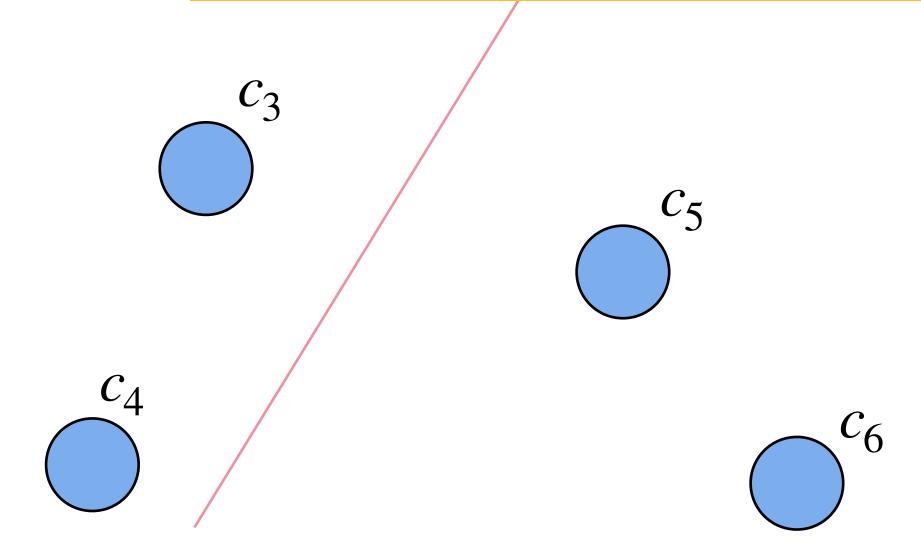


### $\rightarrow c_{\ell} \text{ is smallest}$

## **Oblivious Leader Election**

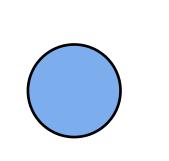


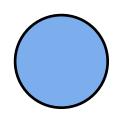
How to generate the random loads obliviously (no adversarial bias)?

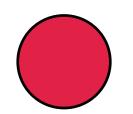


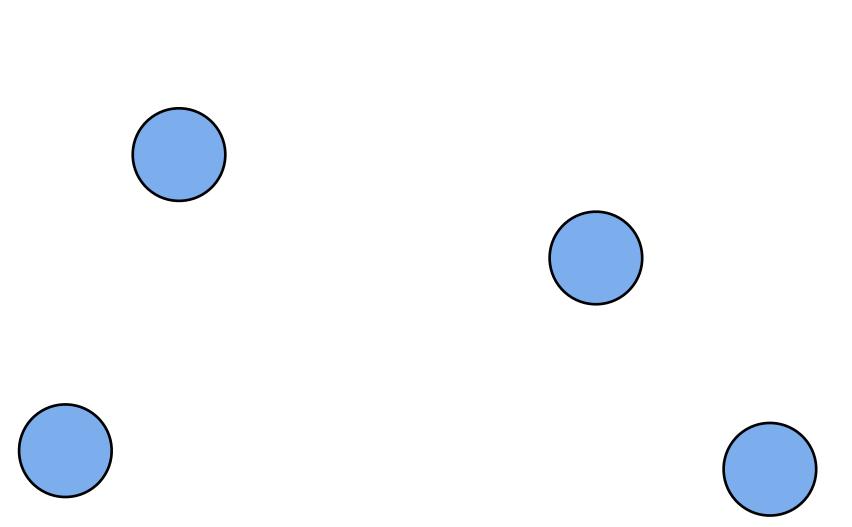
### → $c_{\ell}$ is smallest

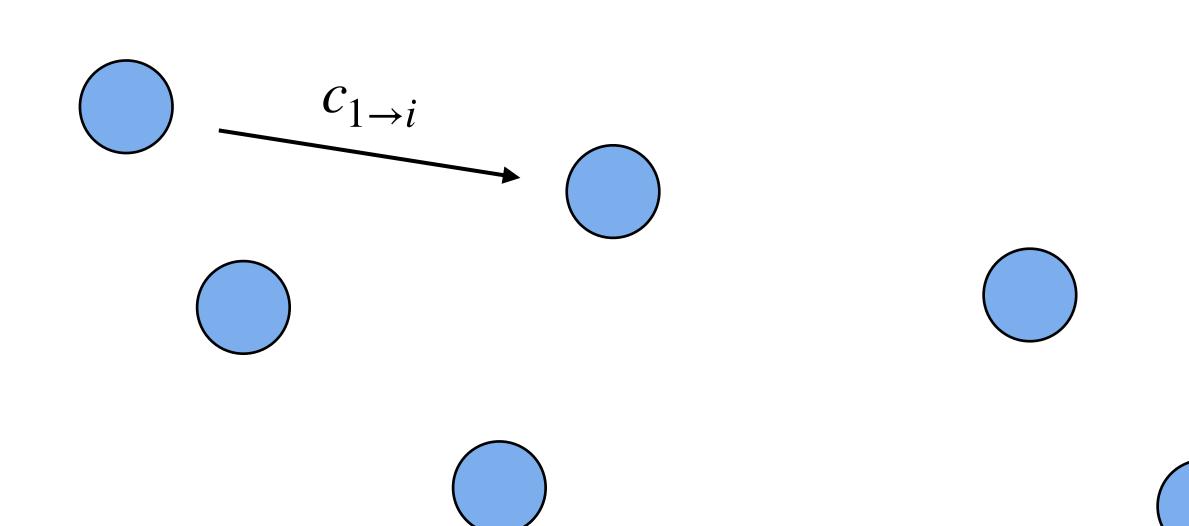


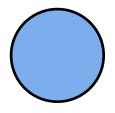


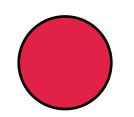


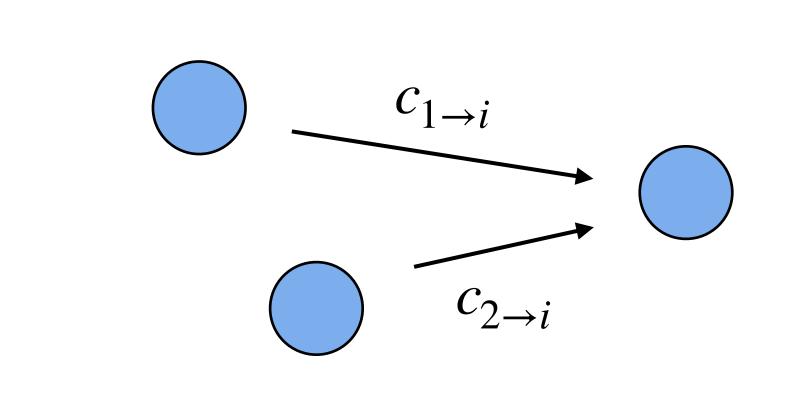


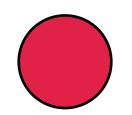


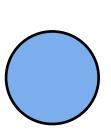


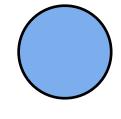


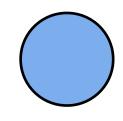


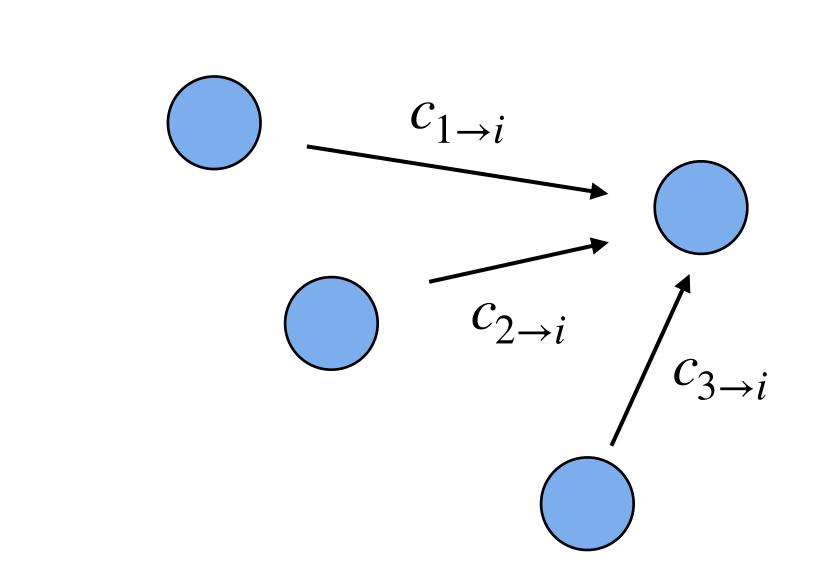


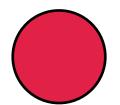


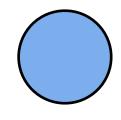


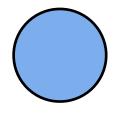


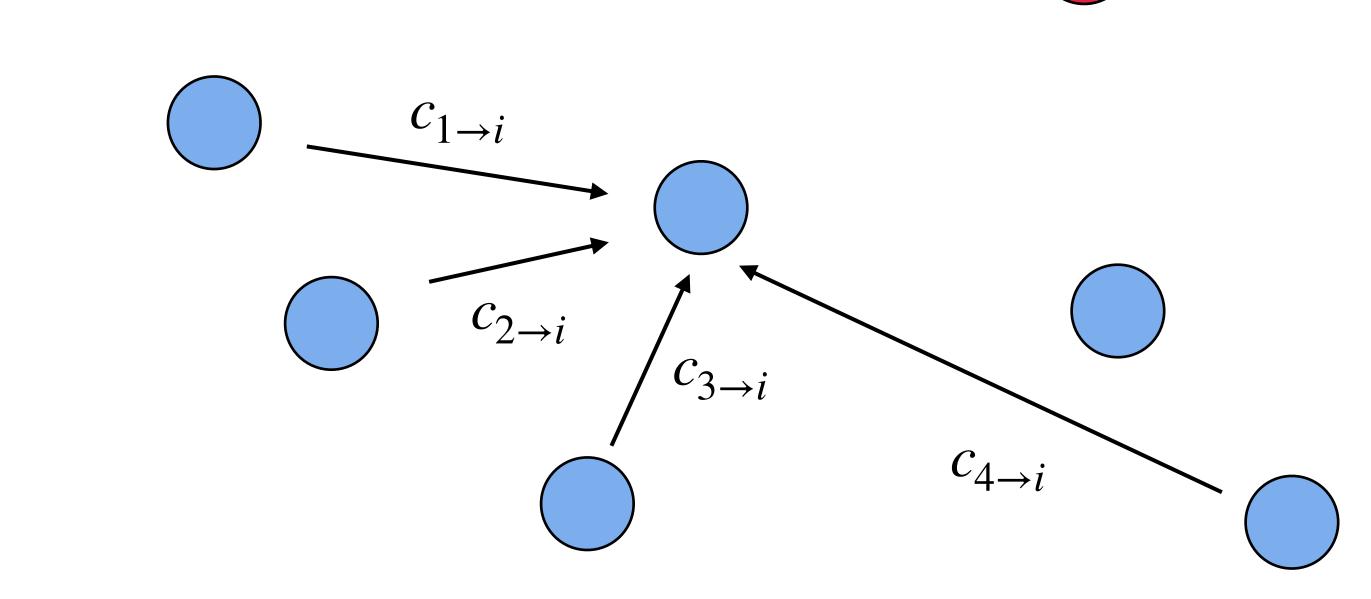


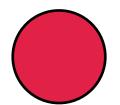


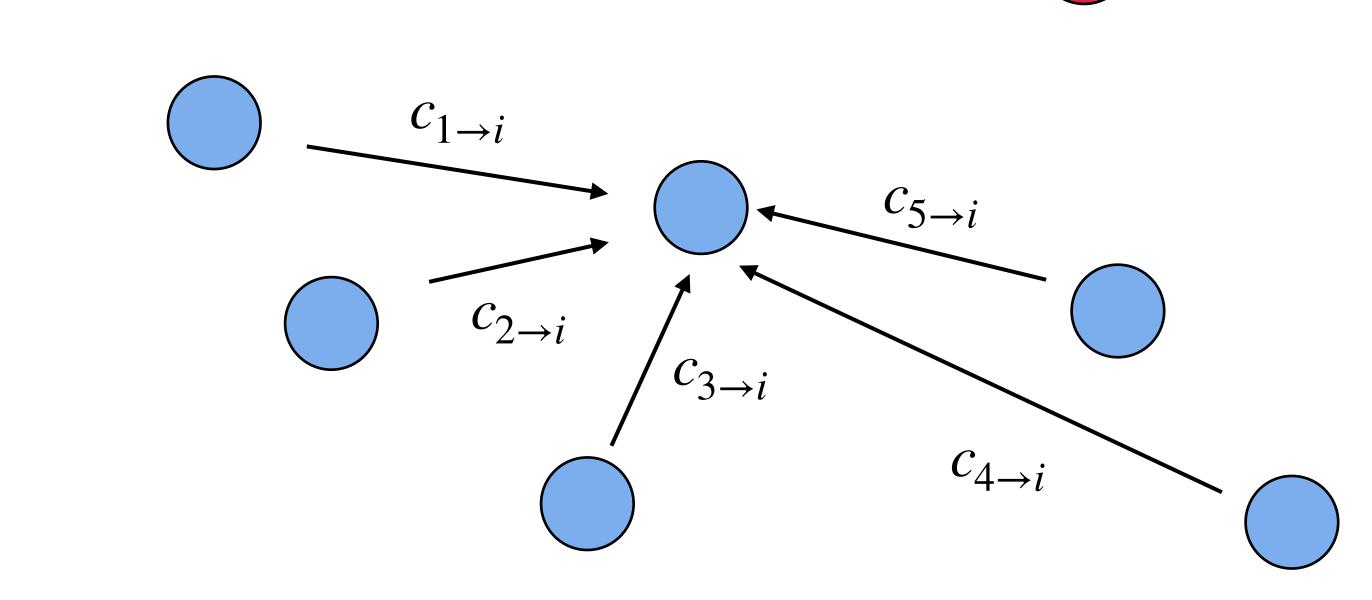


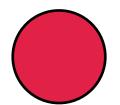




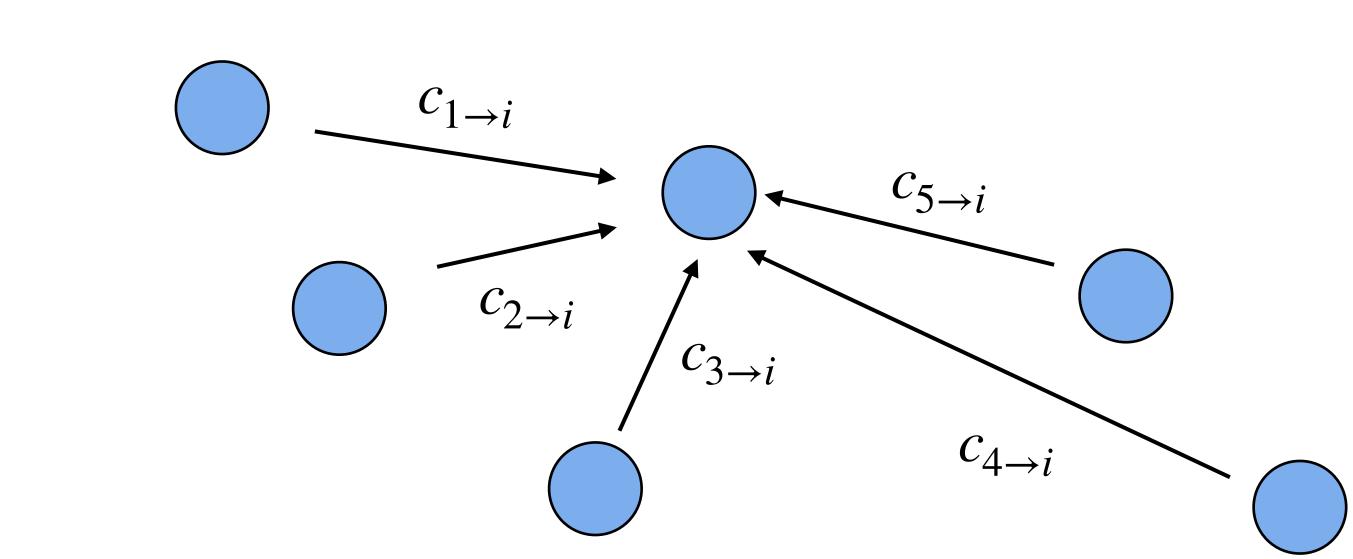


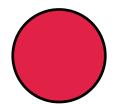




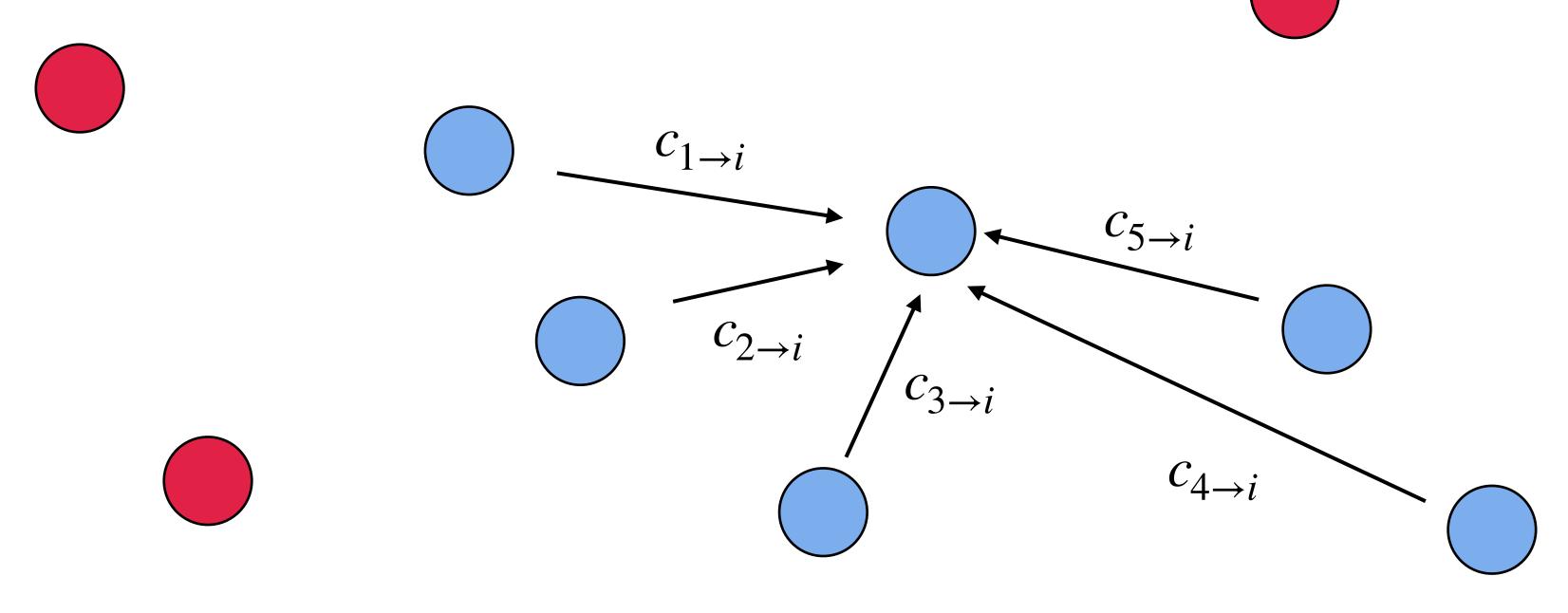


### Contribution via commit + reveal [FM06,KK08,AAPP22]

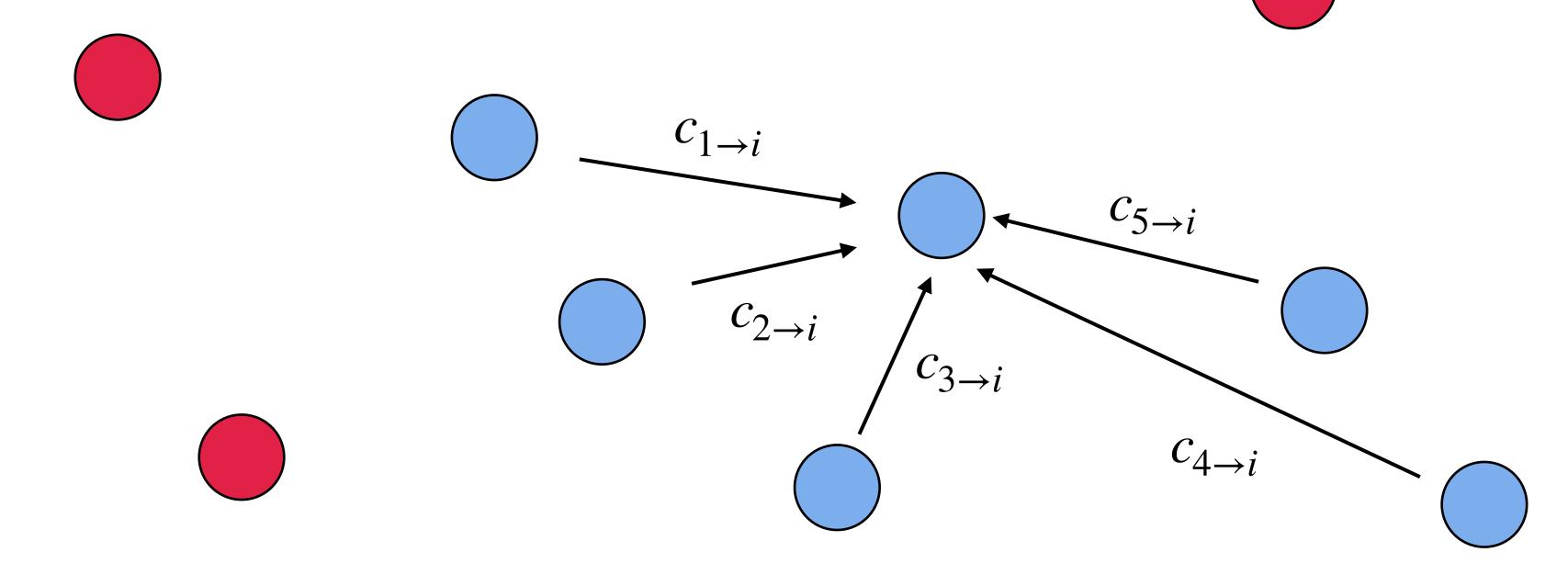




# Contribution via commit + reveal [FM06,KK08,AAPP22]

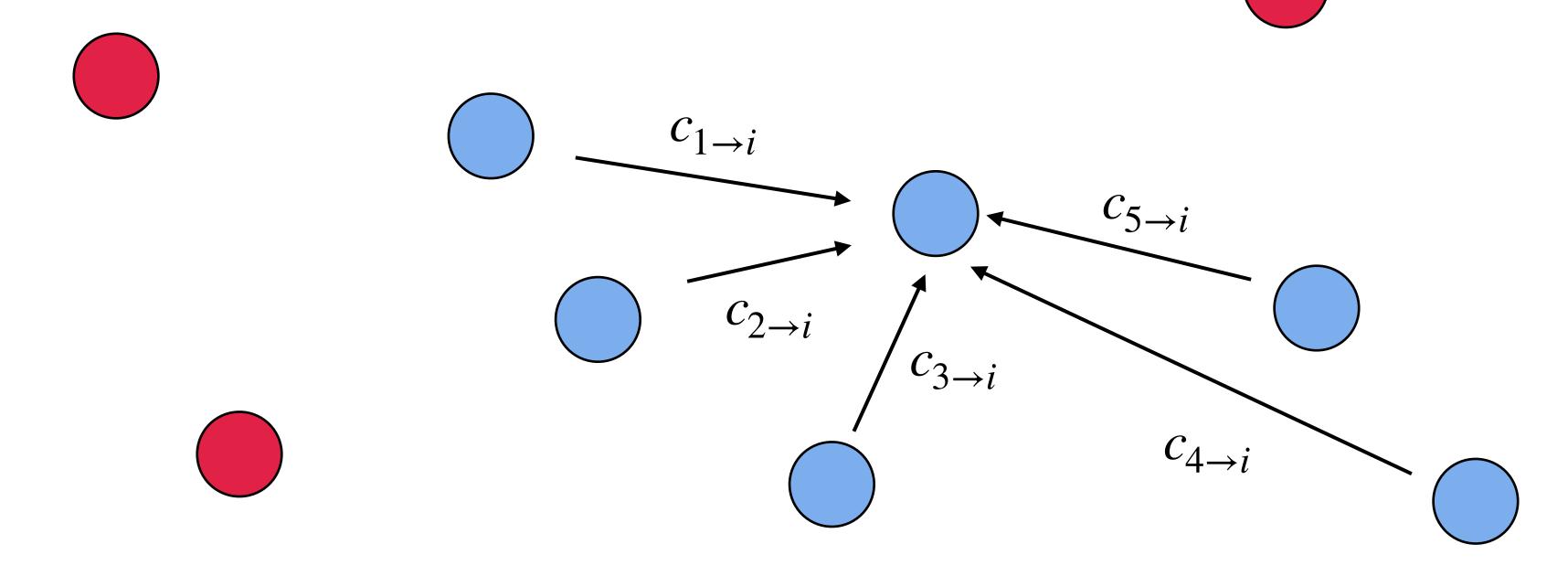


# Contribution via commit + reveal [FM06,KK08,AAPP22]

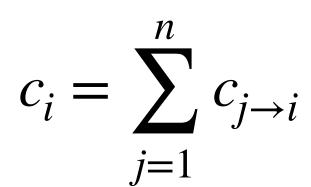


### Adversary cannot bias!

### lection from Commitments **Contribution via** commit + reveal [FM06,KK08,AAPP22]

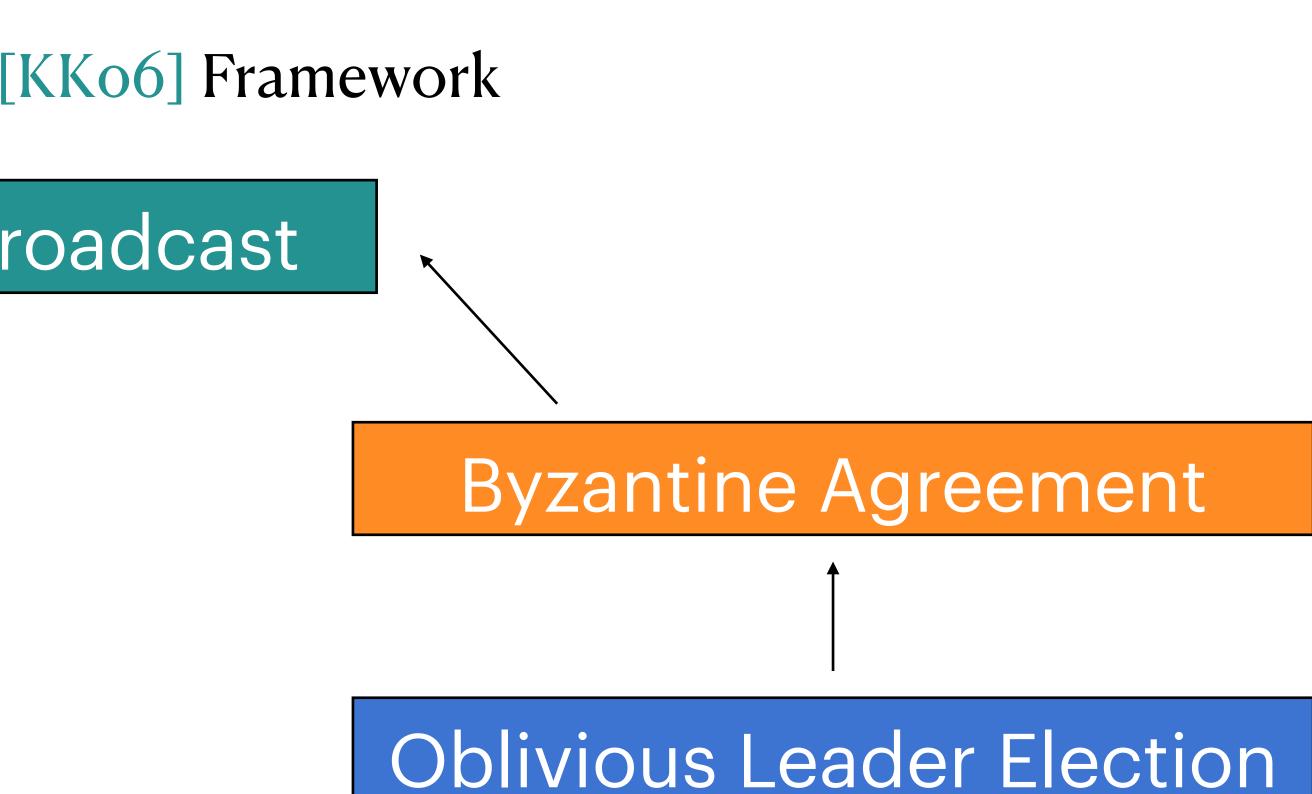


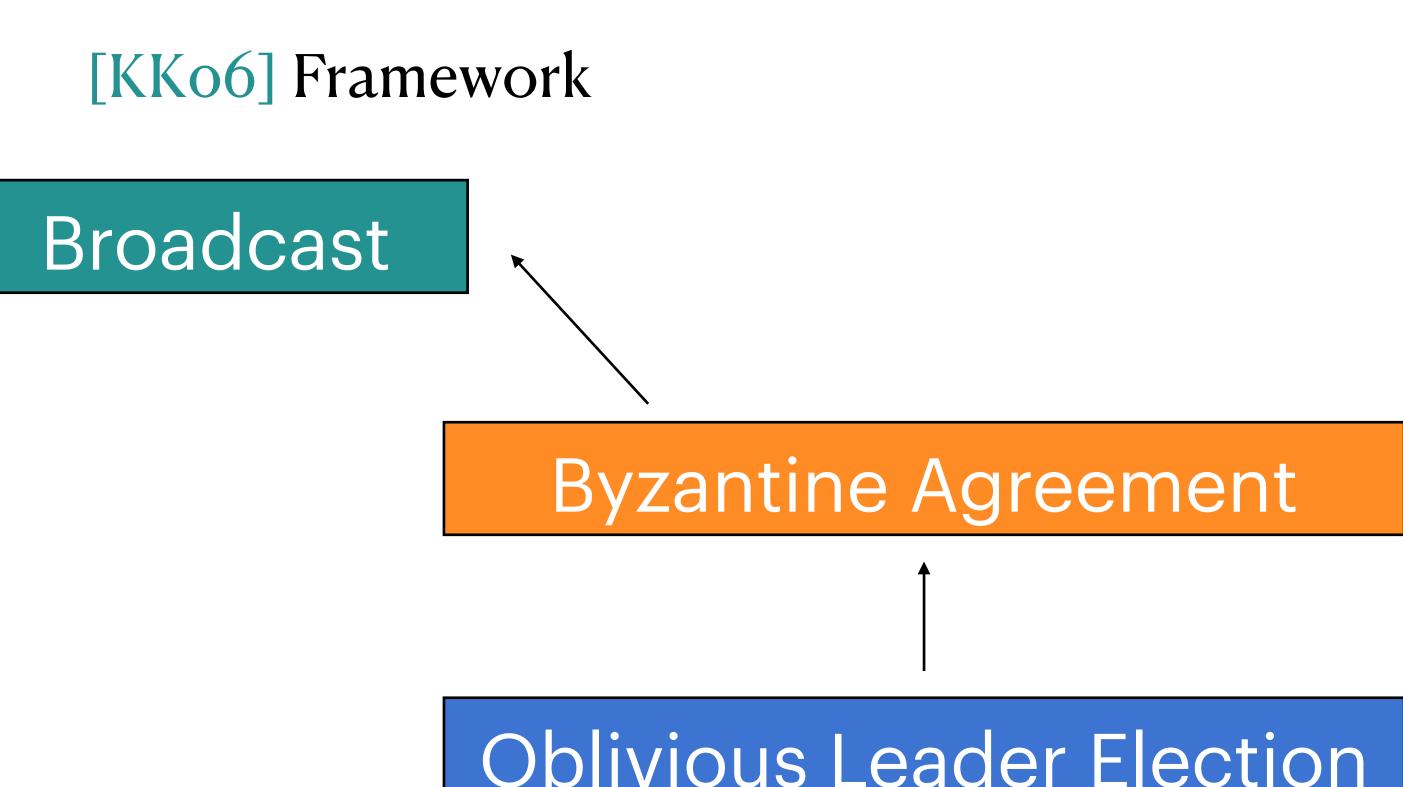
### Adversary cannot bias!



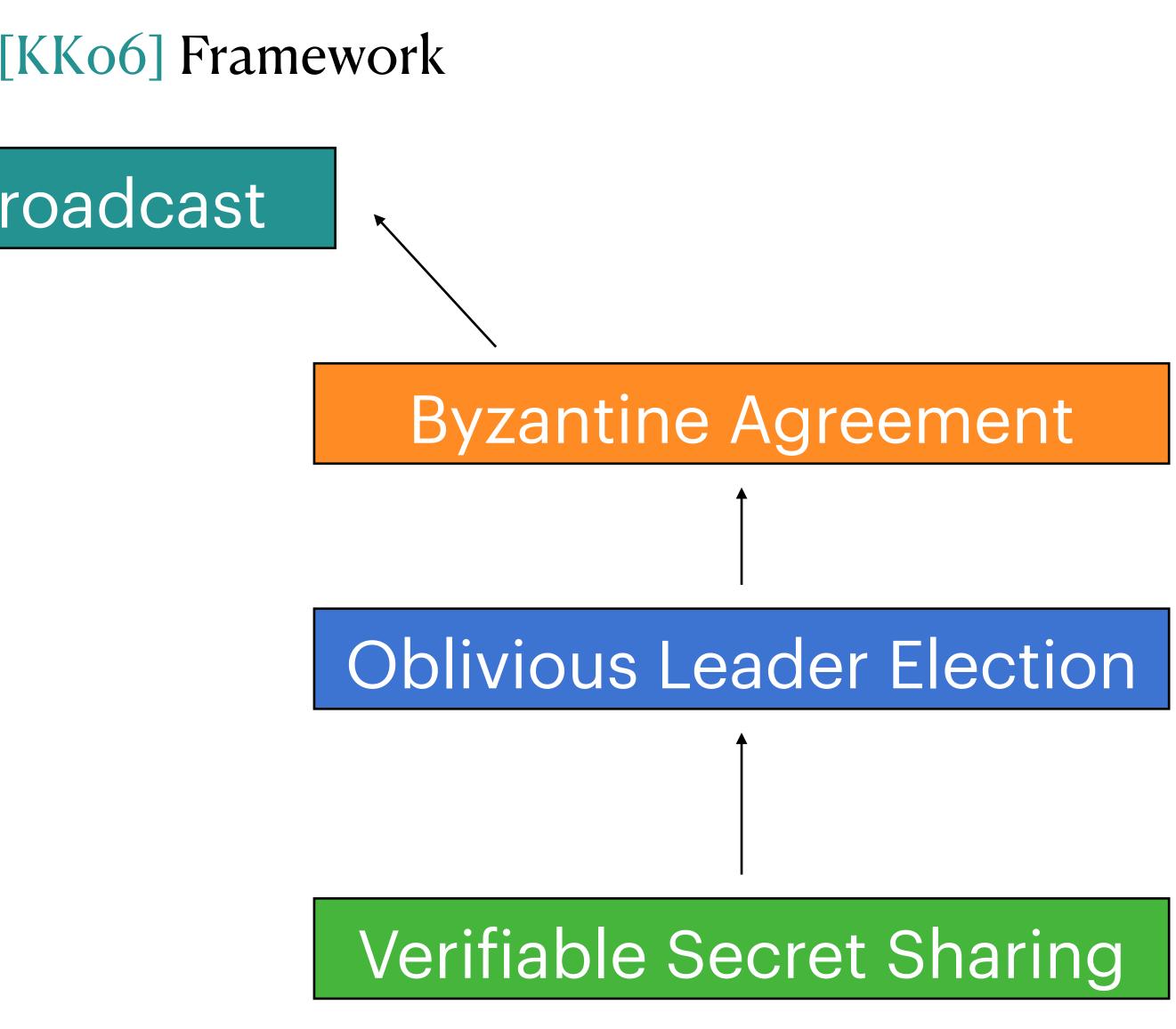
Each party receives at least one uniformly random contribution from an honest party

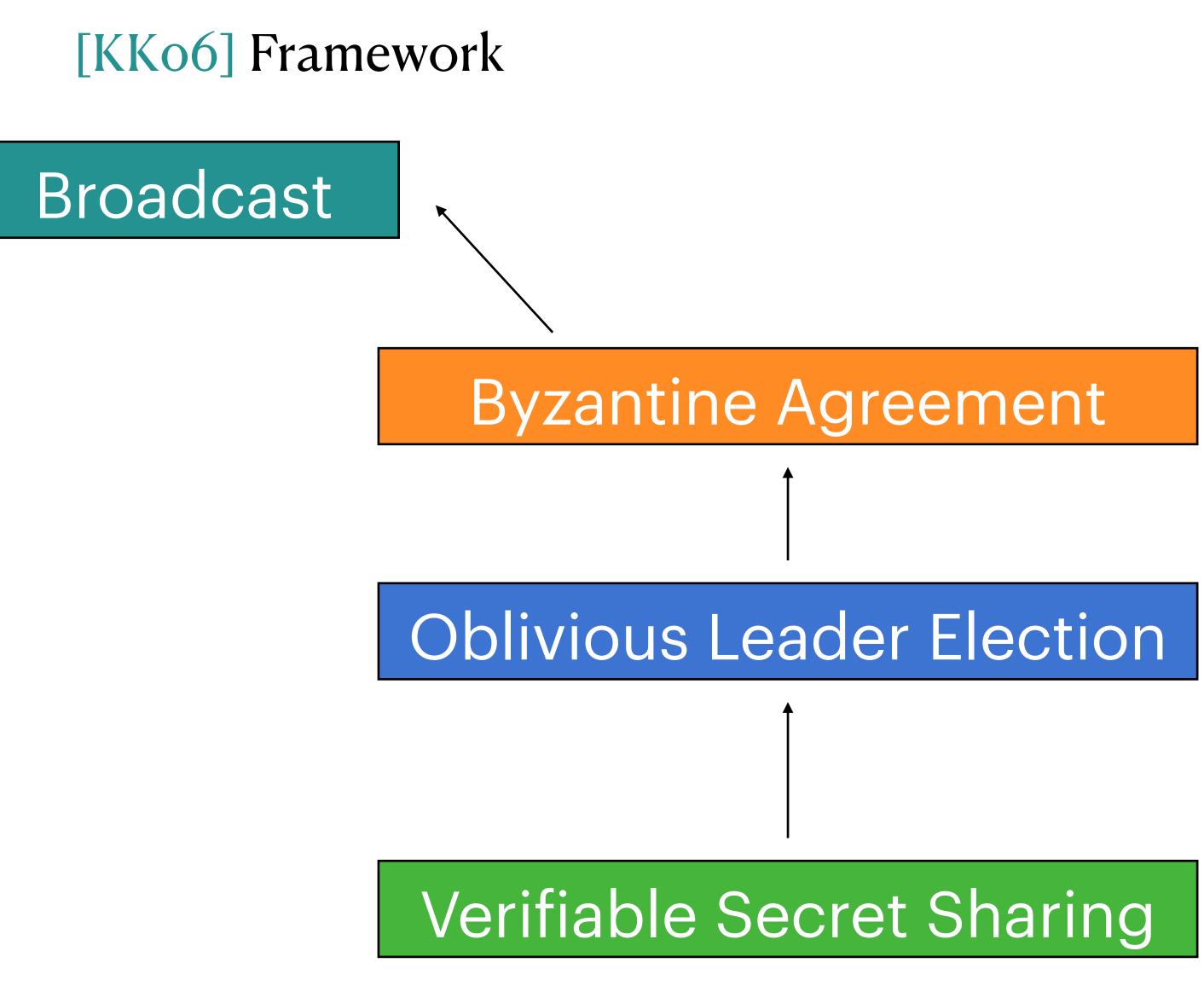




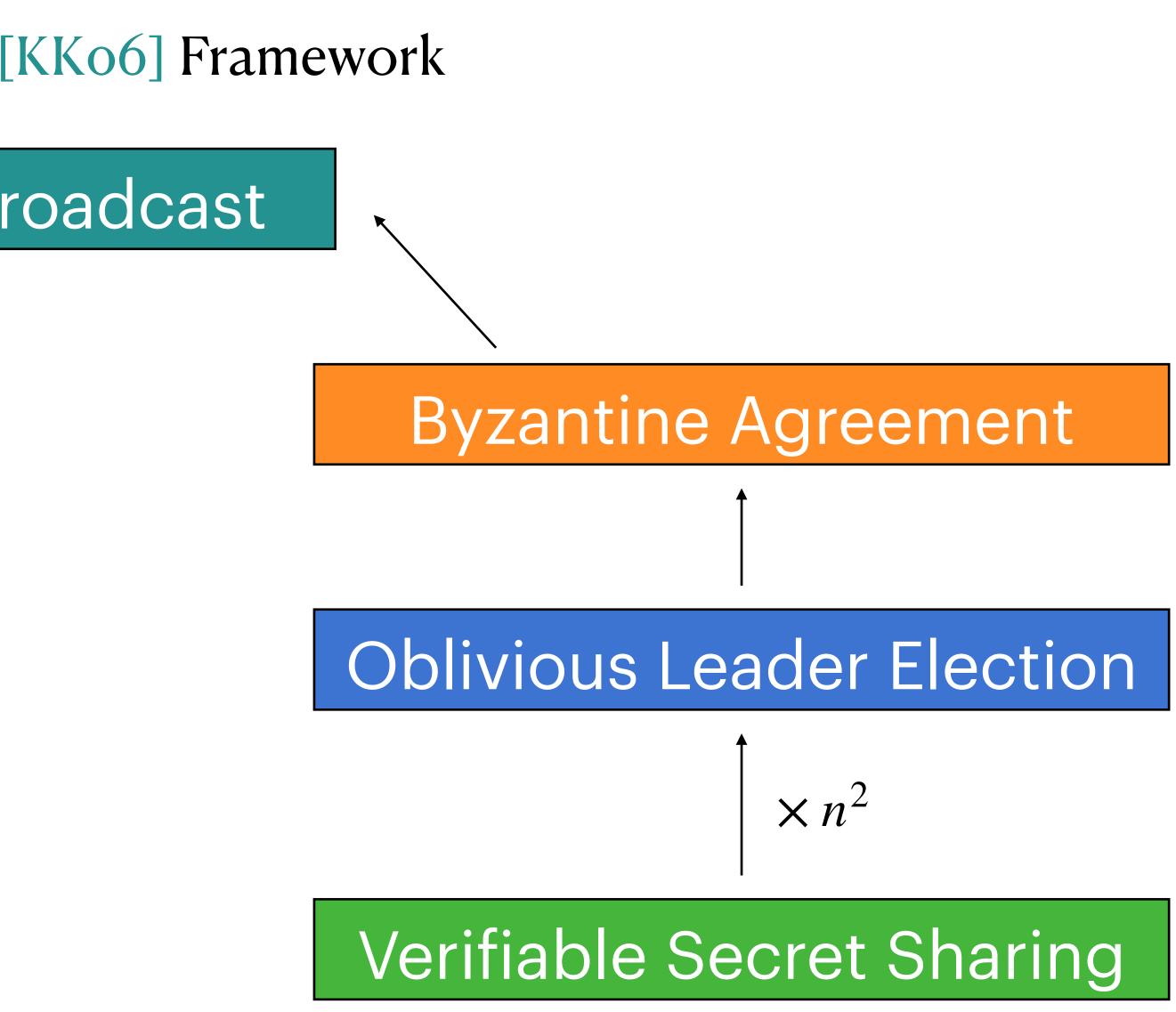


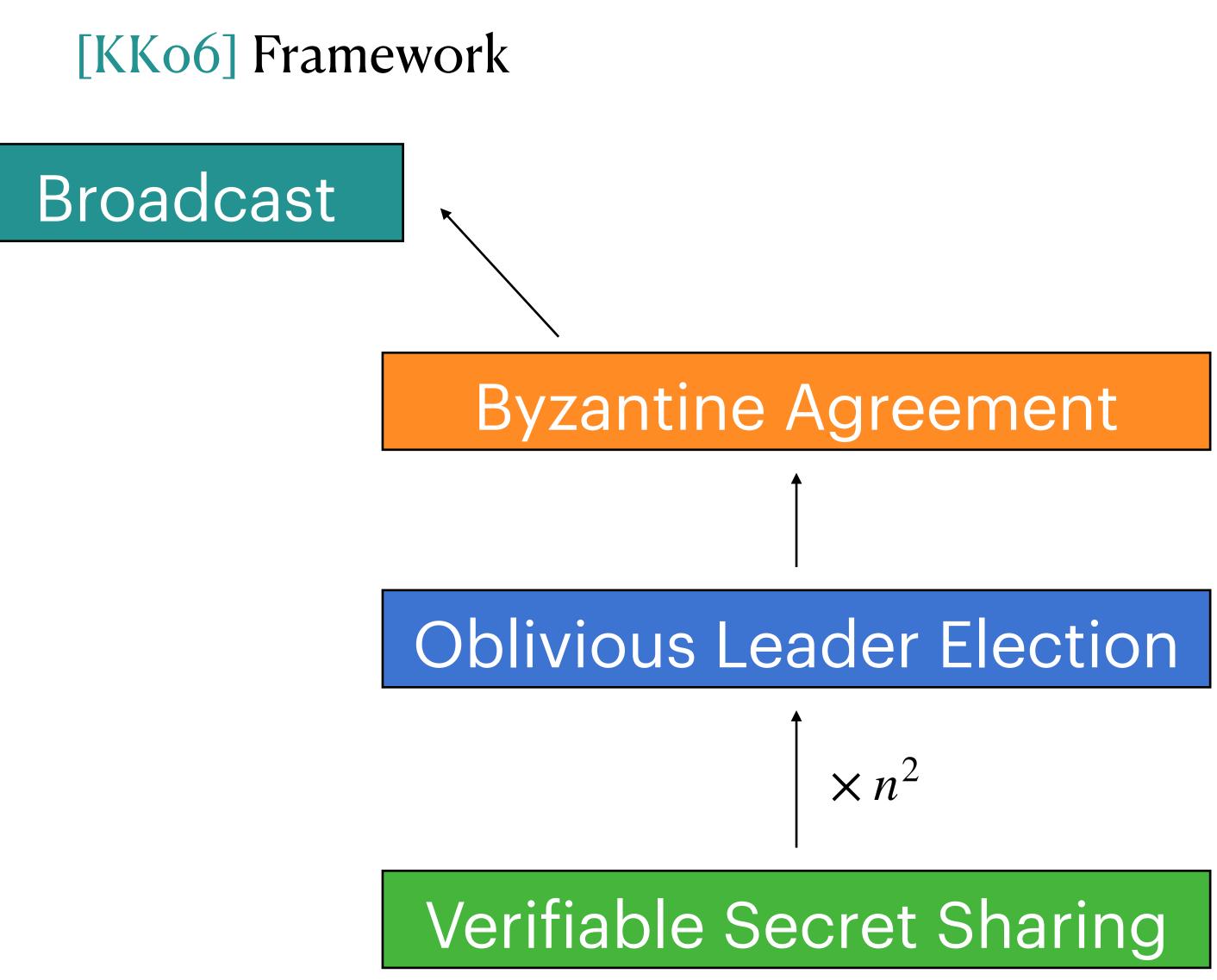
### Gradecast





### Gradecast





### Gradecast

# $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$

# $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$ $\Pr[\text{No agreement } \mathbf{OR} \text{ corrupted leader}] \le \frac{1}{2}$

# Probability that **OLE fails!**

# $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$ $\Pr[\text{No agreement } \mathbf{OR} \text{ corrupted leader}] \leq \frac{1}{2}$



### $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$ $\Pr[\text{No agreement } \mathbf{OR} \text{ corrupted leader}] \le \frac{1}{2}$ Probability that **OLE fails!**

# $\Pr[\text{No agreement OR corrupted leader OR some other bad event}] \leq \frac{1}{2}$

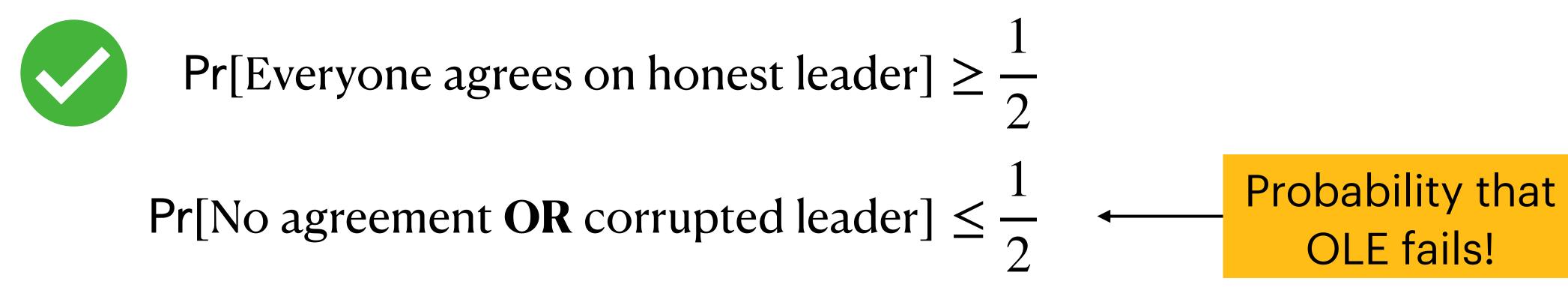




# $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$ $\Pr[\text{No agreement OR corrupted leader}] \leq \frac{1}{2} \quad \longleftarrow \quad \frac{\text{Probability that}}{\text{OLE fails!}}$ **OLE fails!**

# $\Pr[\text{No agreement OR corrupted leader OR some other bad event}] \leq \frac{1}{2}$



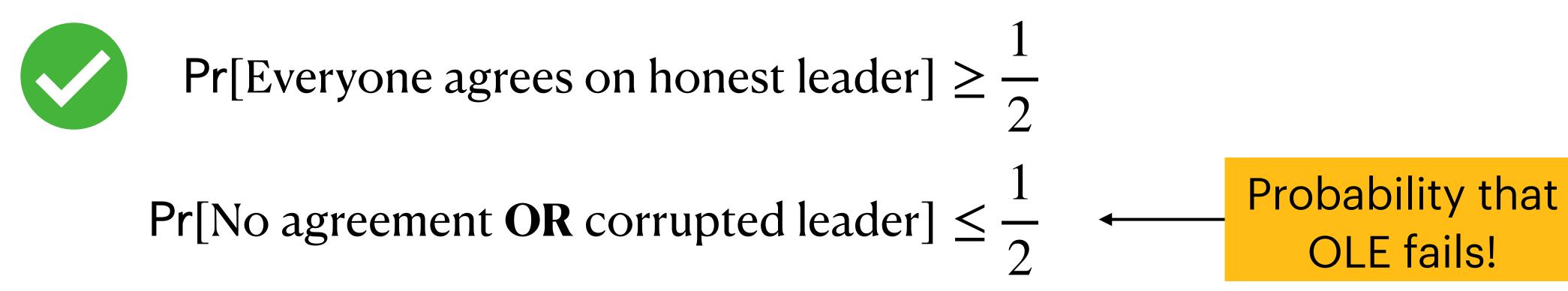


# $\Pr[\text{No agreement OR corrupted leader OR some other bad event}] \leq \frac{1}{2}$



Statistical security suffices!



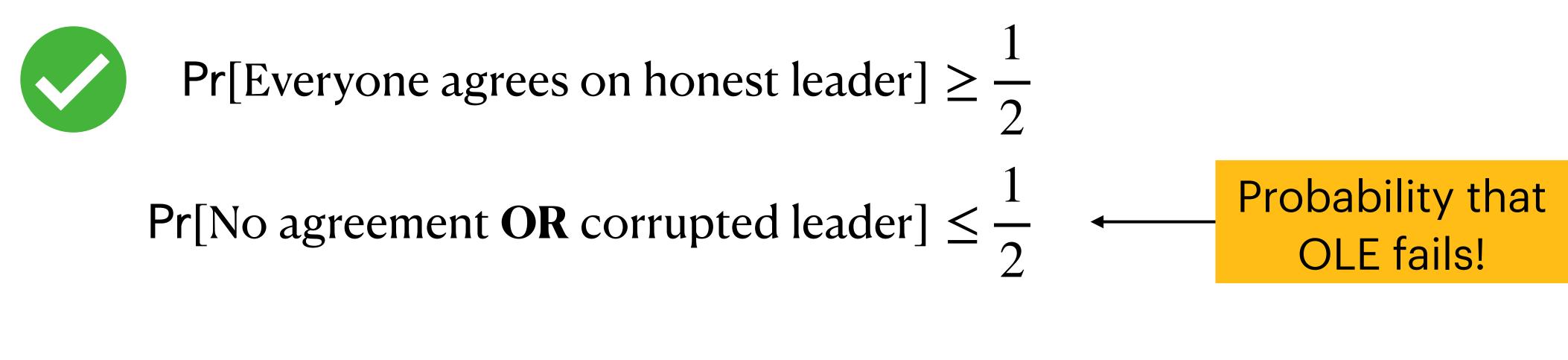


# $\Pr[\text{No agreement OR corrupted leader OR some other bad event}] \leq \frac{1}{2}$ Statistical error



### Statistical security suffices!



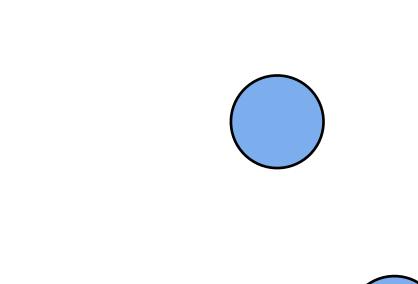


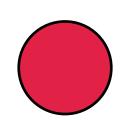
# $\Pr[\text{No agreement OR corrupted leader OR some other bad event}] \leq \frac{1}{2}$ Statistical error

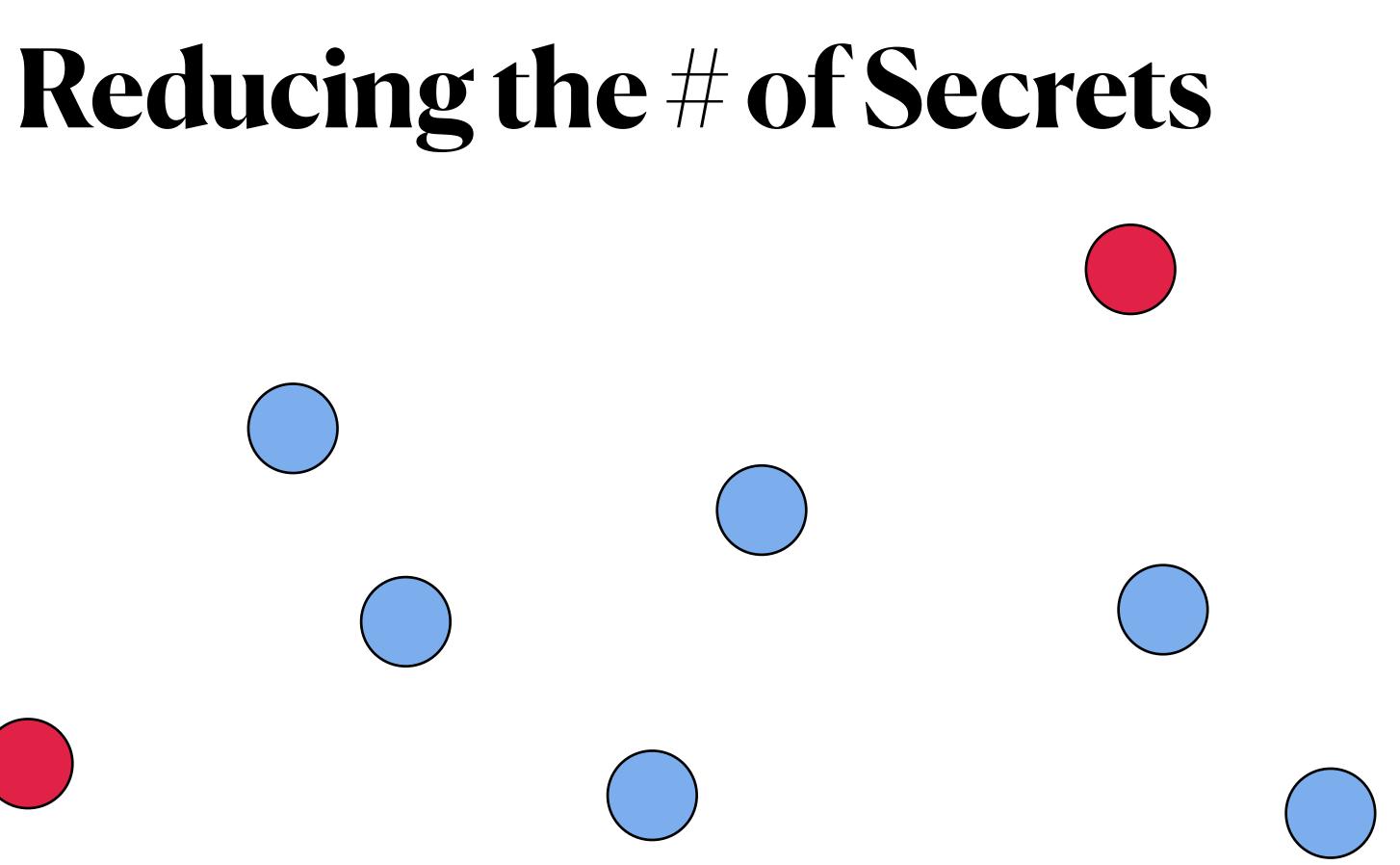


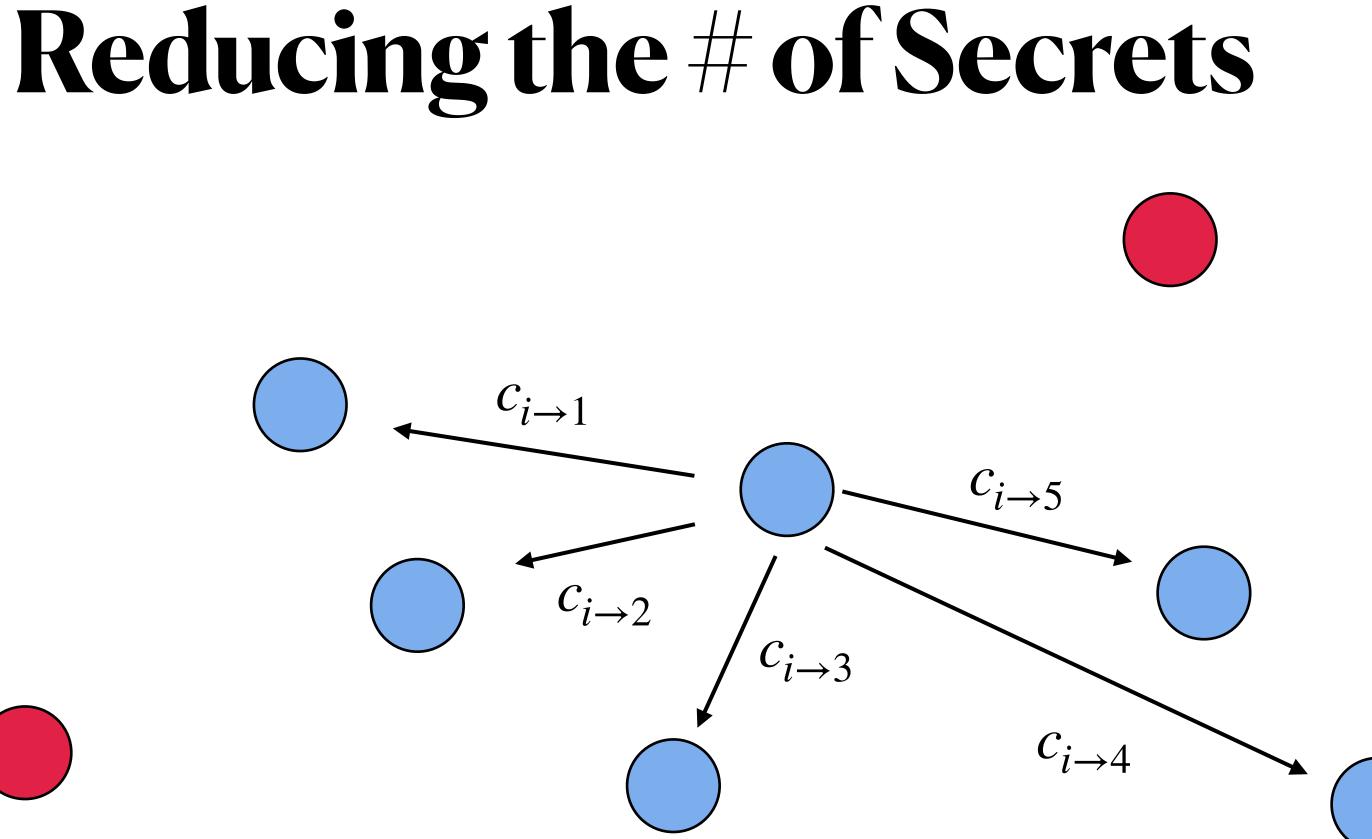
Statistical security suffices!

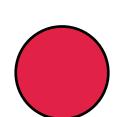
Leads to fewer secrets!

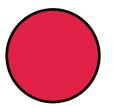


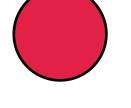




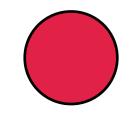


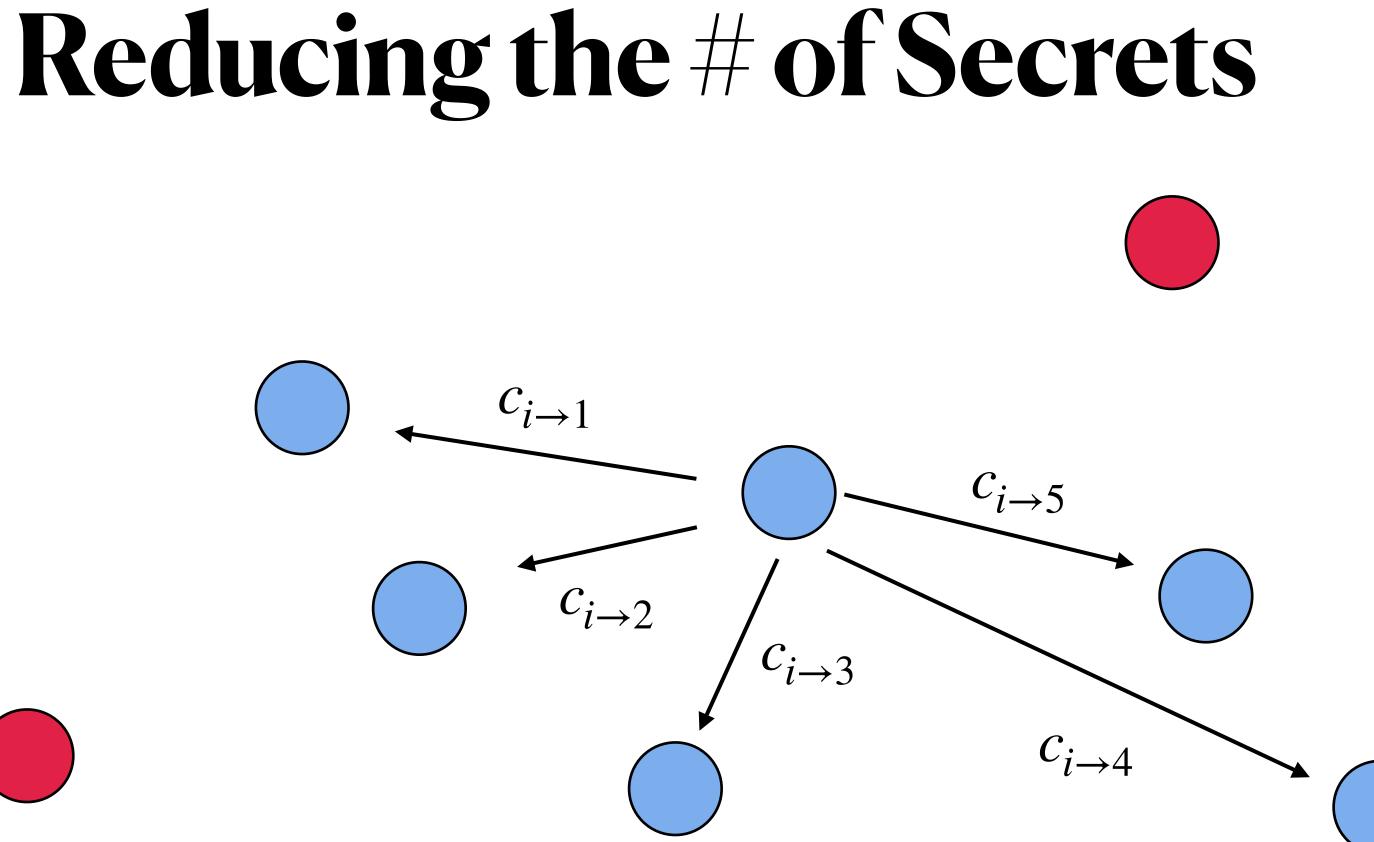


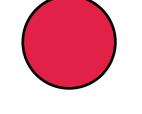




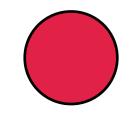
### Contribute to log n parties!

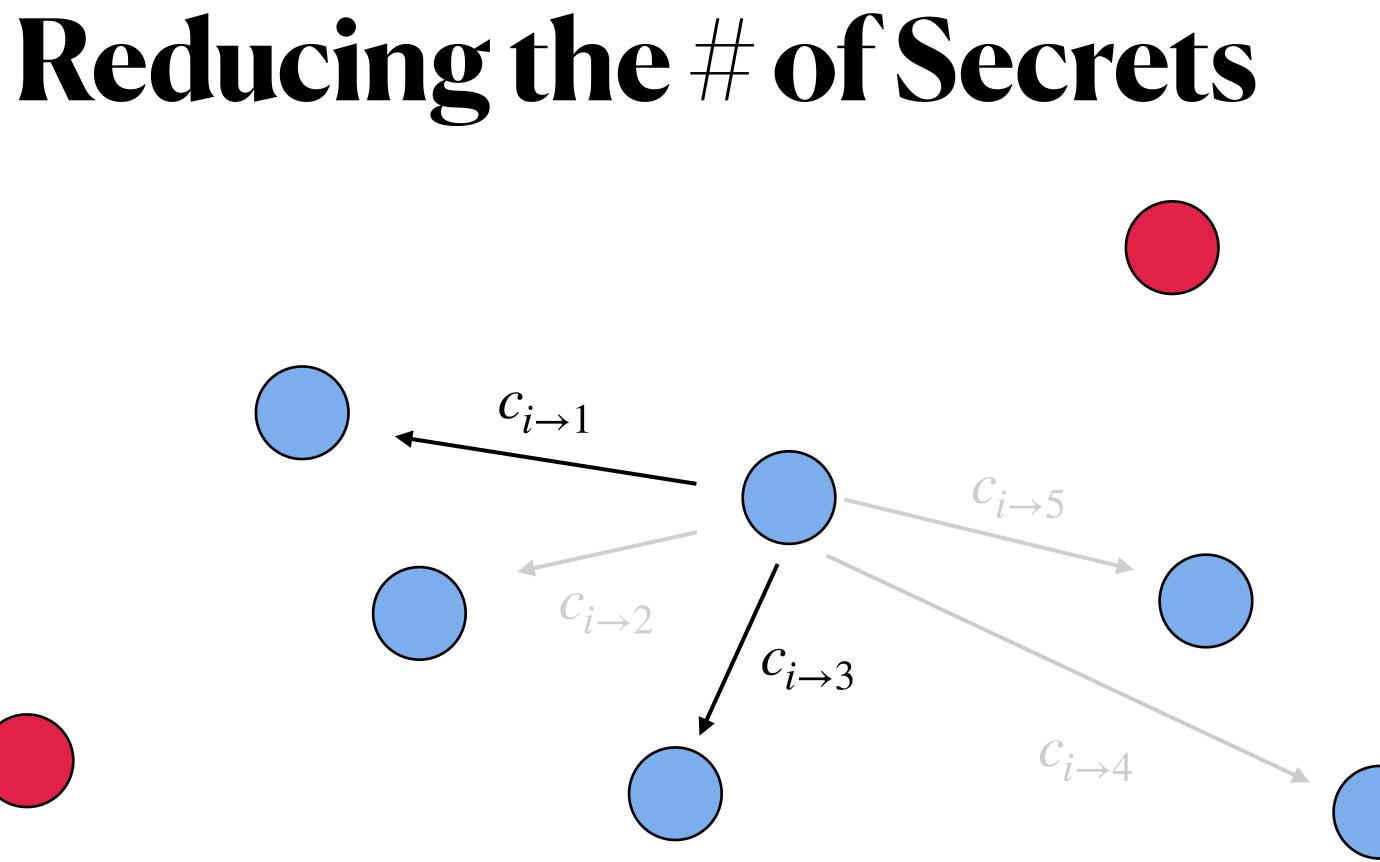


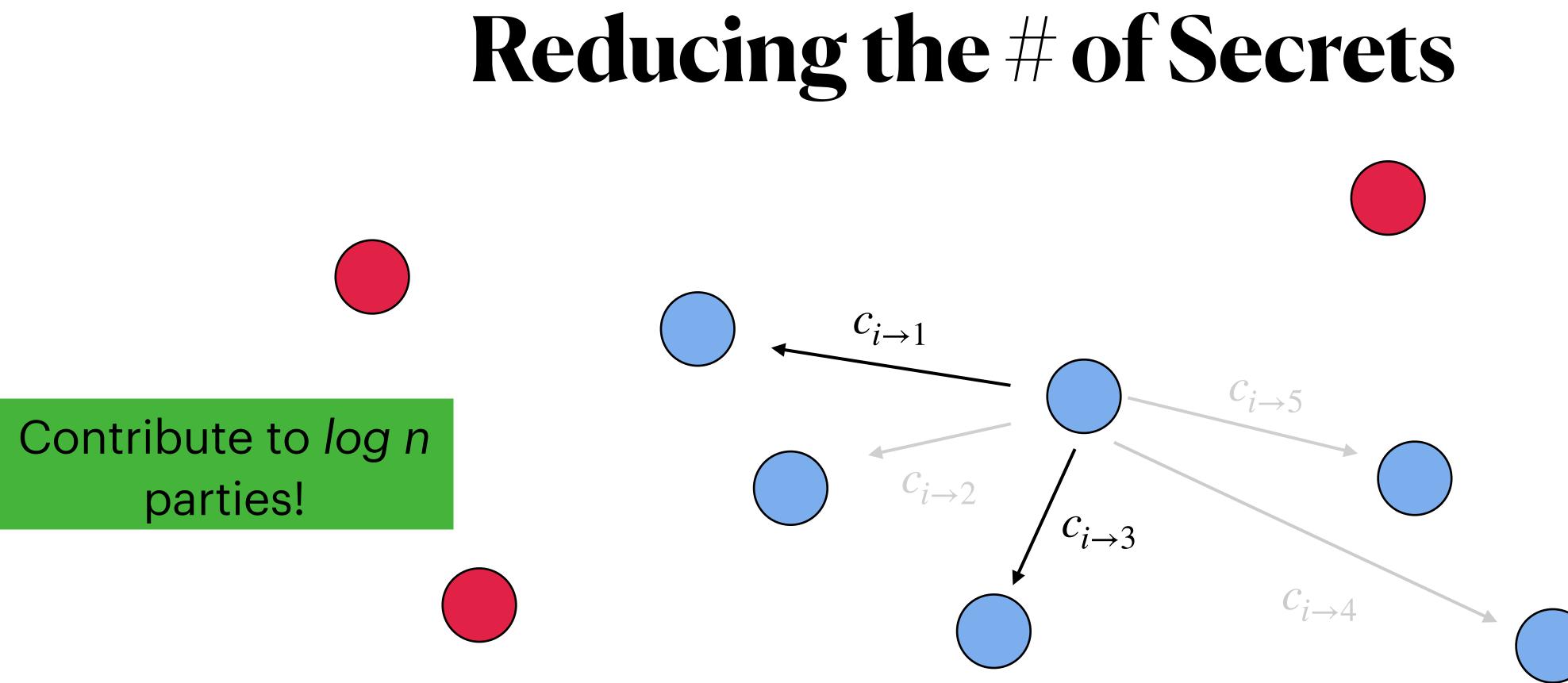




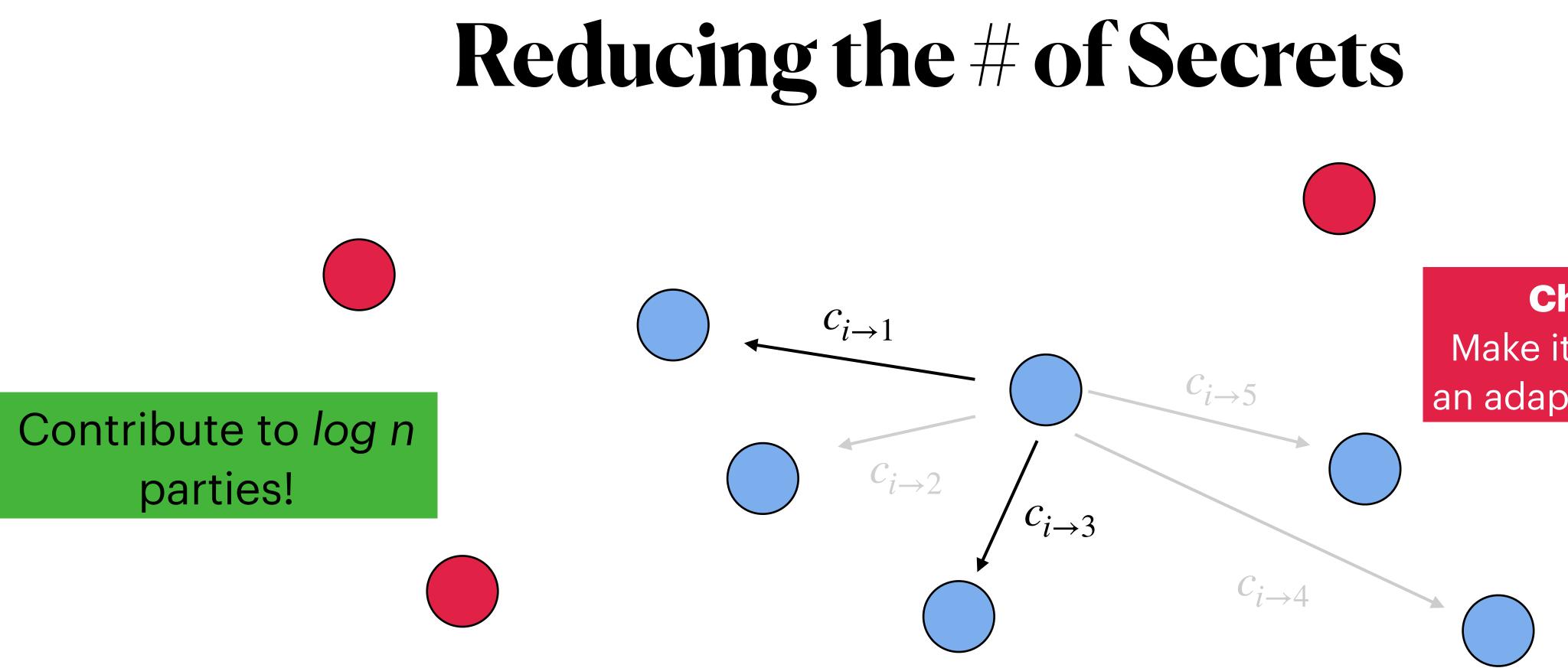
### Contribute to log n parties!







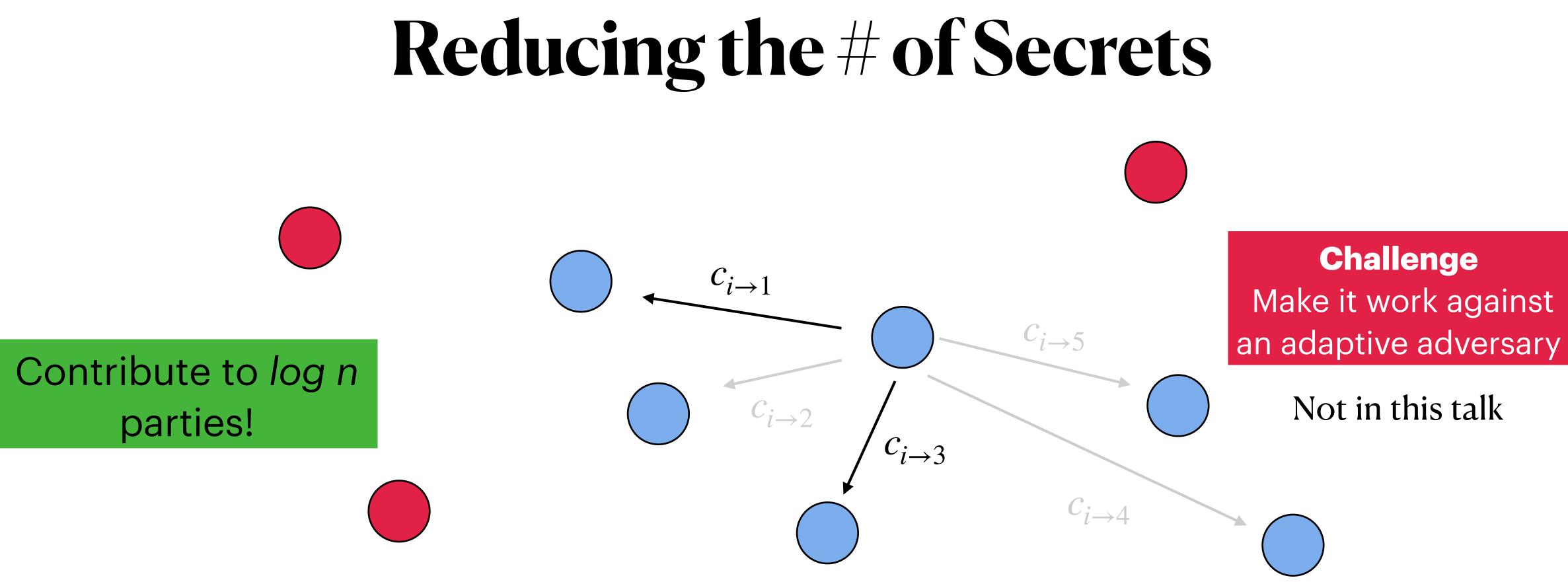
### We need: With high probability each party receives at least one honest contribution



### We need: With high probability each party receives at least one honest contribution

### Challenge Make it work against an adaptive adversary





### We need: With high probability each party receives at least one honest contribution



### Each party contributes to log n parties chosen uniformly at random

### Each party contributes to log n parties chosen uniformly at random

Pr[No honest *j* contributes to *i*]

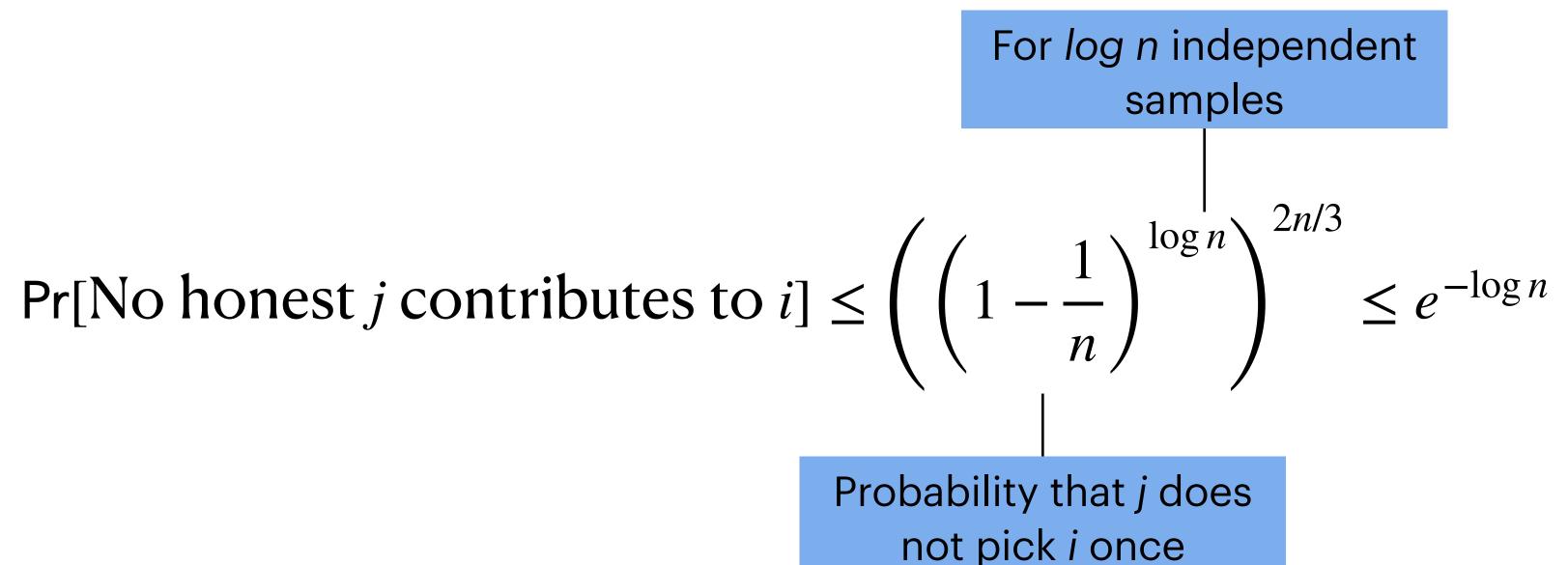
$$i] \le \left( \left( 1 - \frac{1}{n} \right)^{\log n} \right)^{2n/3} \le e^{-\log n}$$

### Each party contributes to log n parties chosen uniformly at random

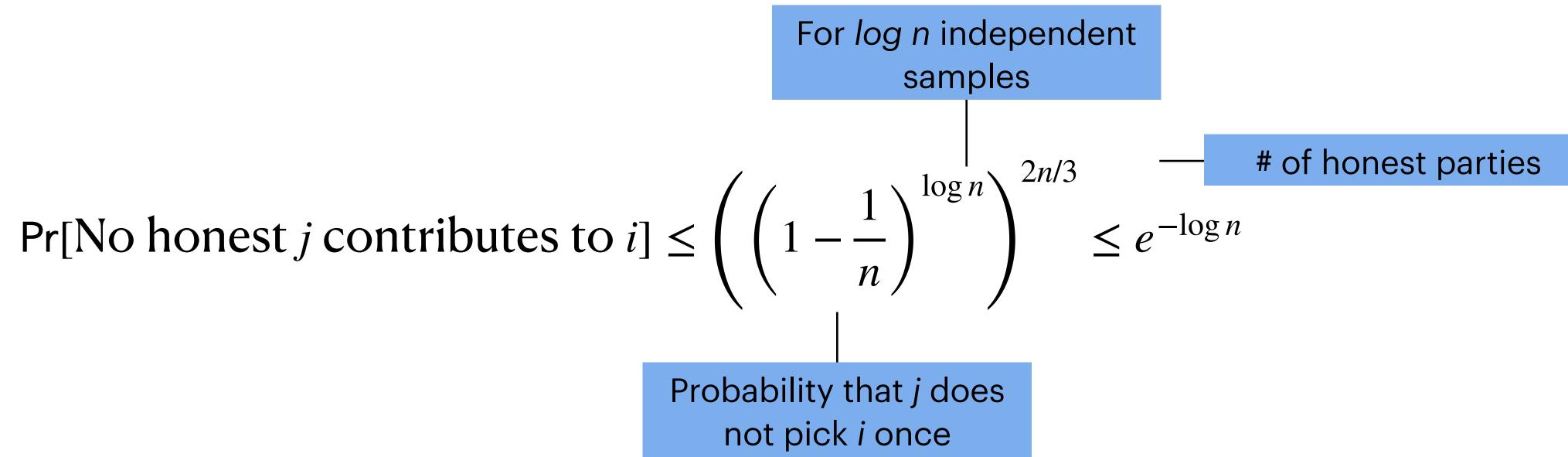
Pr[No honest *j* contributes to *j* 

$$i] \leq \left( \left( 1 - \frac{1}{n} \right)^{\log n} \right)^{2n/3} \leq e^{-\log n}$$
  
Probability that *j* does  
not pick *i* once

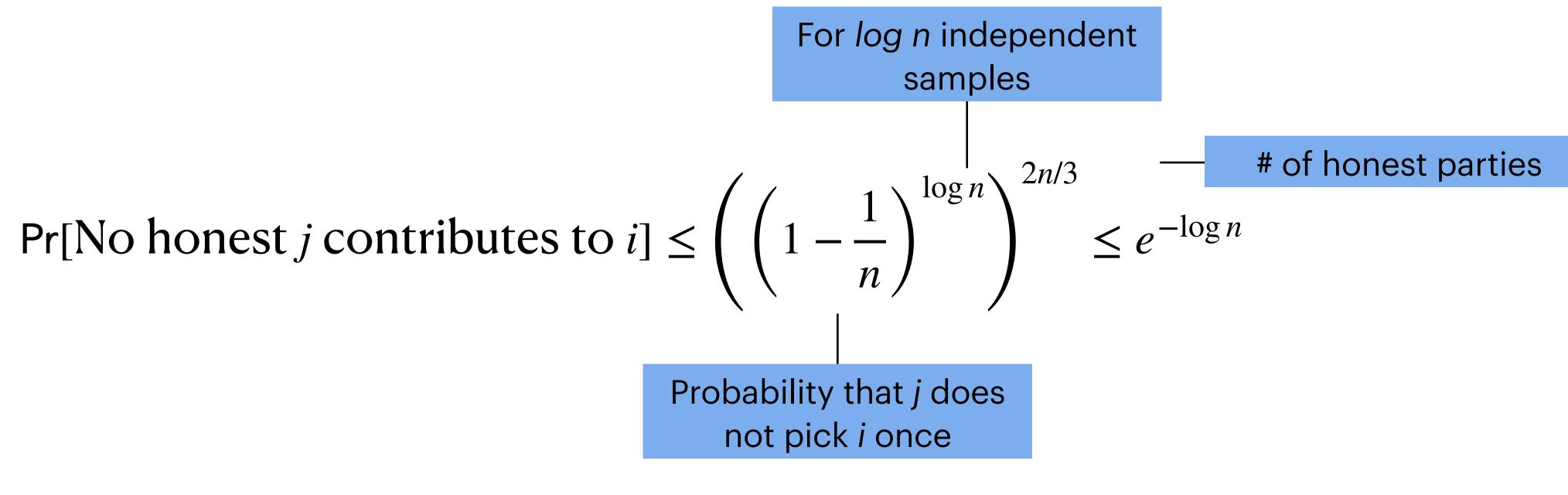
### Each party contributes to *log n* parties chosen uniformly at random



### Each party contributes to log n parties chosen uniformly at random

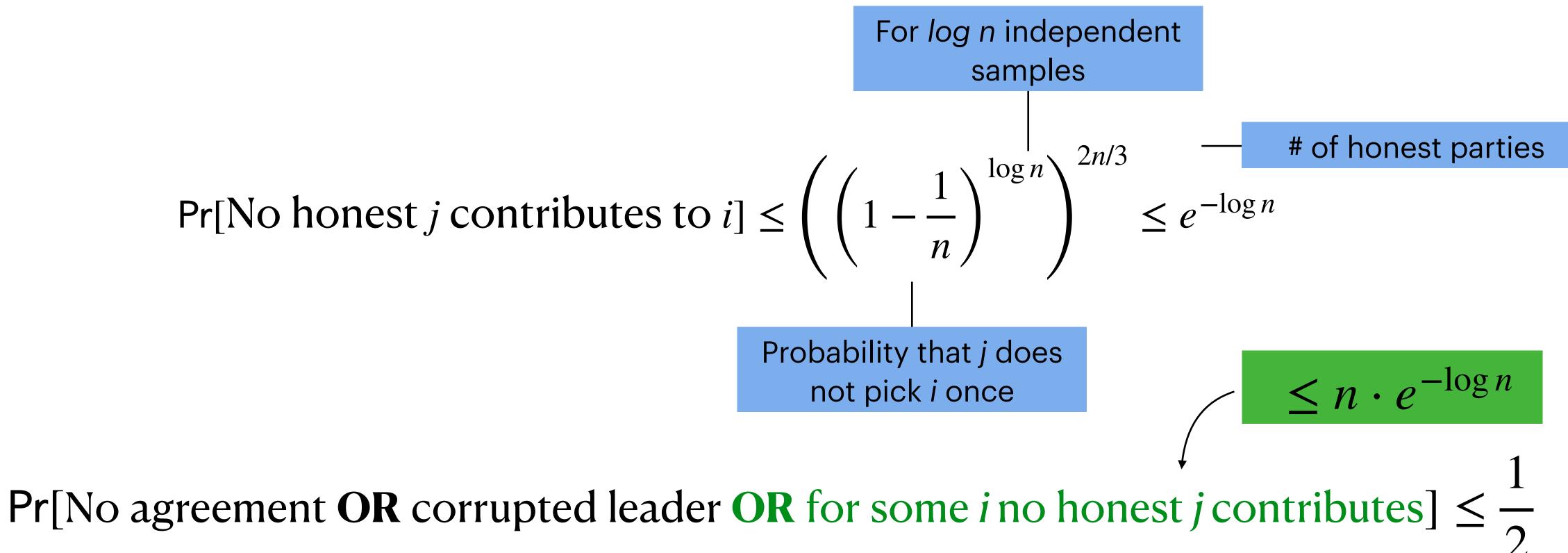


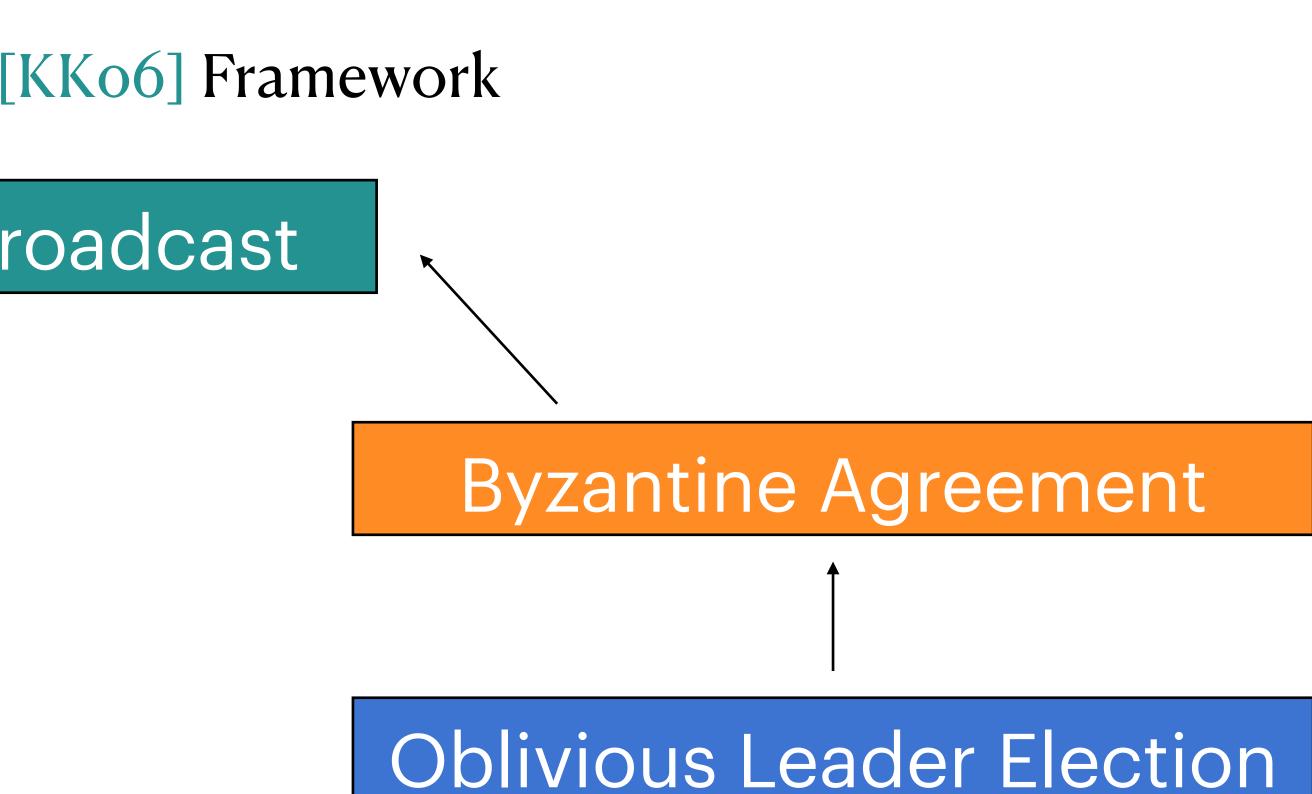
### Each party contributes to log n parties chosen uniformly at random

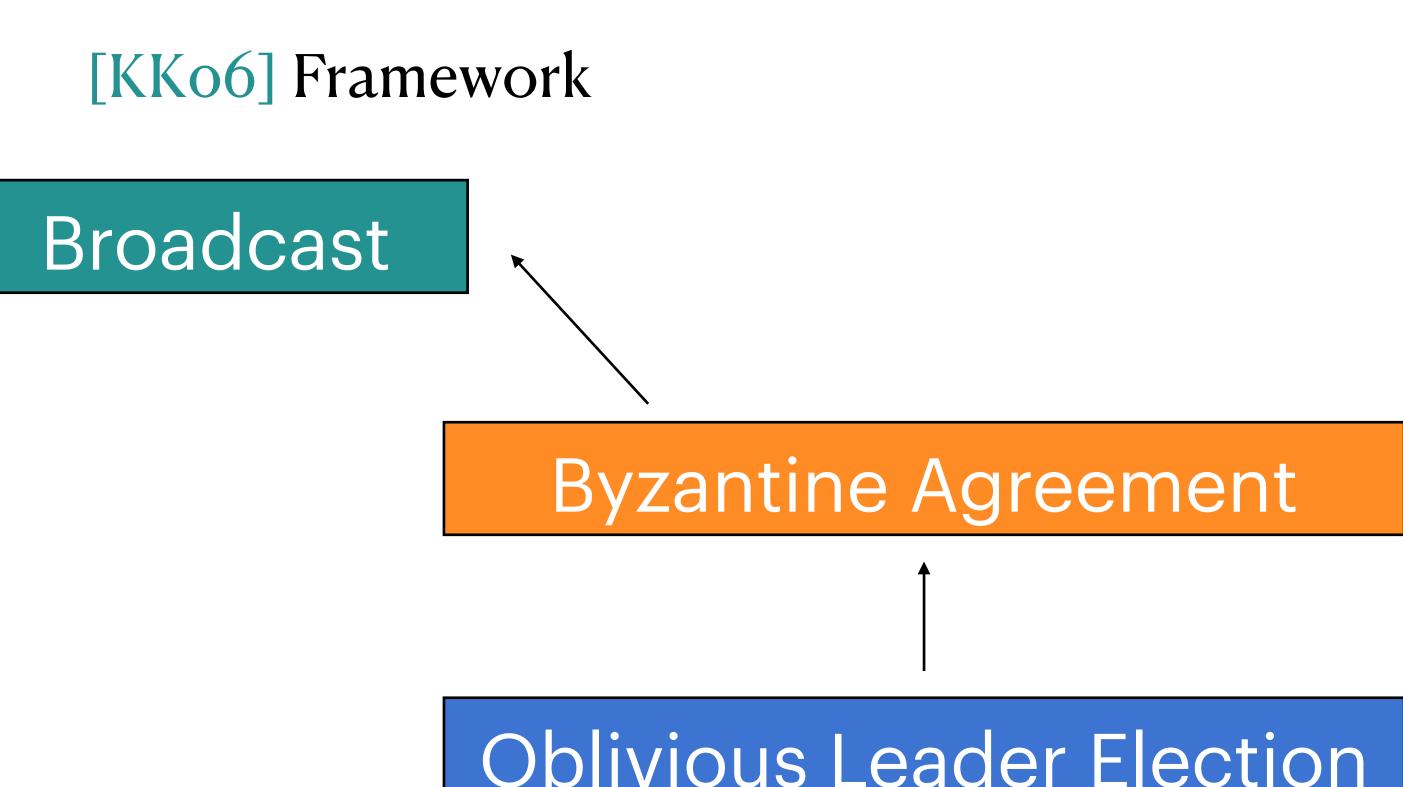


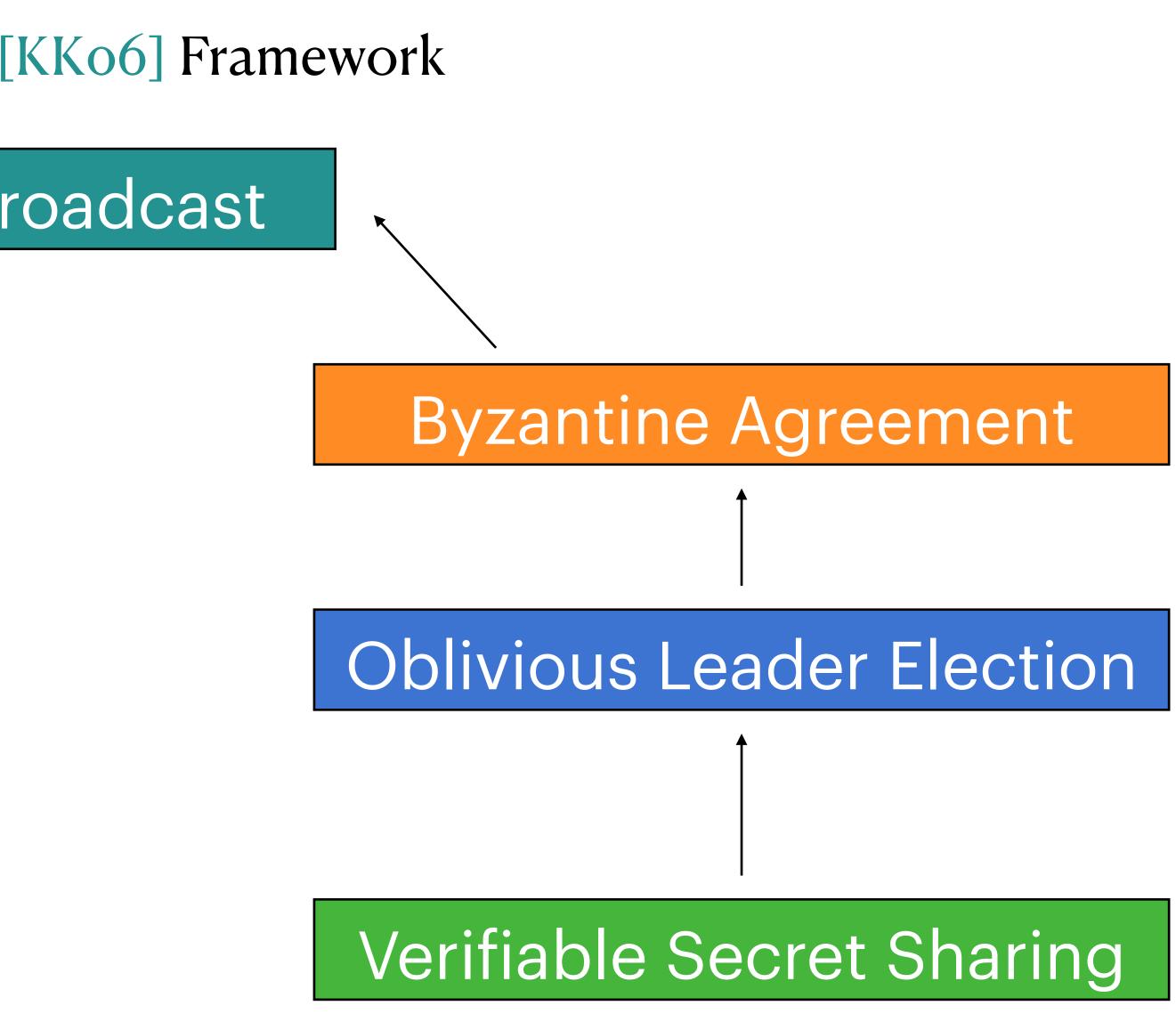
 $\Pr[\text{No agreement OR corrupted leader OR for some$ *i*no honest*j* $contributes}] \leq \cdot$ 

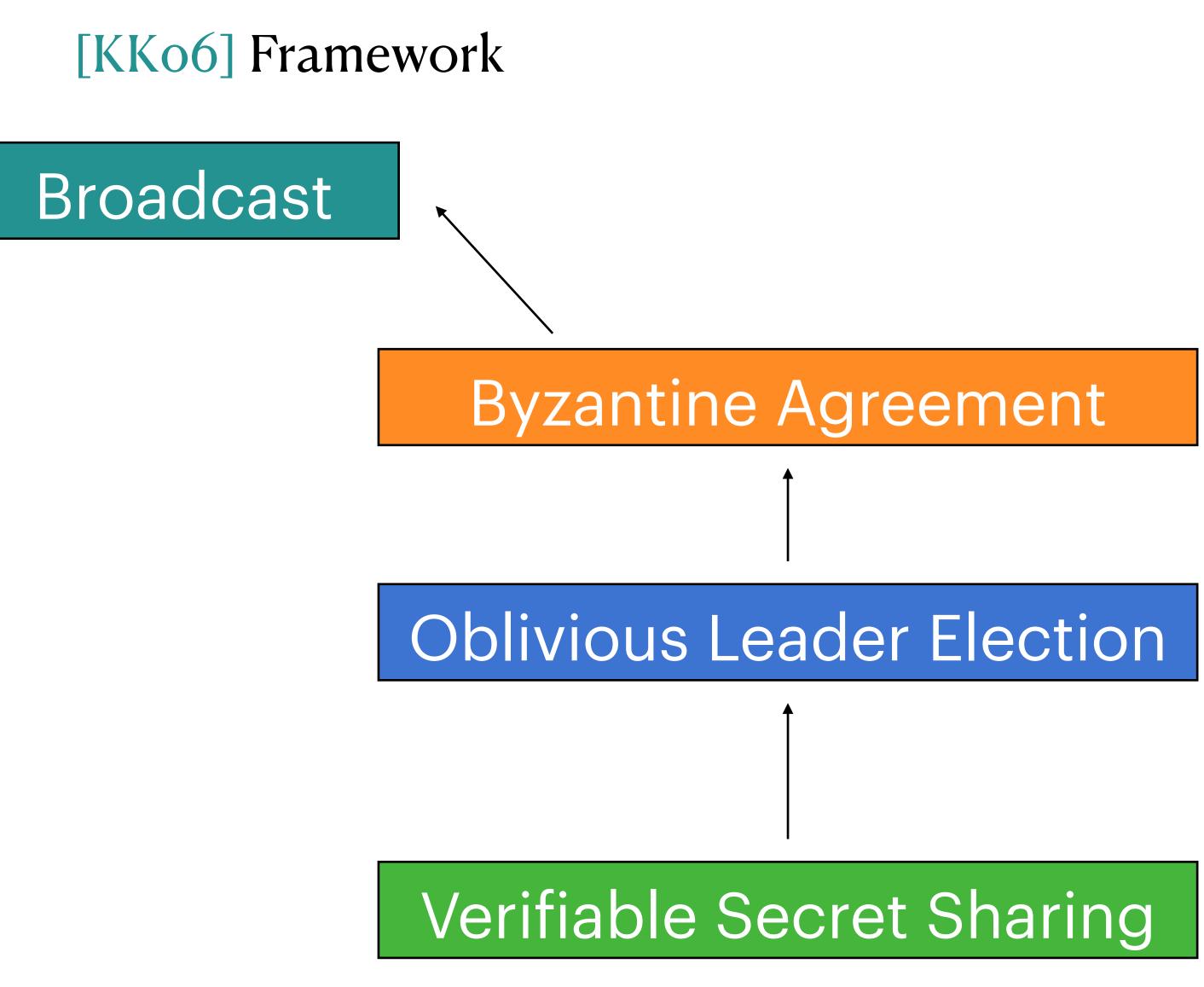
### Each party contributes to log n parties chosen uniformly at random

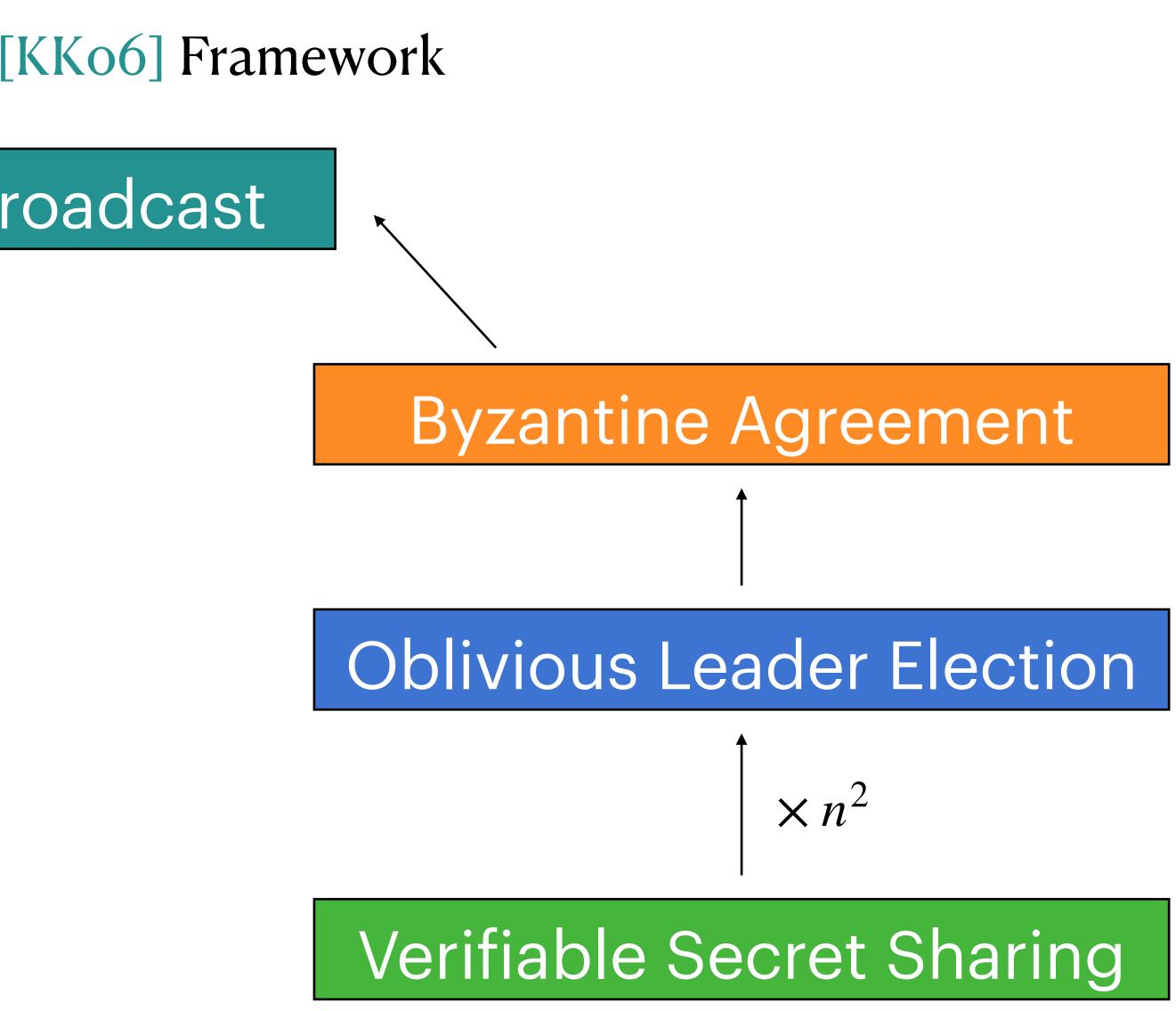


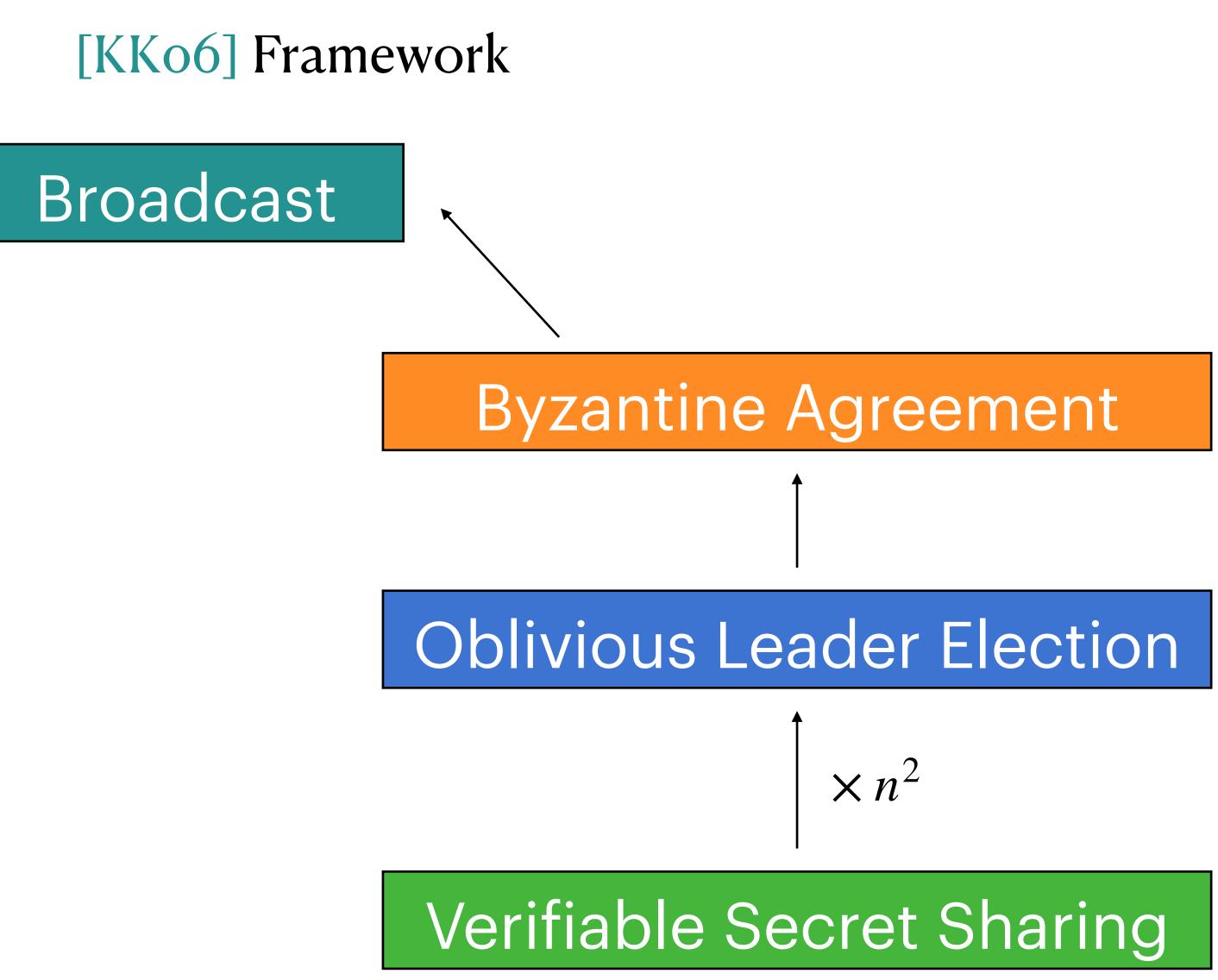


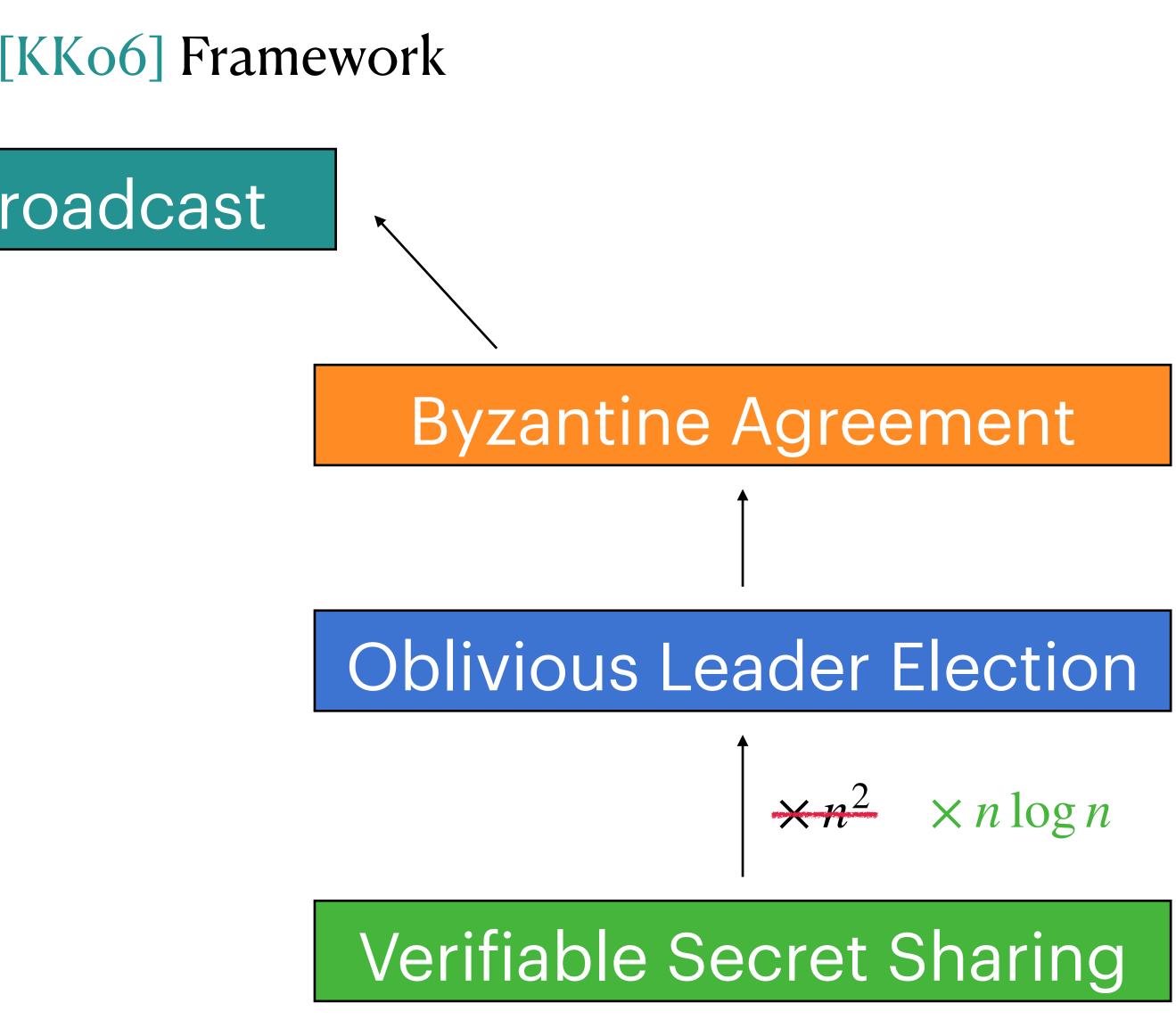


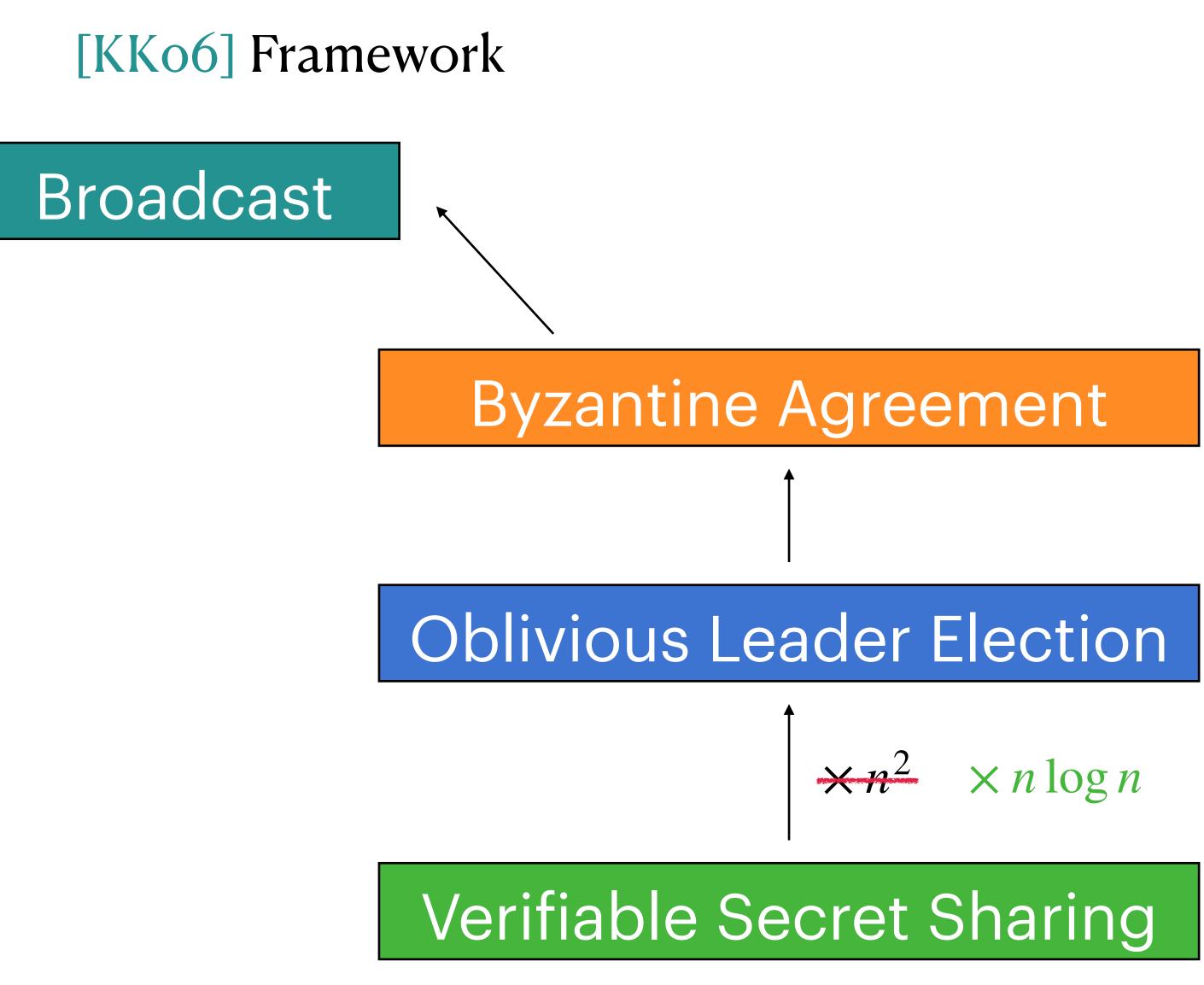


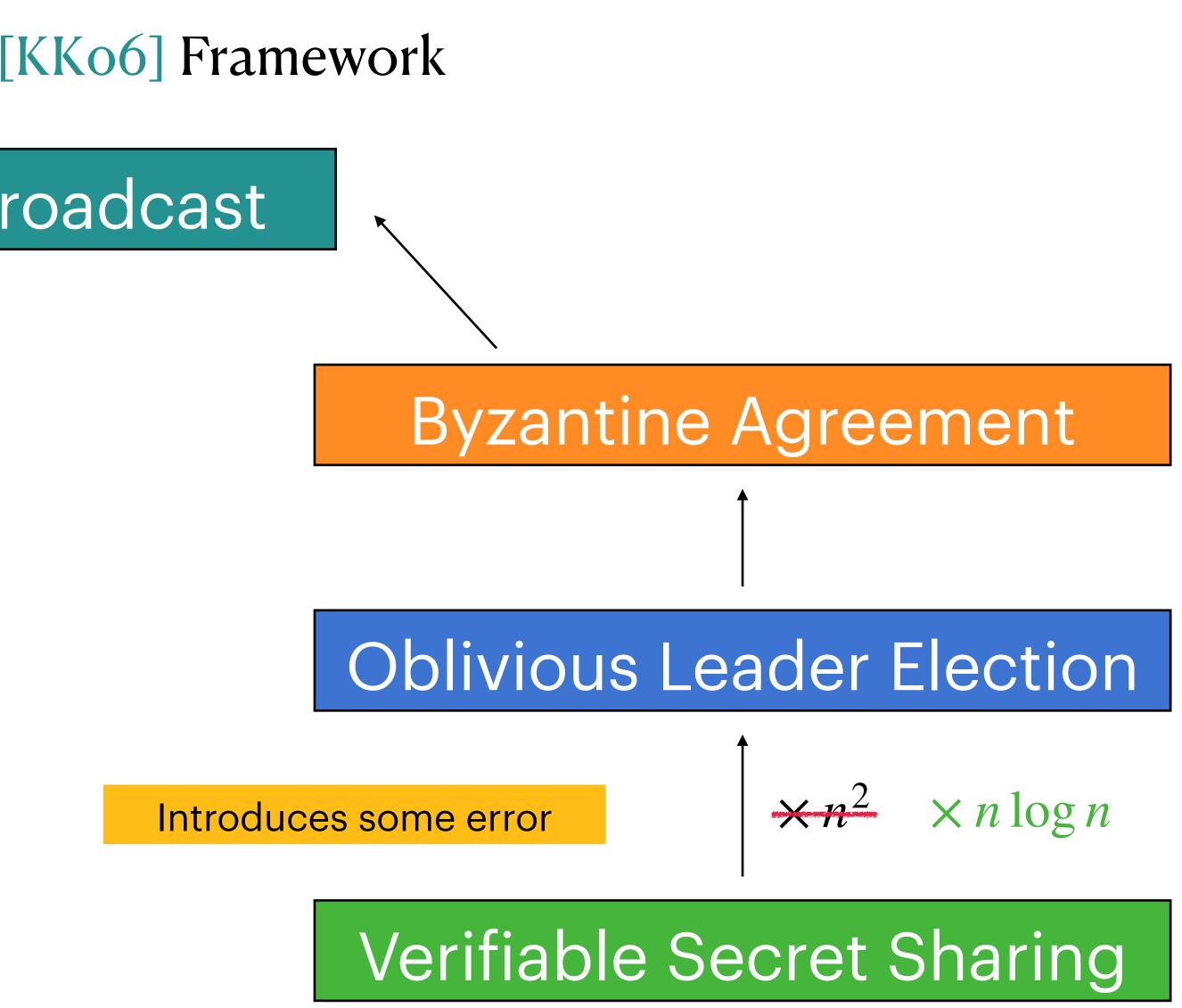


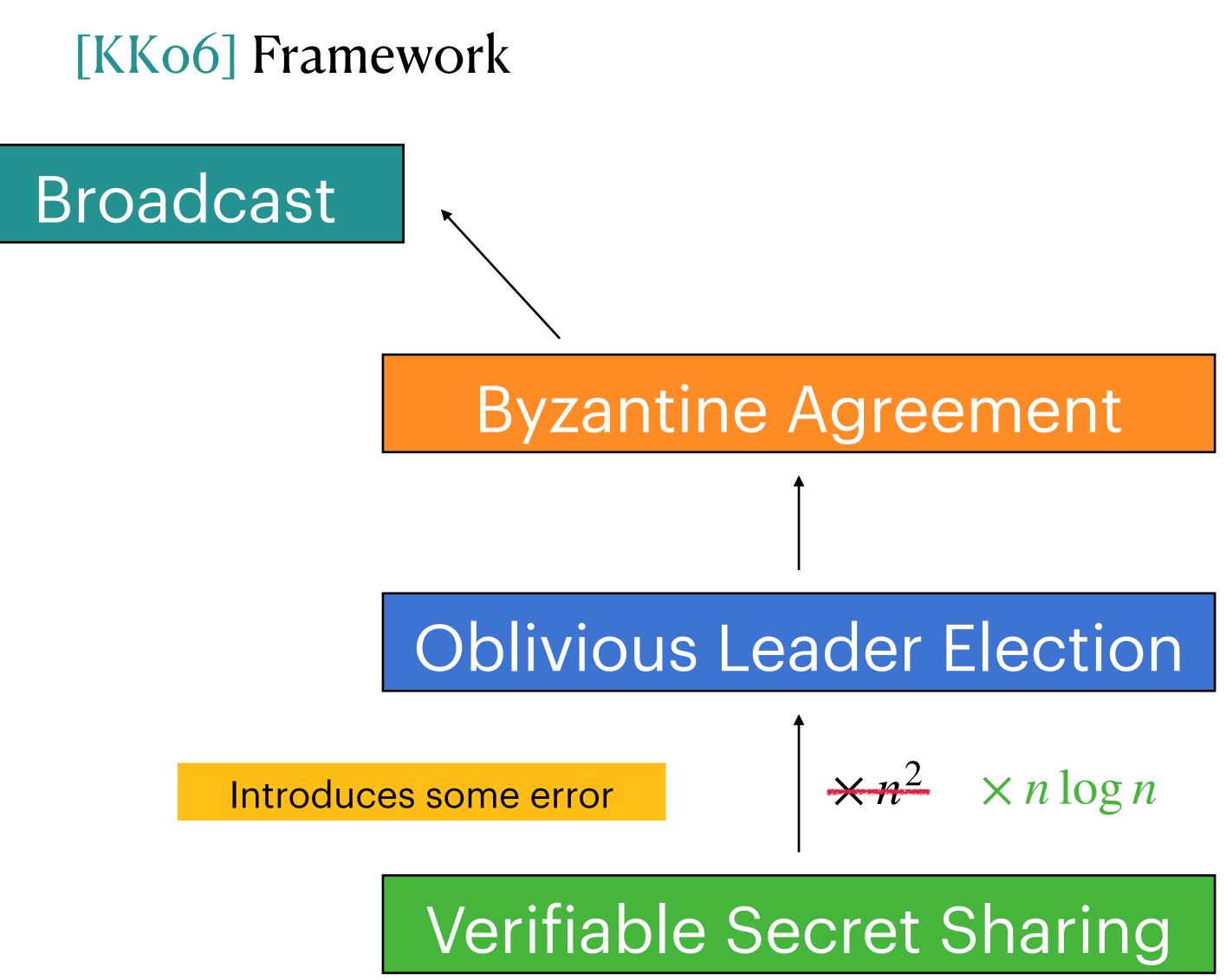












# Contributions

- Conceptual contributions:
  - Statistical OLE suffices
- Technical contributions:
  - Statistical OLE with lesser secrets

Information Theoretic Commitments!



Information Theoretic Commitments!

Dealer



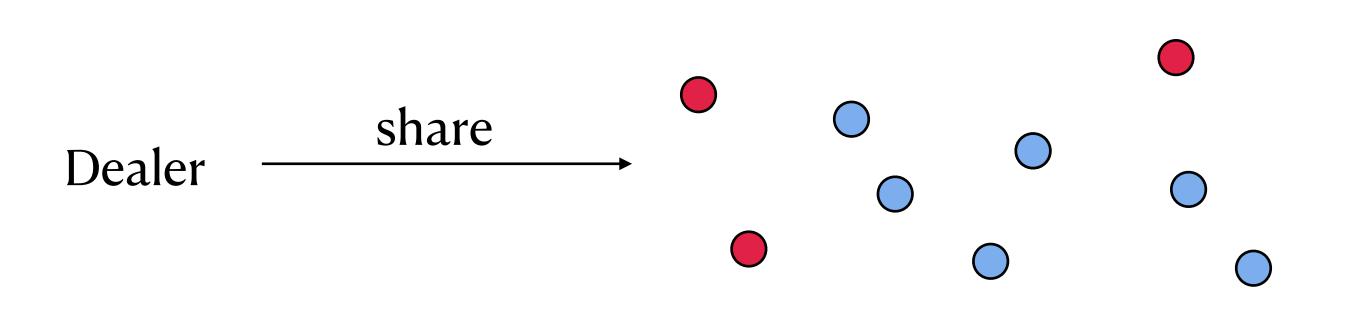
Information Theoretic Commitments!

share

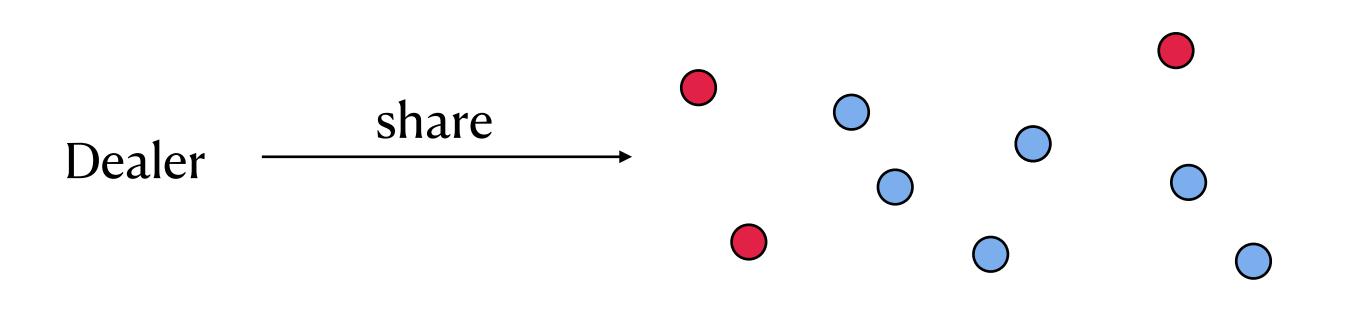
Dealer



**Information Theoretic Commitments!** 

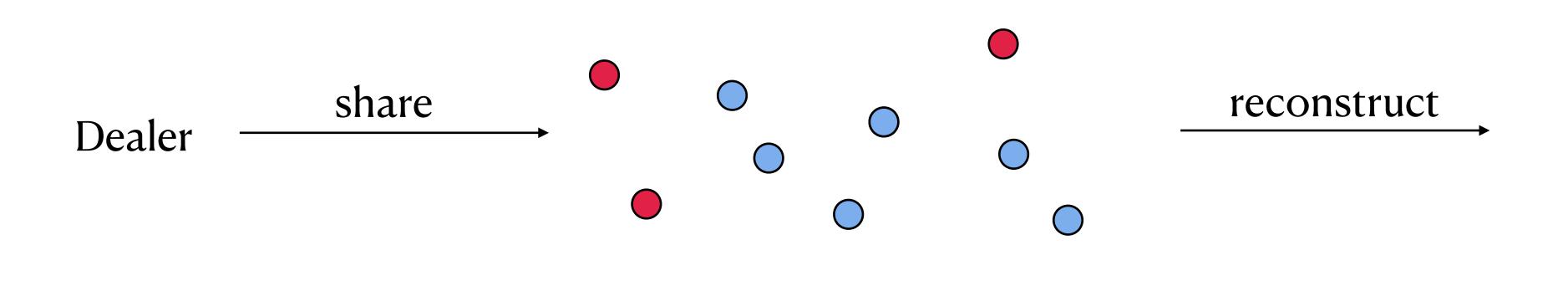






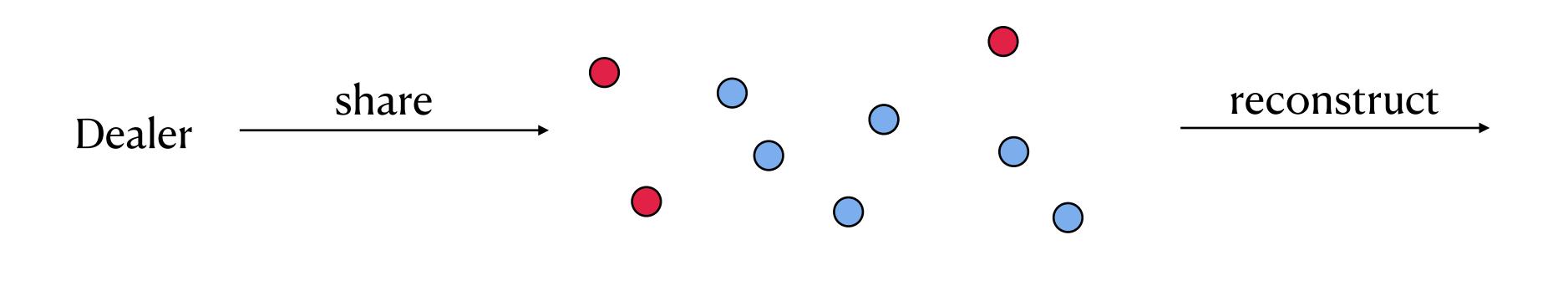
### **Information Theoretic Commitments!**

reconstruct



- Designated dealer can "share" a secret s among n parties
- Honest dealer: s is private and reconstruction succeeds
- Corrupt dealer: Some s' is defined and reconstruction succeeds

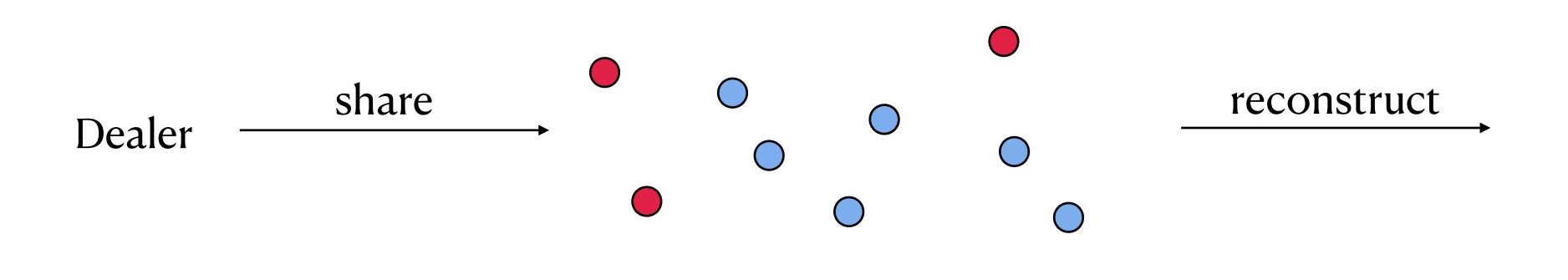
### **Information Theoretic Commitments!**



- Designated dealer can "share" a secret s among n parties
- Honest dealer: s is private and reconstruction succeeds
- Corrupt dealer: Some s' is defined and reconstruction succeeds

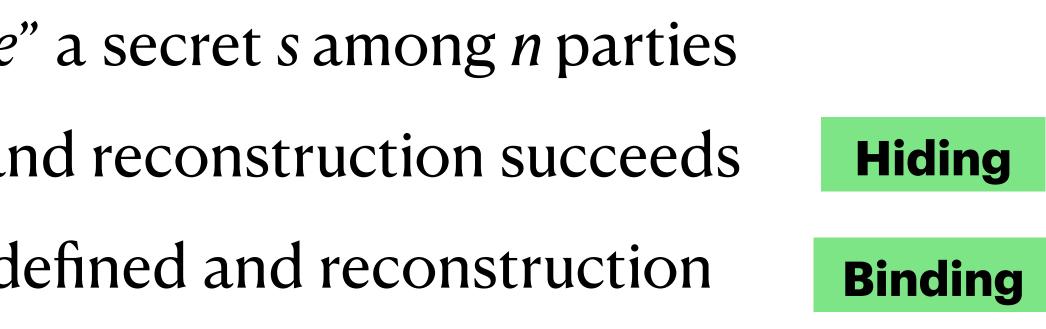
### Information Theoretic Commitments!

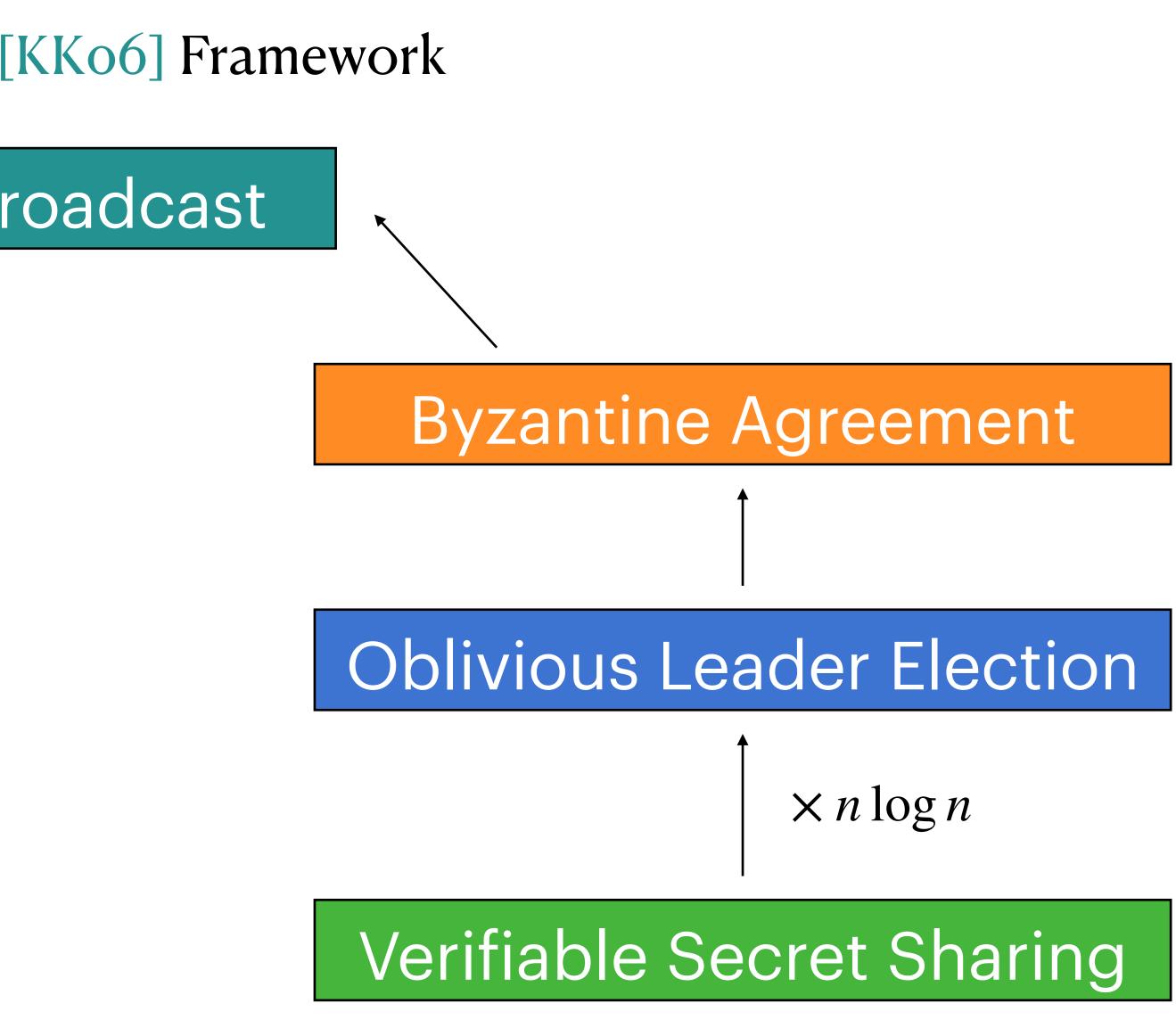
## e" a secret s among n parties and reconstruction succeeds **Hiding** defined and reconstruction

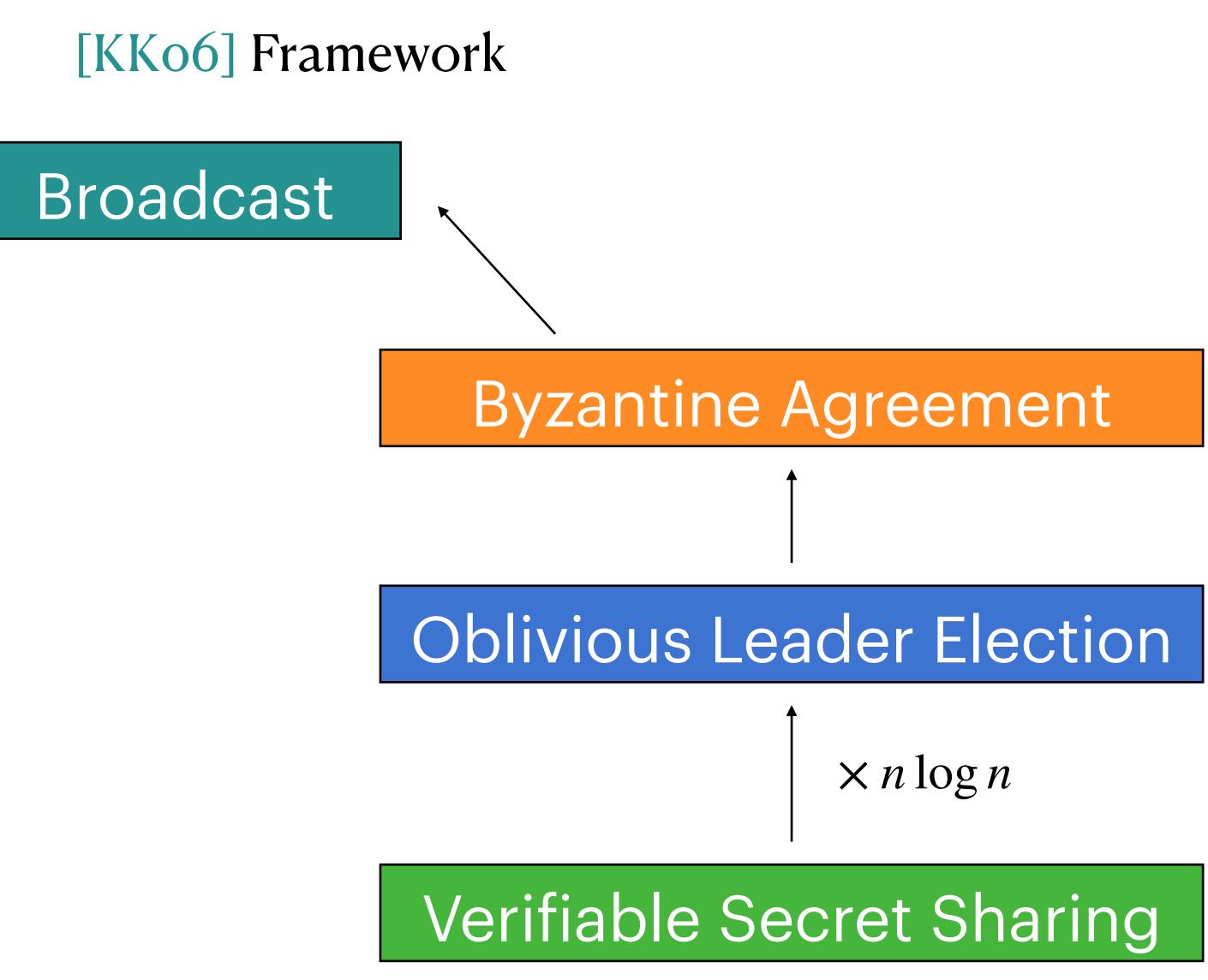


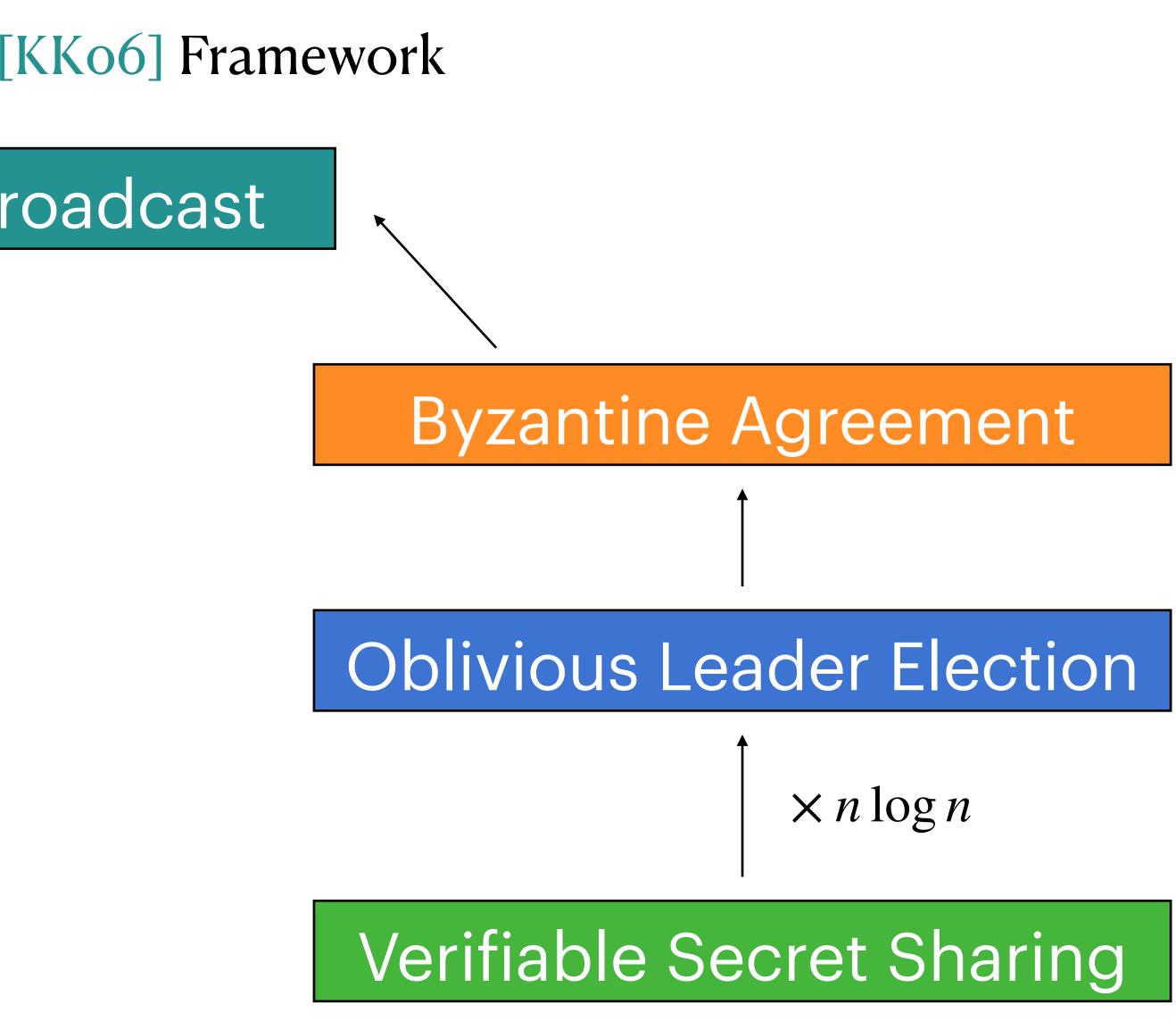
- Designated dealer can "share" a secret s among n parties
- Honest dealer: s is private and reconstruction succeeds
- Corrupt dealer: Some s' is defined and reconstruction succeeds

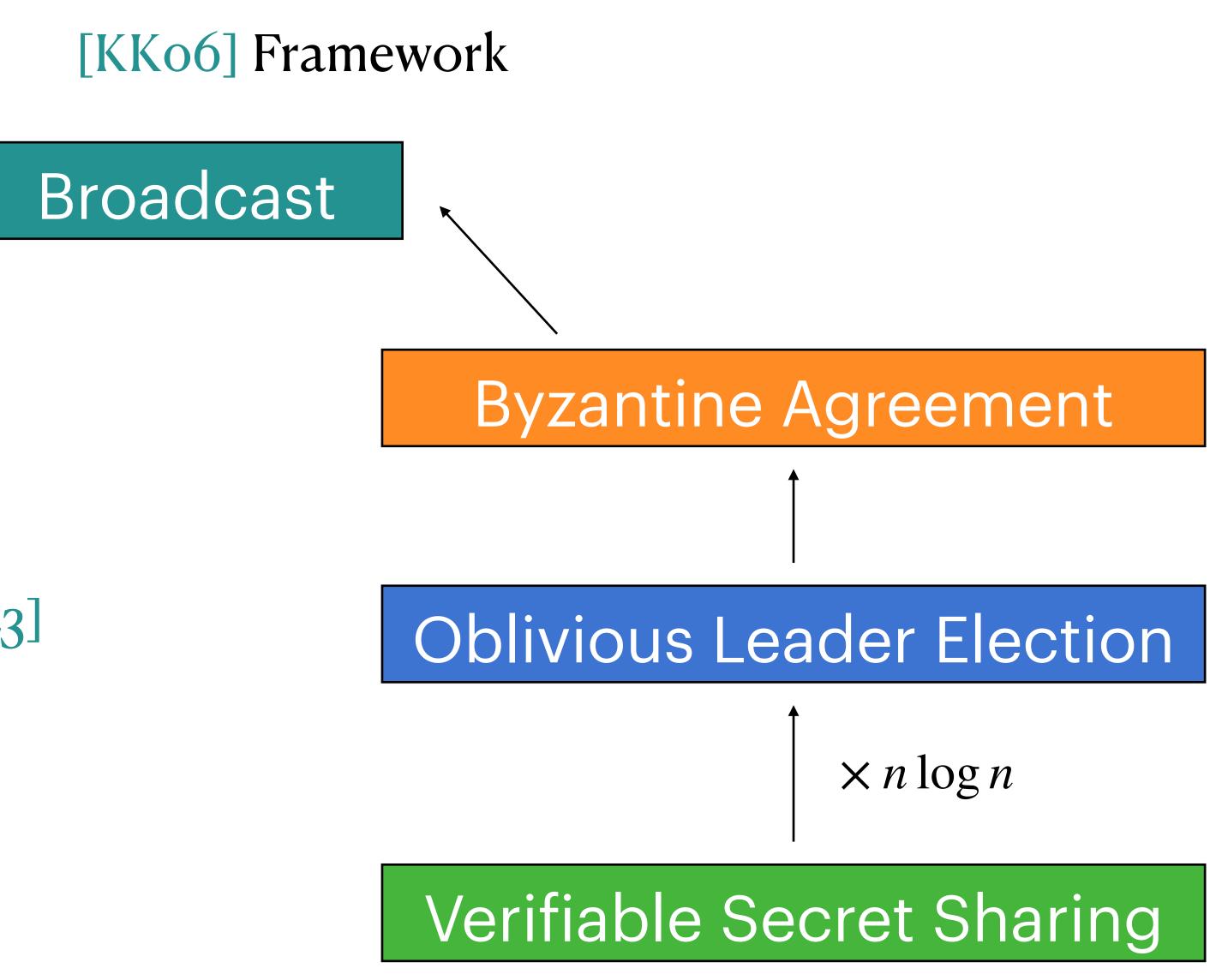
### Information Theoretic Commitments!

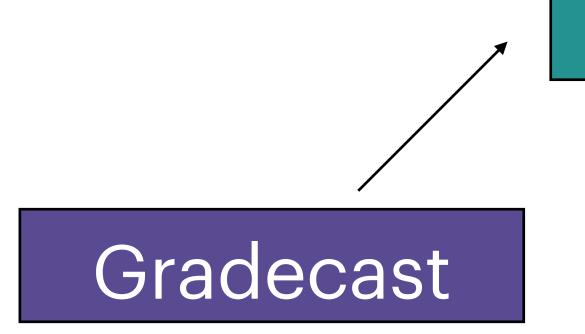


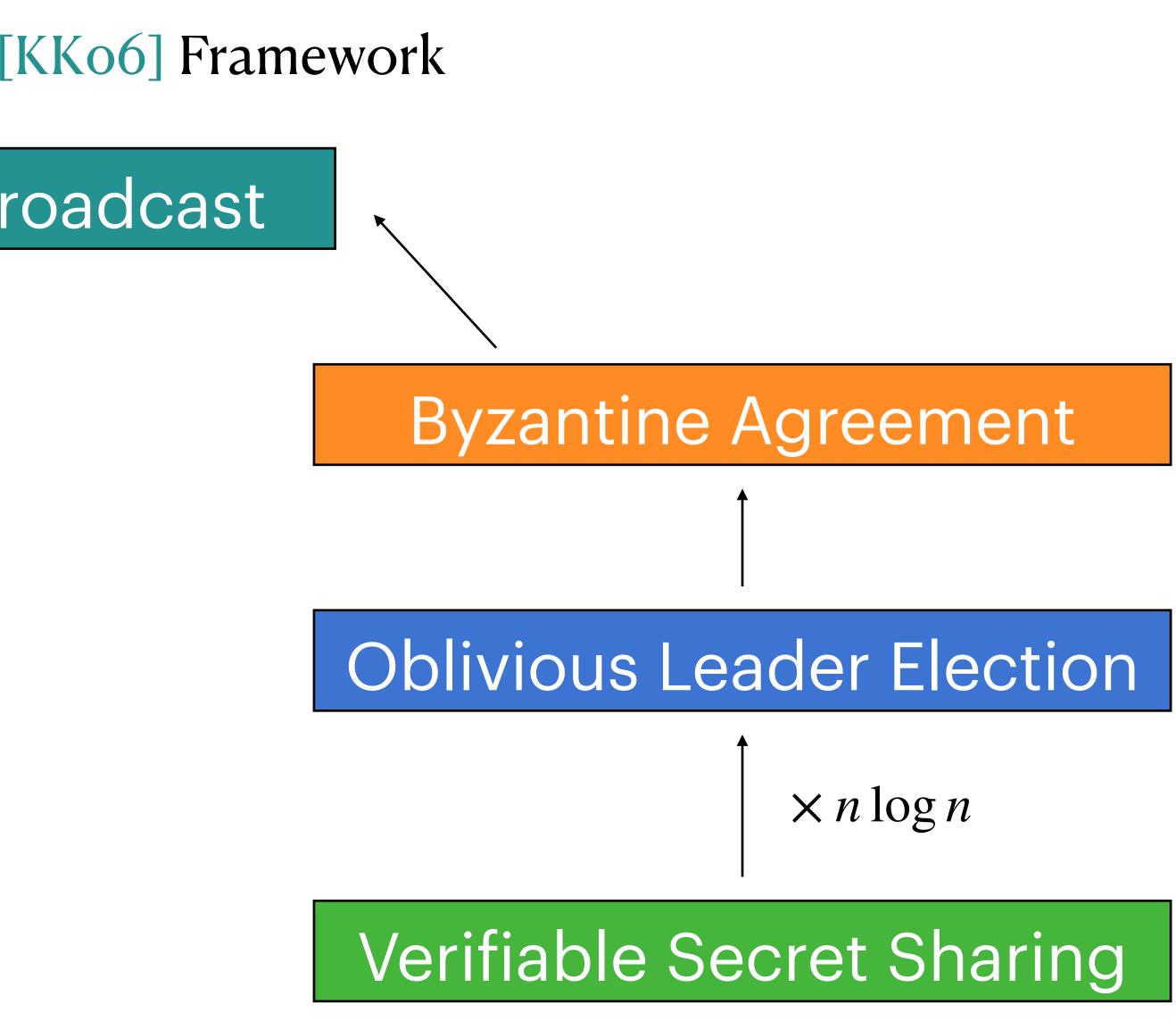


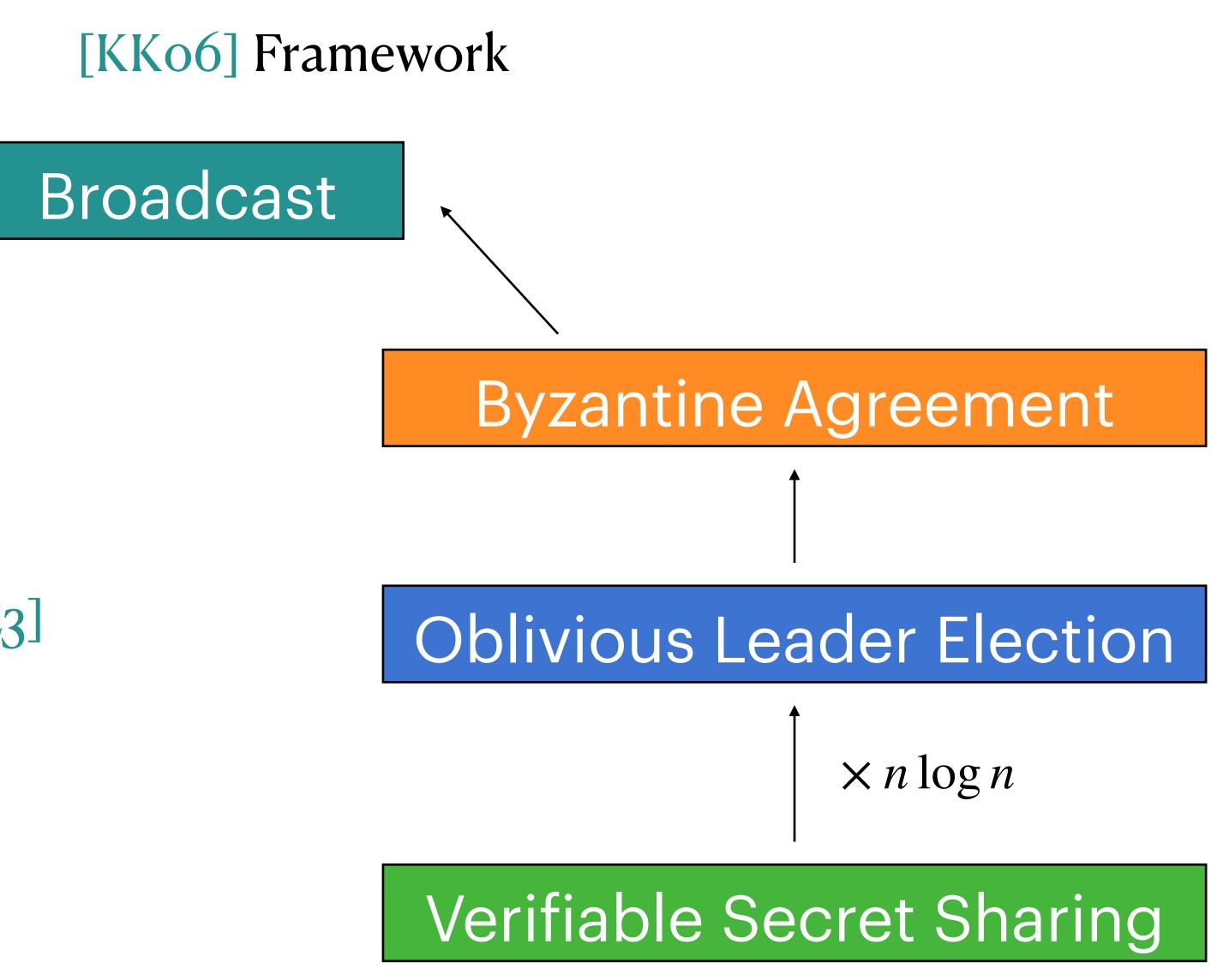


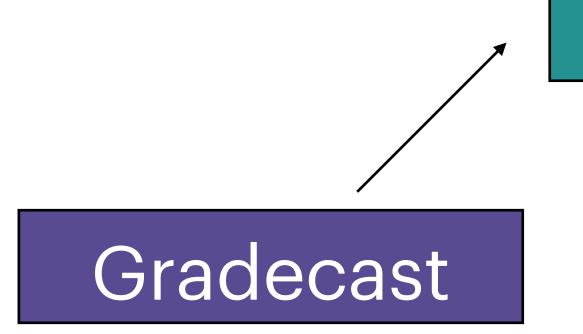




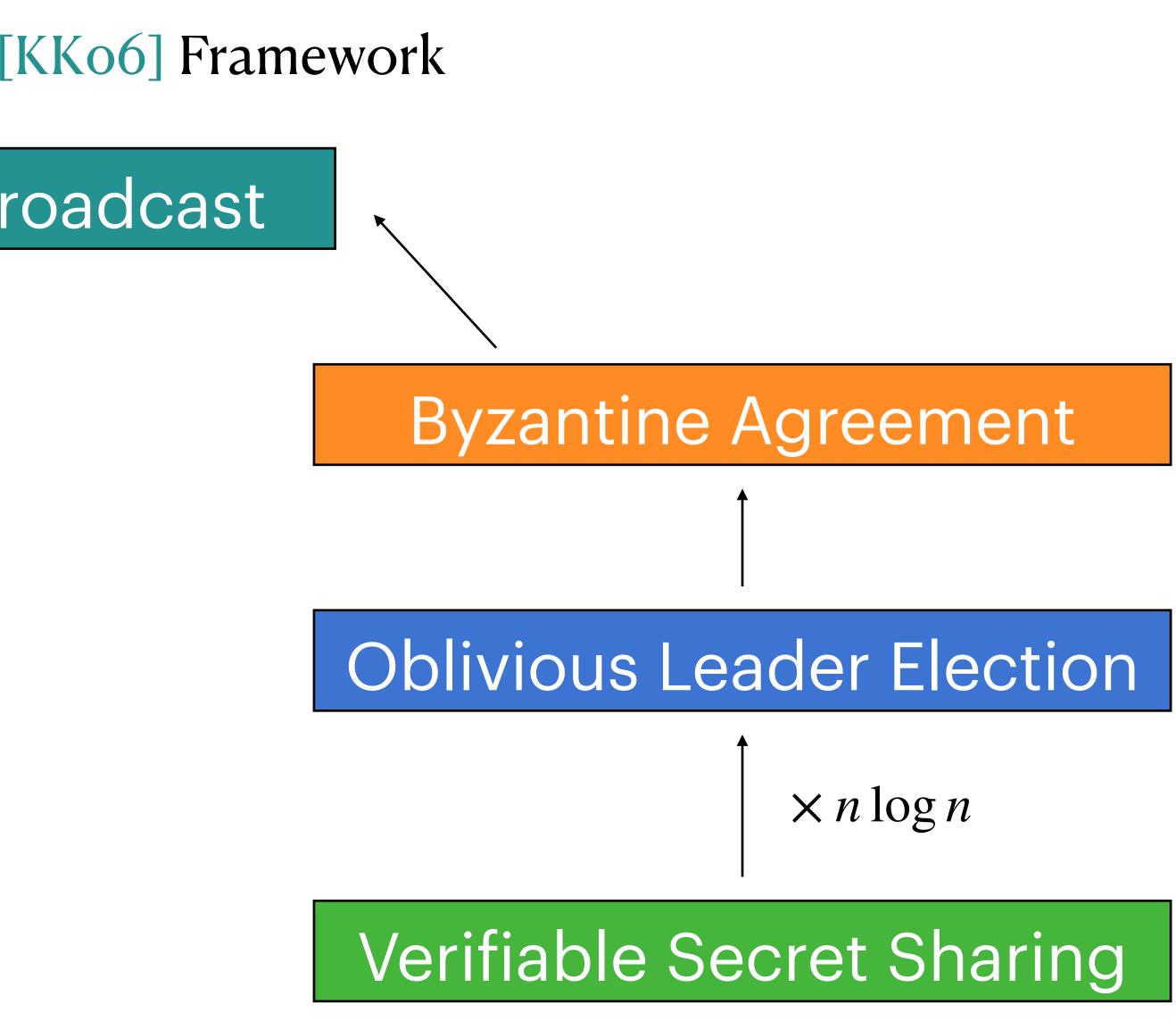


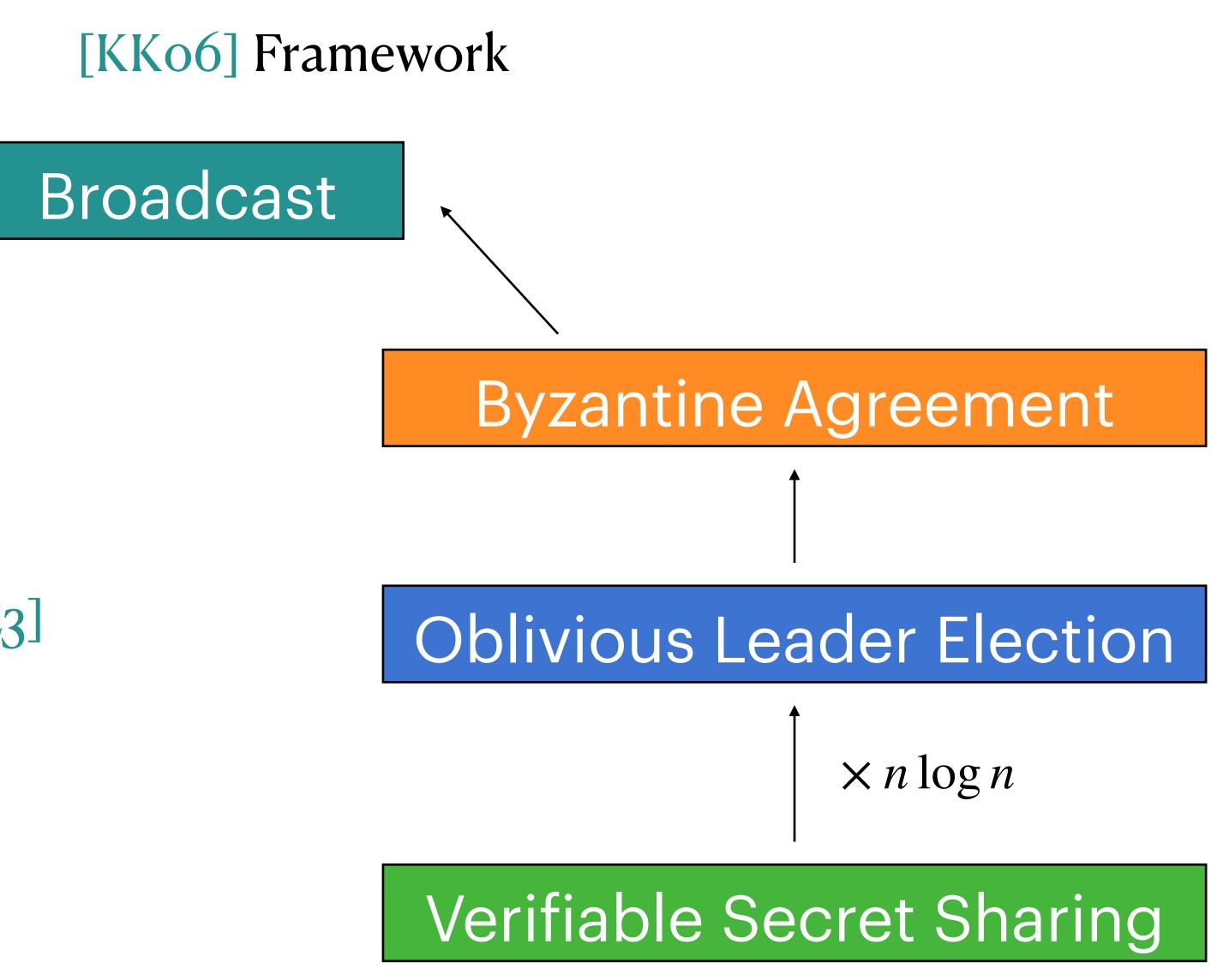


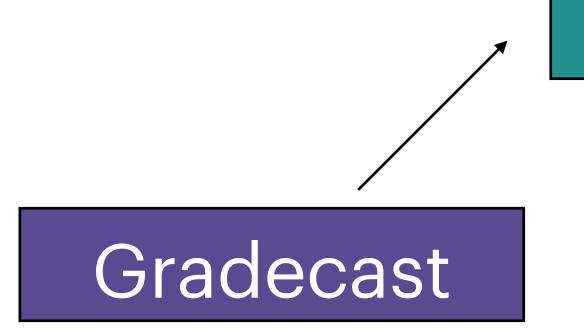




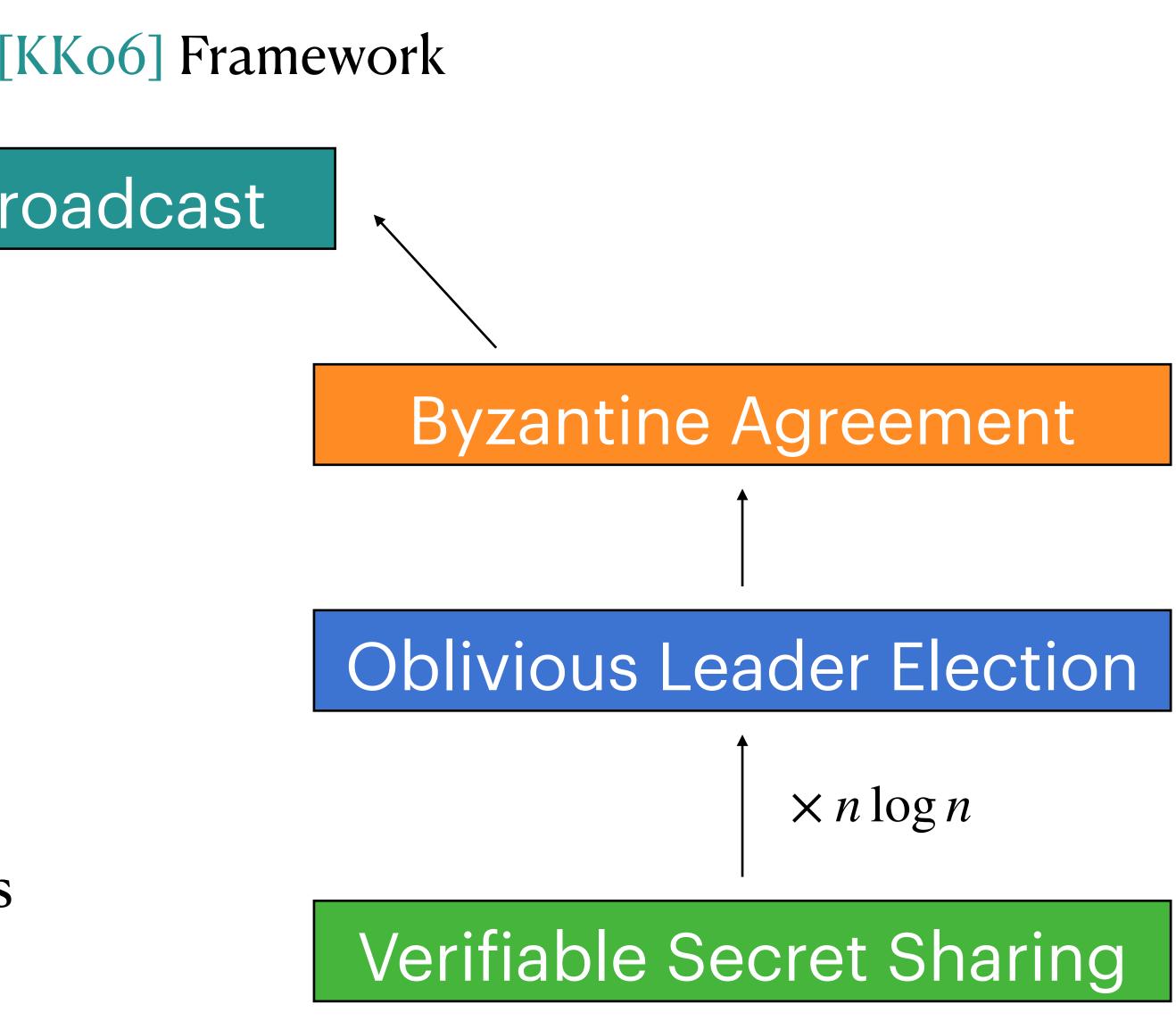
### Assuming ideal broadcast

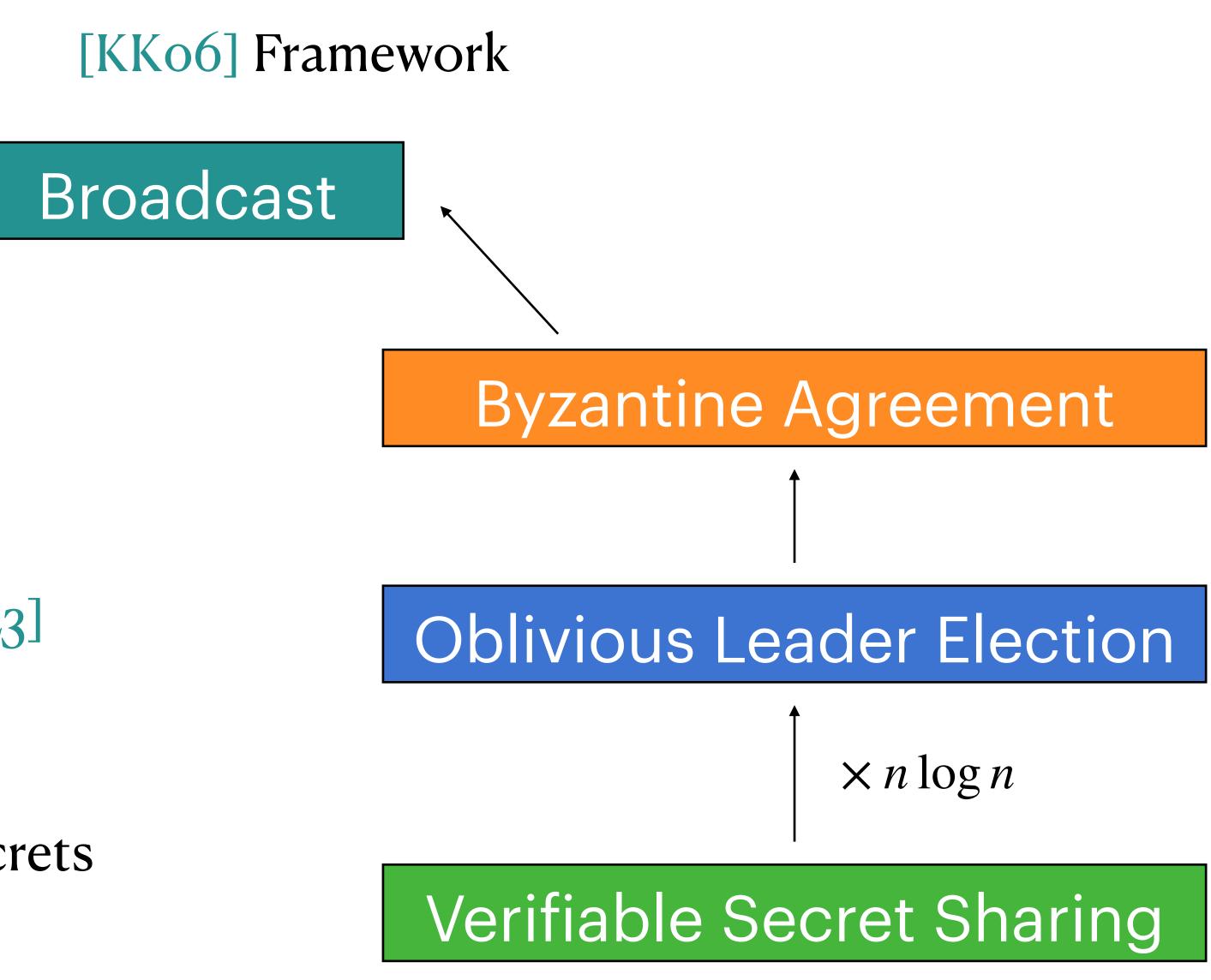


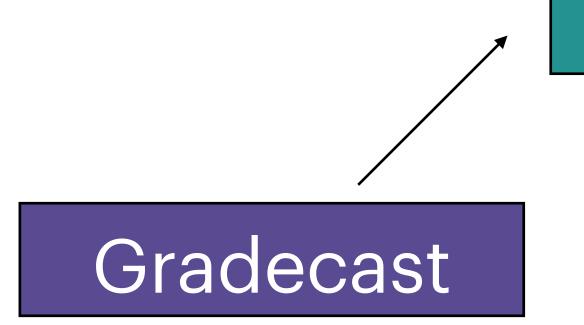


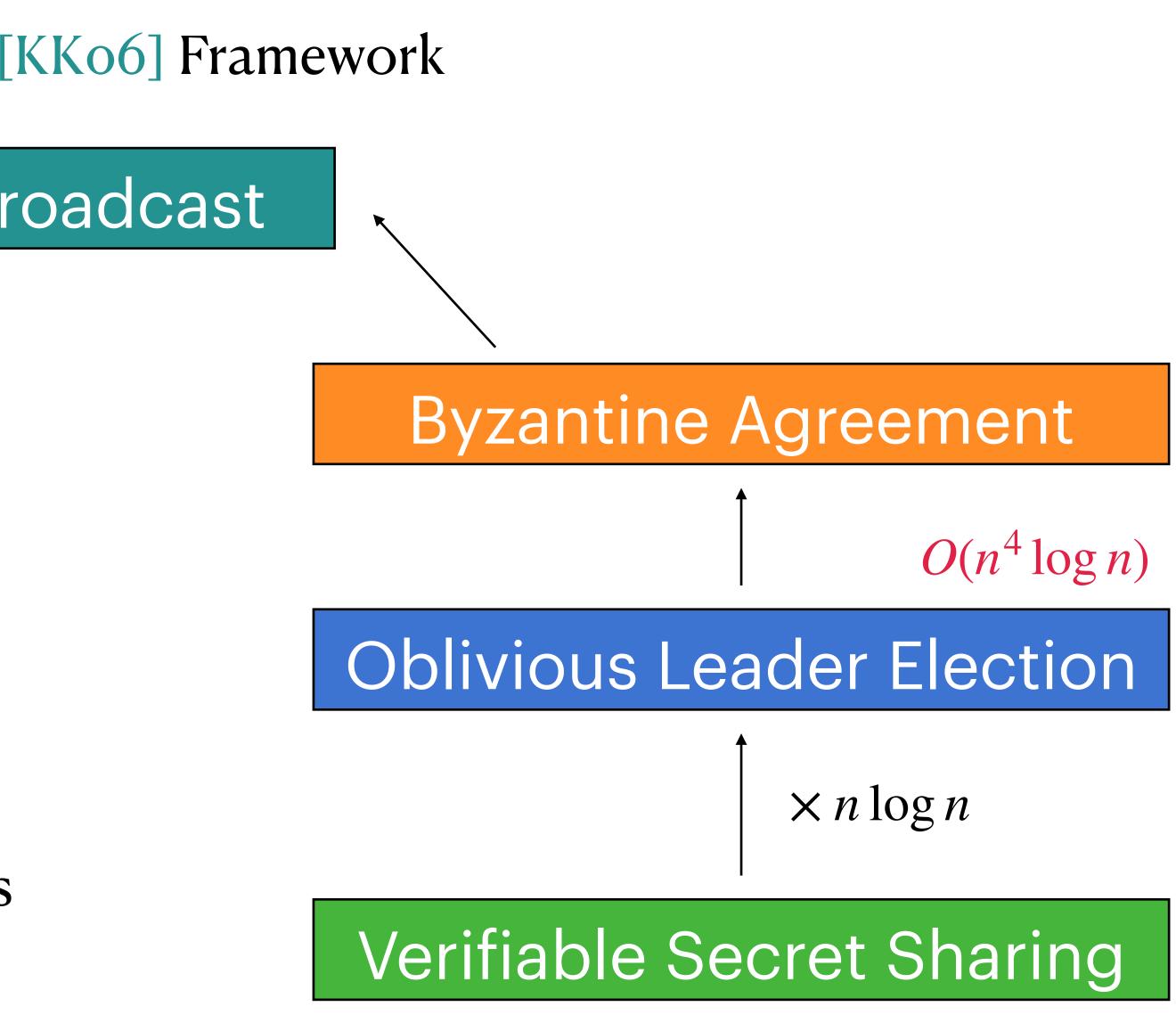


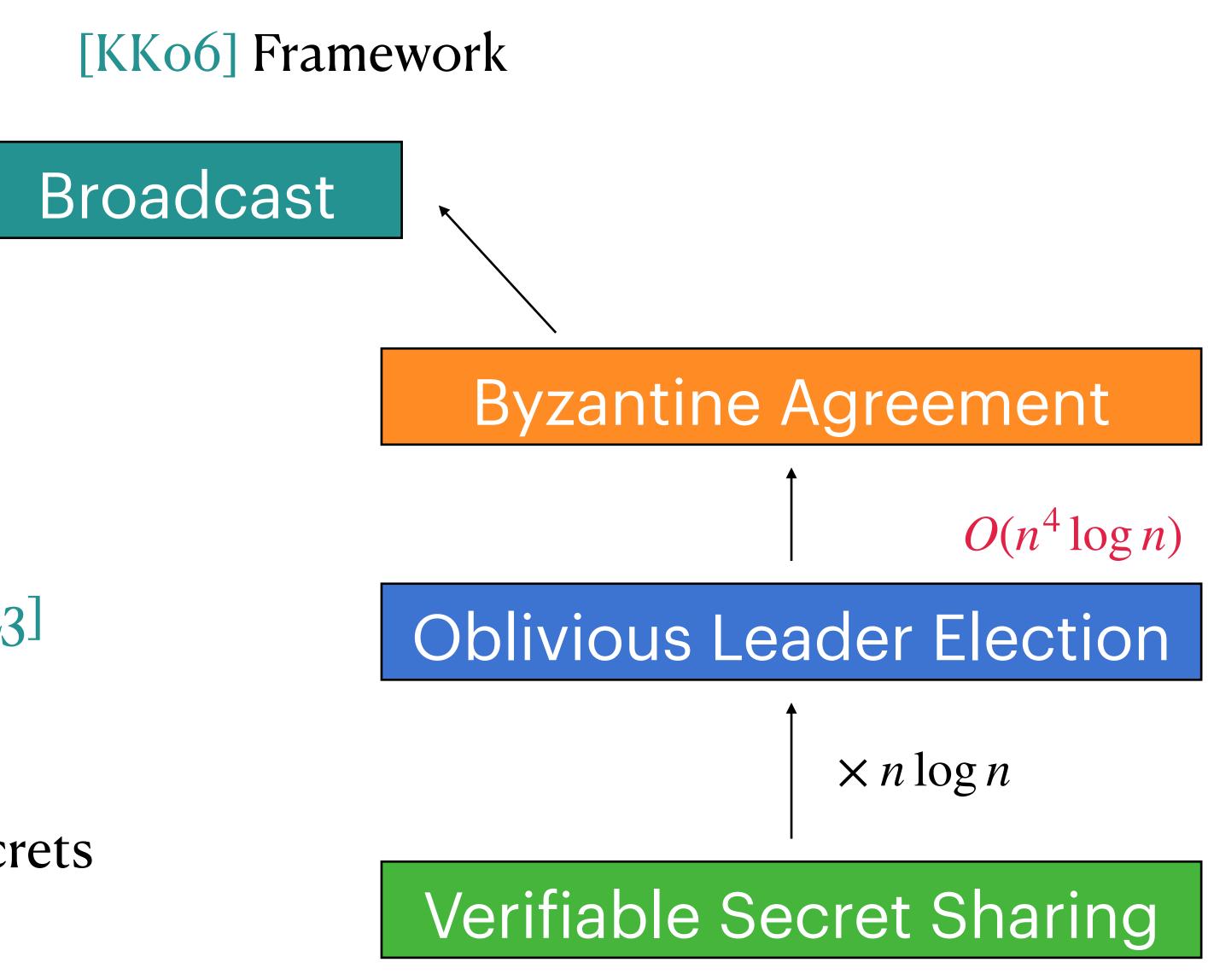
### Assuming ideal broadcast $\tilde{O}(mn + n^3)$ for *m* secrets

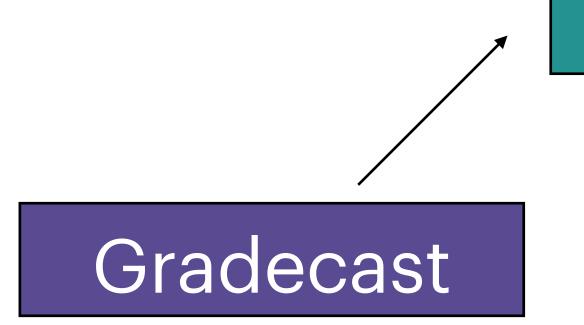


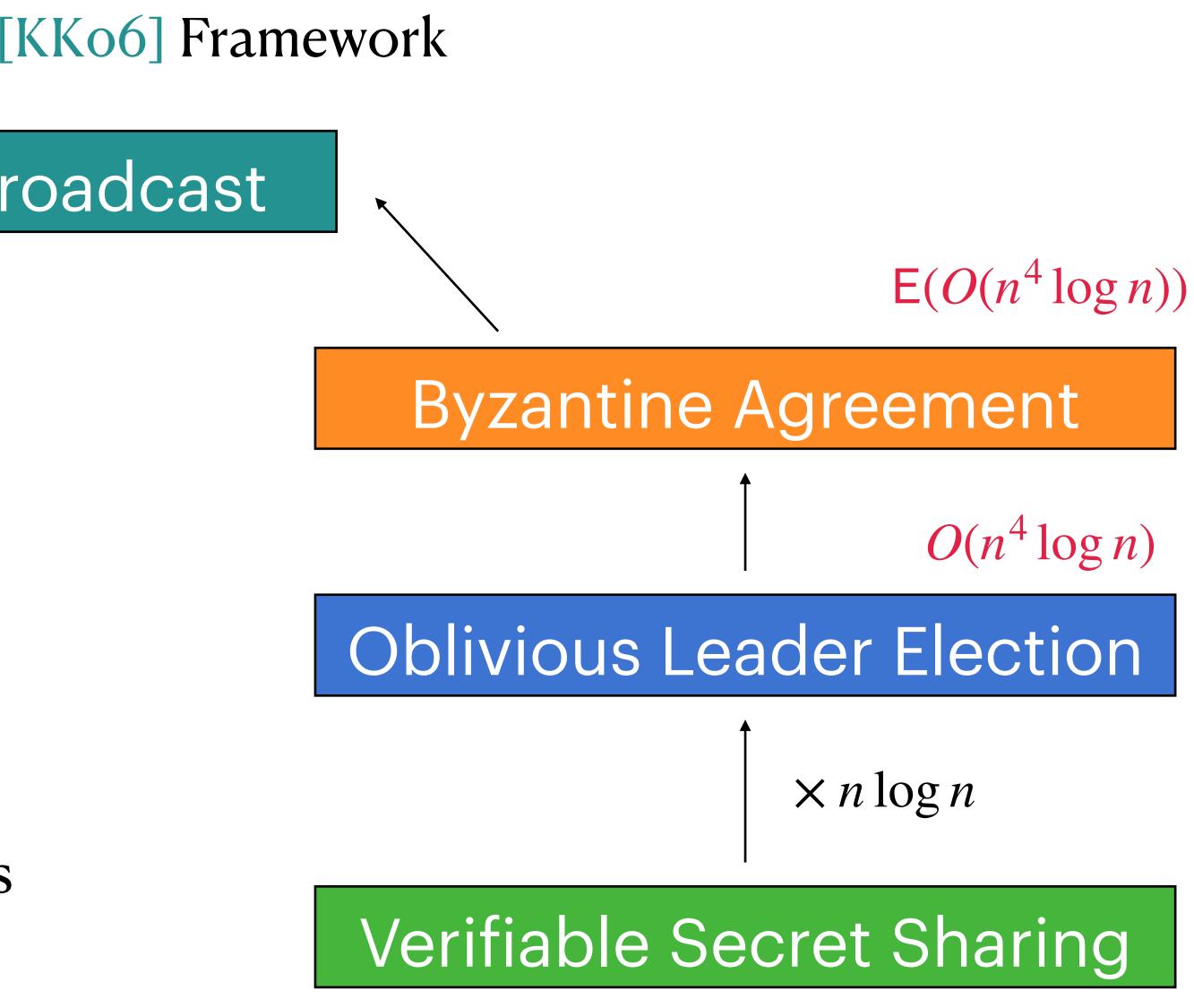


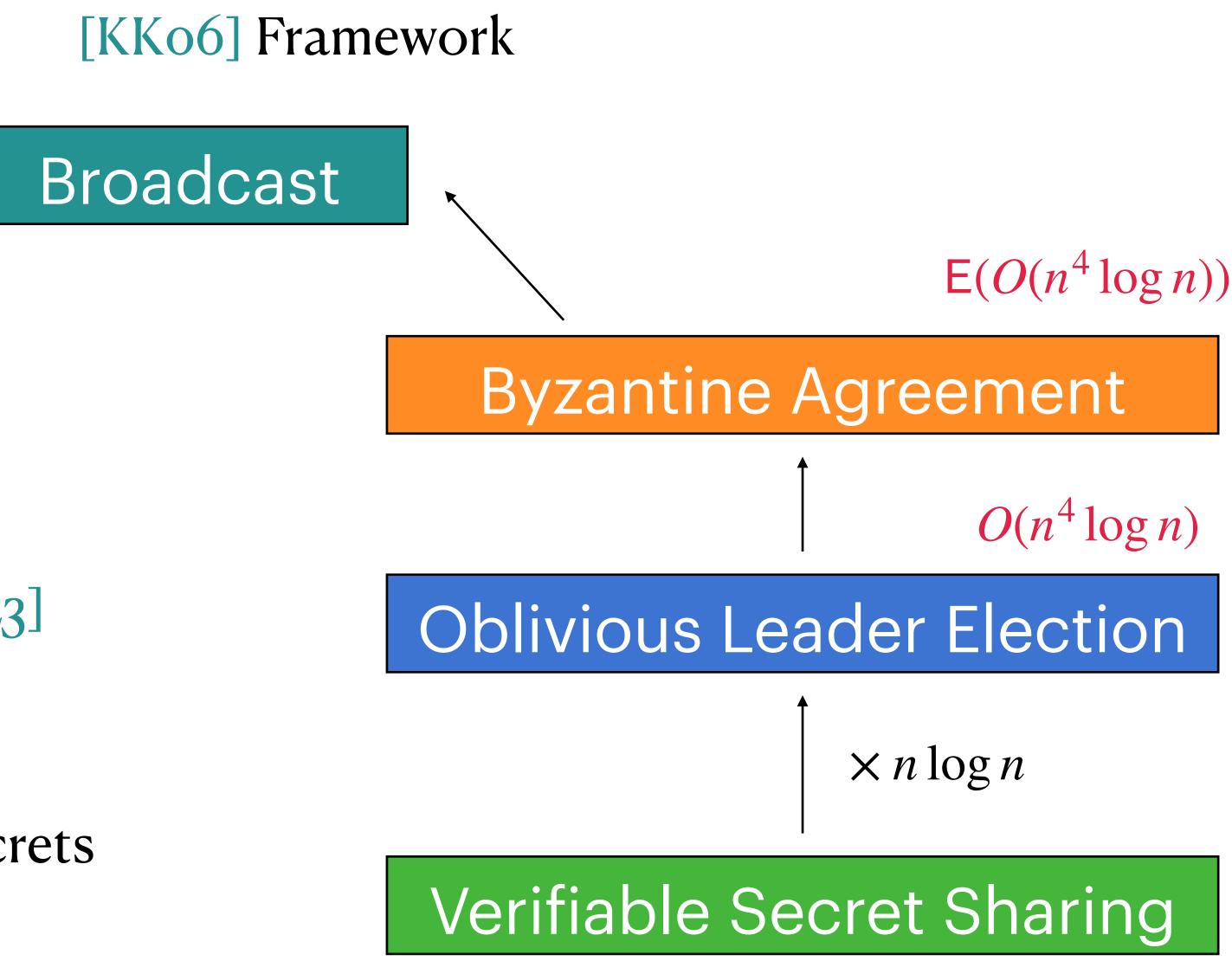


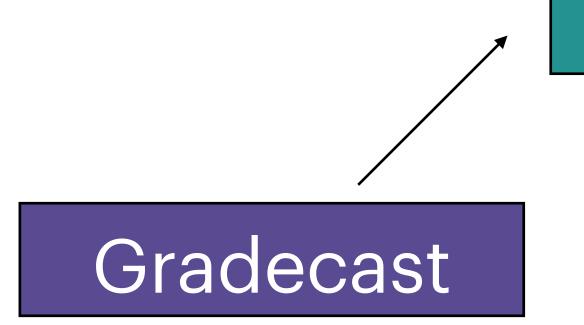




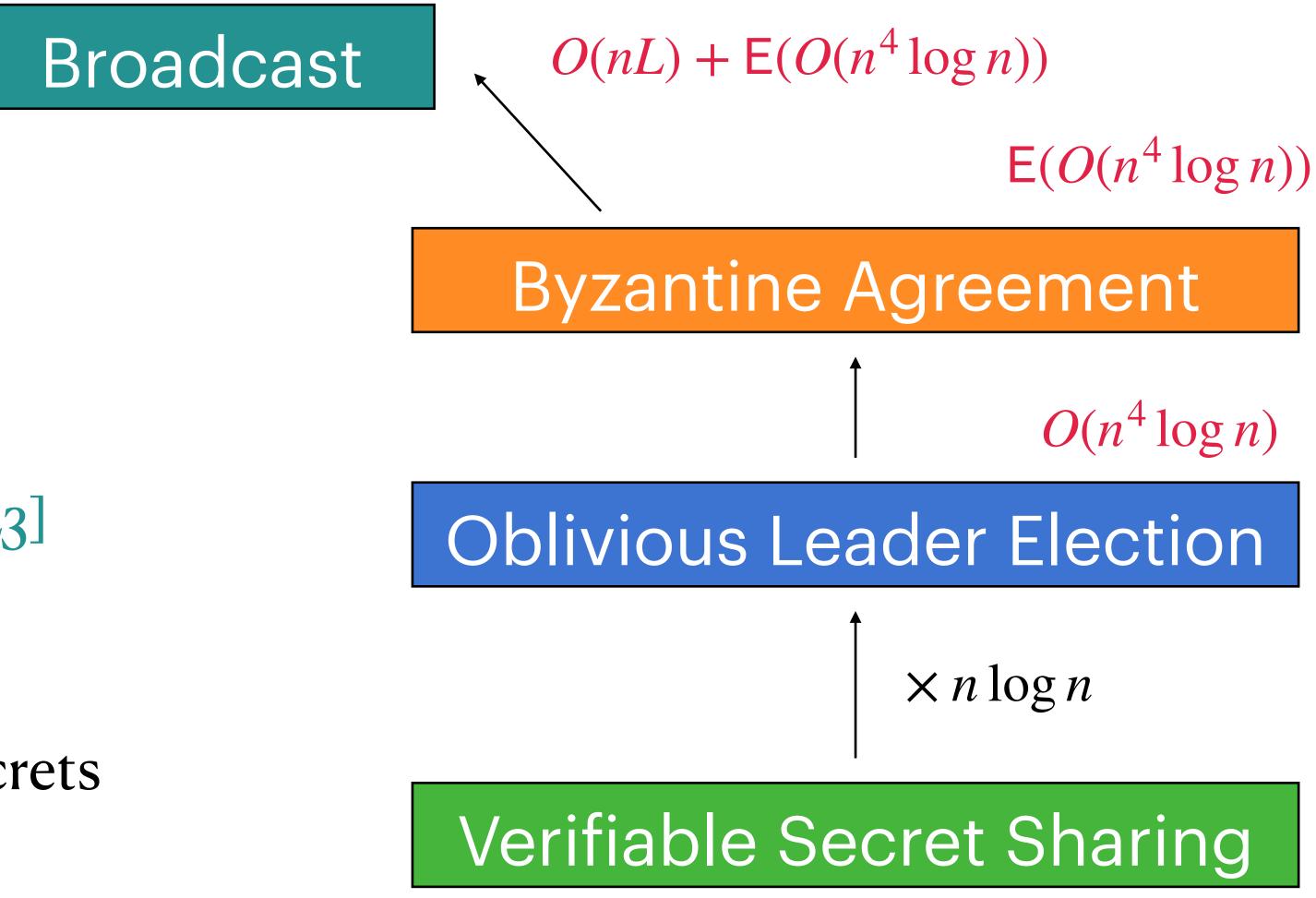


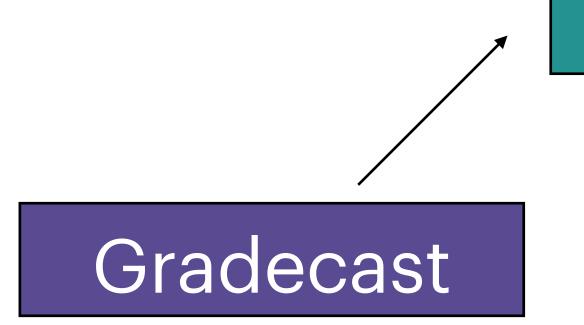






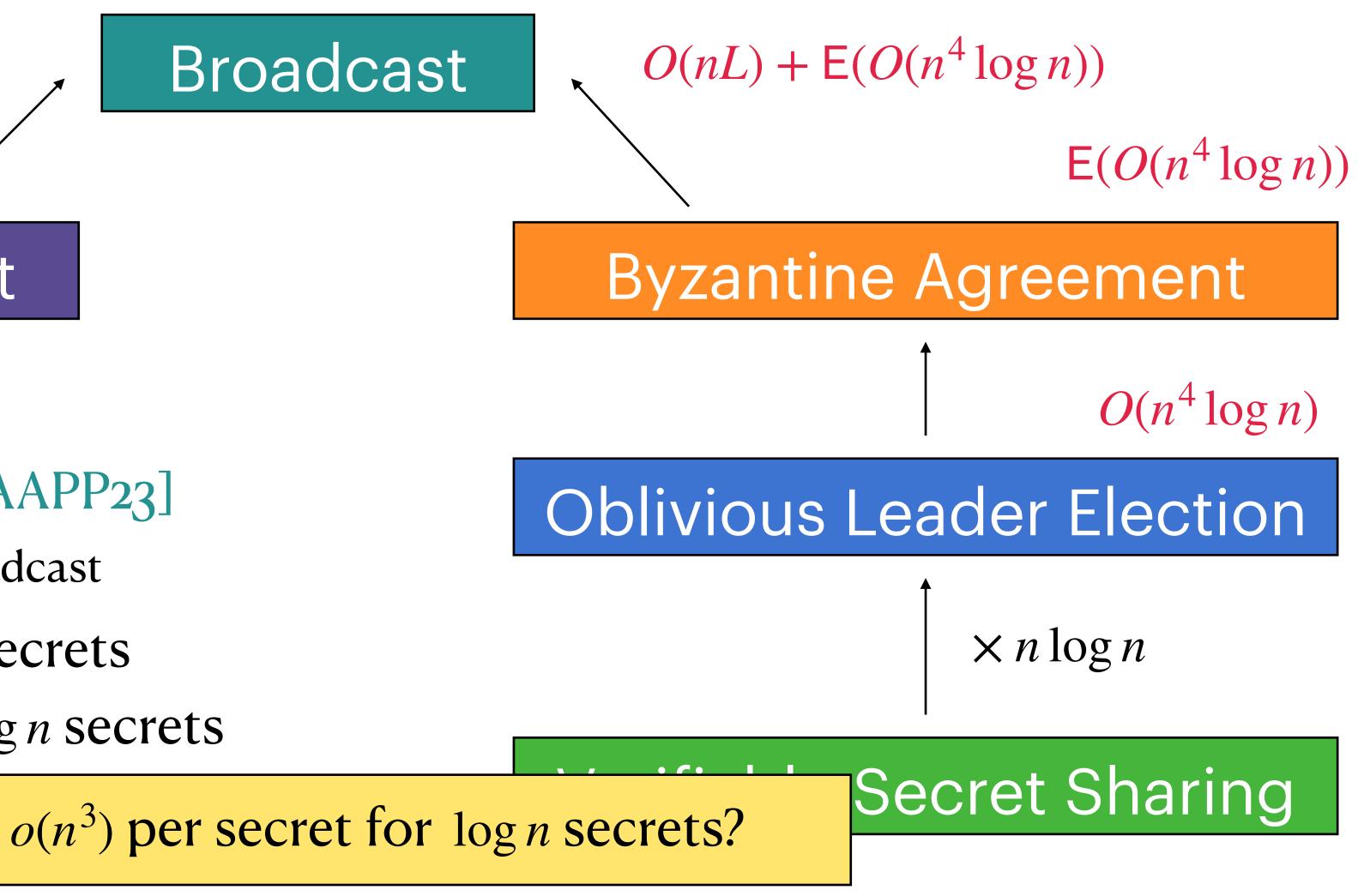


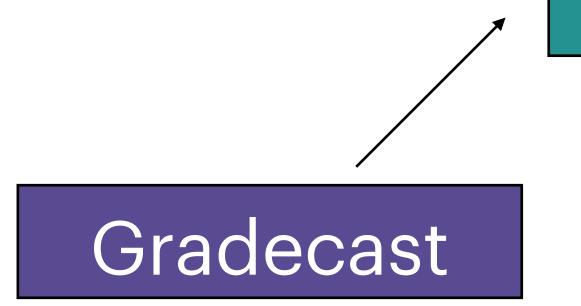




### [KK06] Framework







### Assuming ideal broadcast

### $\tilde{O}(mn + n^3)$ for *m* secrets $O(n^3)$ per secret for $\log n$ secrets

### [KK06] Framework



# We're not done yet!



# Why Perfect?



# Pr[No agreement OR corrupted leader OR the VSS fails] $\leq \frac{1}{2}$

## Why Perfect?



# $\Pr[\text{No agreement OR corrupted leader OR the VSS fails}] \leq \frac{1}{2}$ $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$

# Why Perfect?



Best Perfect VSS for m secrets: [AAPP23]  $\tilde{O}(mn+n^3)$ 

# Why Perfect?

- Pr[No agreement OR corrupted leader OR the VSS fails]  $\leq \frac{1}{2}$  $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$



Best Perfect VSS for m secrets: [AAPP23]  $\tilde{O}(mn+n^3)$ 

# Why Perfect?

- $\Pr[\text{No agreement OR corrupted leader OR the VSS fails}] \leq \frac{1}{2}$  $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$ 
  - Our statistical VSS for m secrets with error  $\epsilon$

 $\tilde{O}(mn^2 + n^2 \log(n/\epsilon))$ 





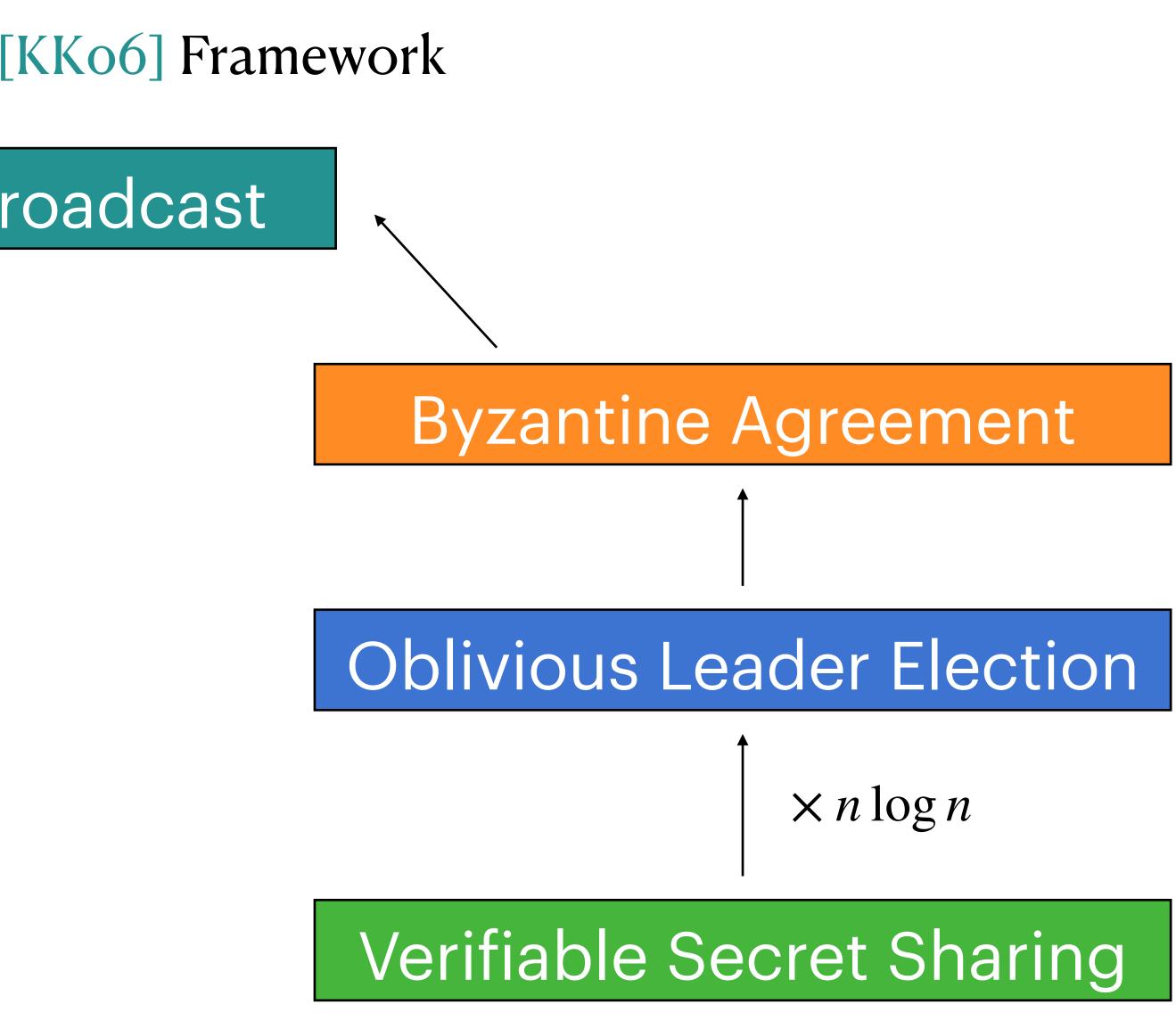
Best Perfect VSS for m secrets: [AAPP23]  $\tilde{O}(mn+n^3)$ 

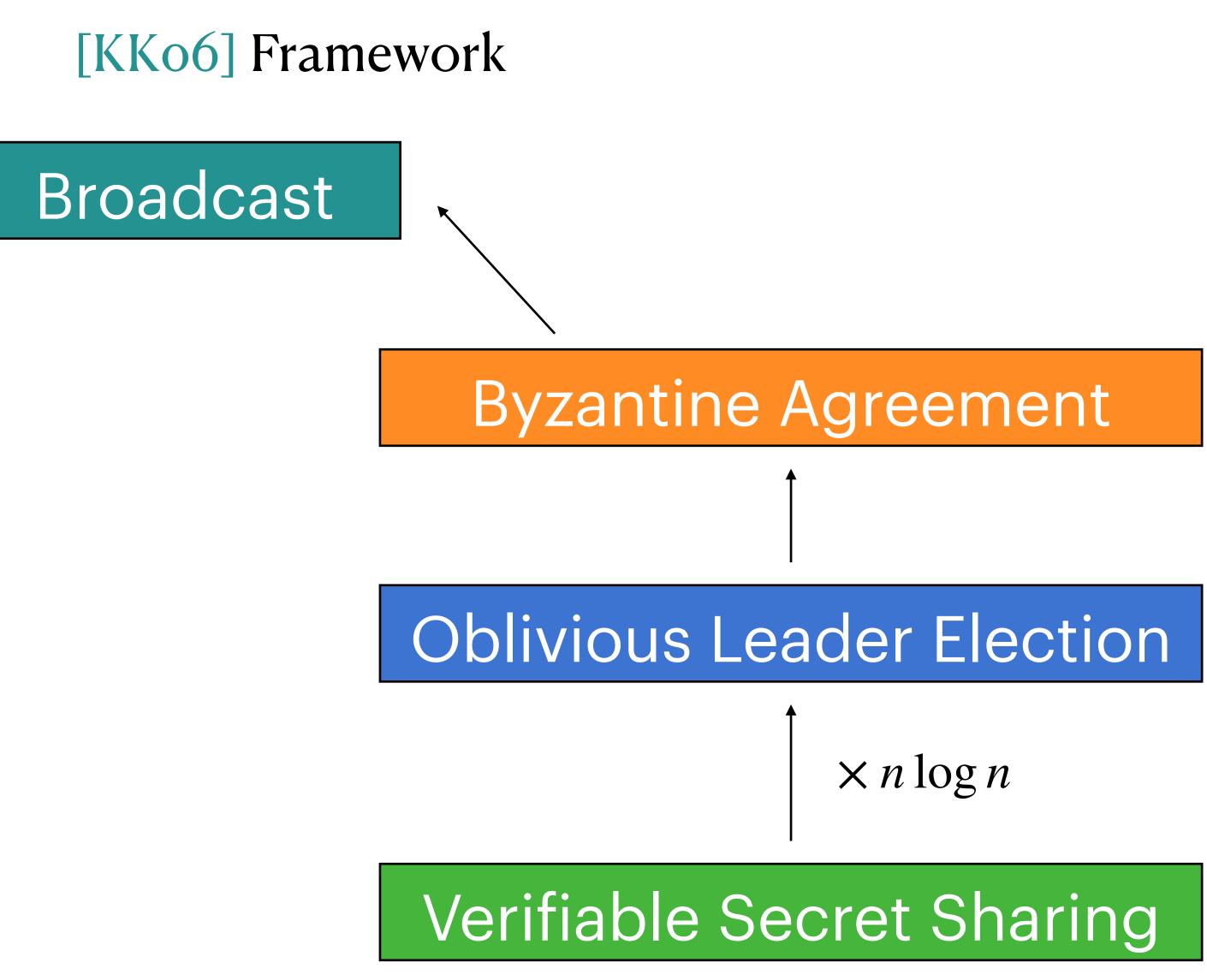
# Why Perfect?

- $\Pr[\text{No agreement OR corrupted leader OR the VSS fails}] \leq \frac{1}{2}$  $\Pr[\text{Everyone agrees on honest leader}] \ge \frac{1}{2}$ 
  - Our statistical VSS for m secrets with error  $\epsilon$  $\tilde{O}(mn^2 + n^2 \log(n/\epsilon))$

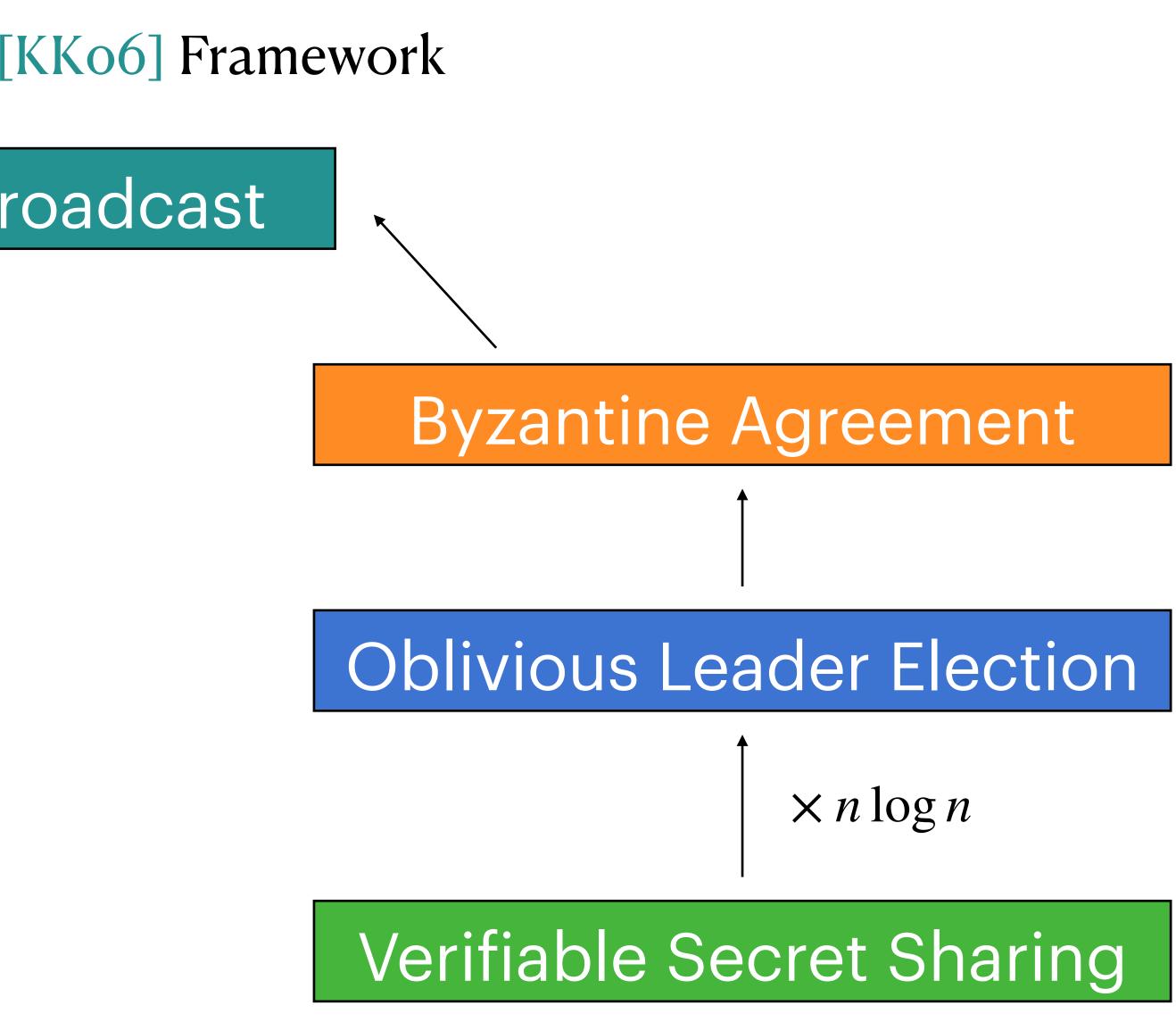
# $\epsilon = \frac{1}{\text{poly n}}$ suffices!

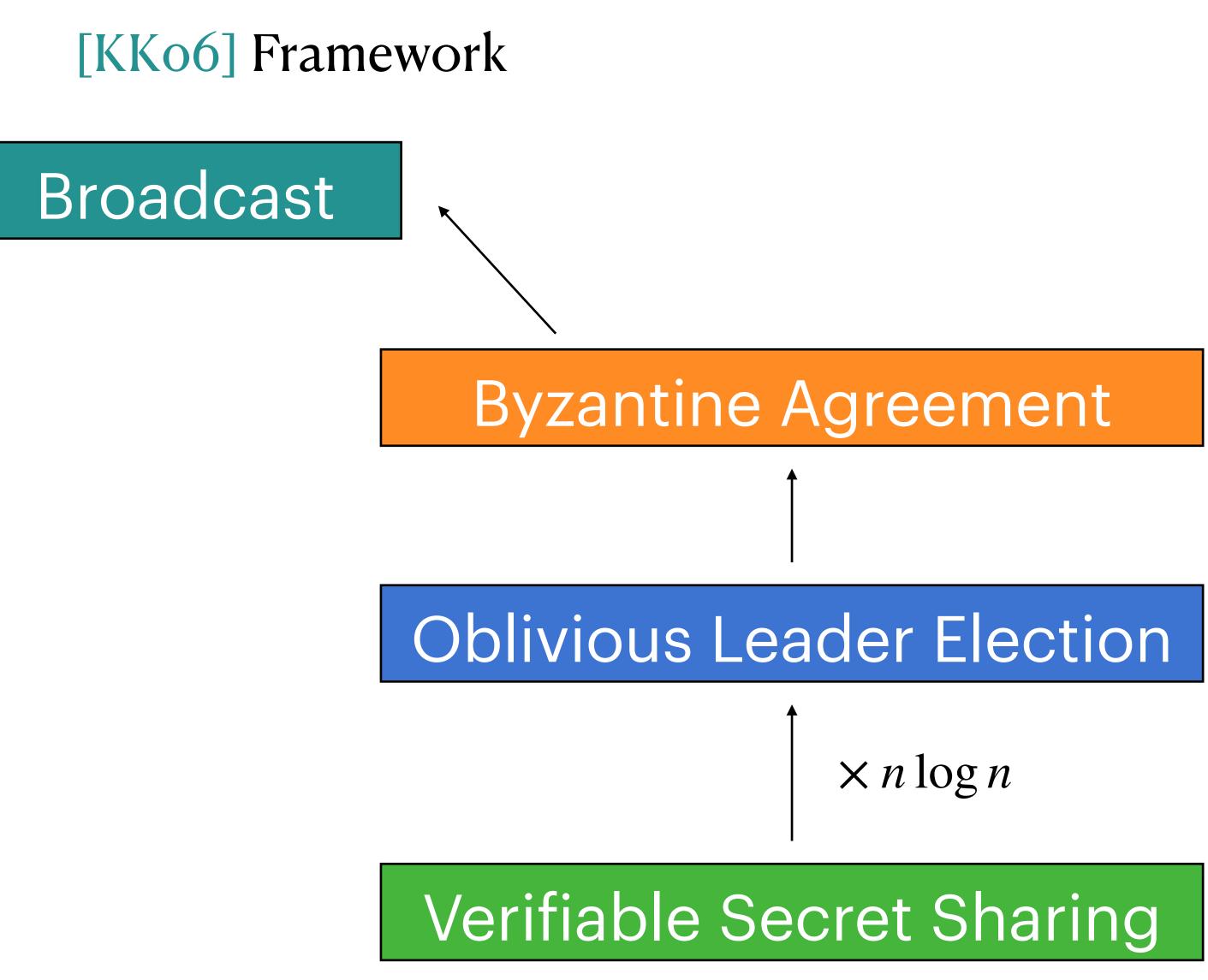


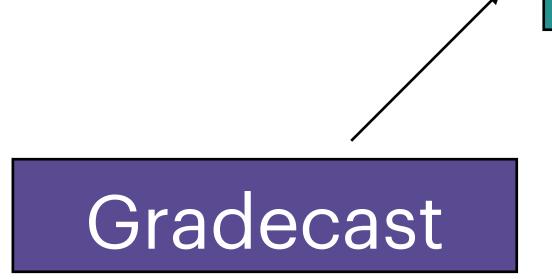


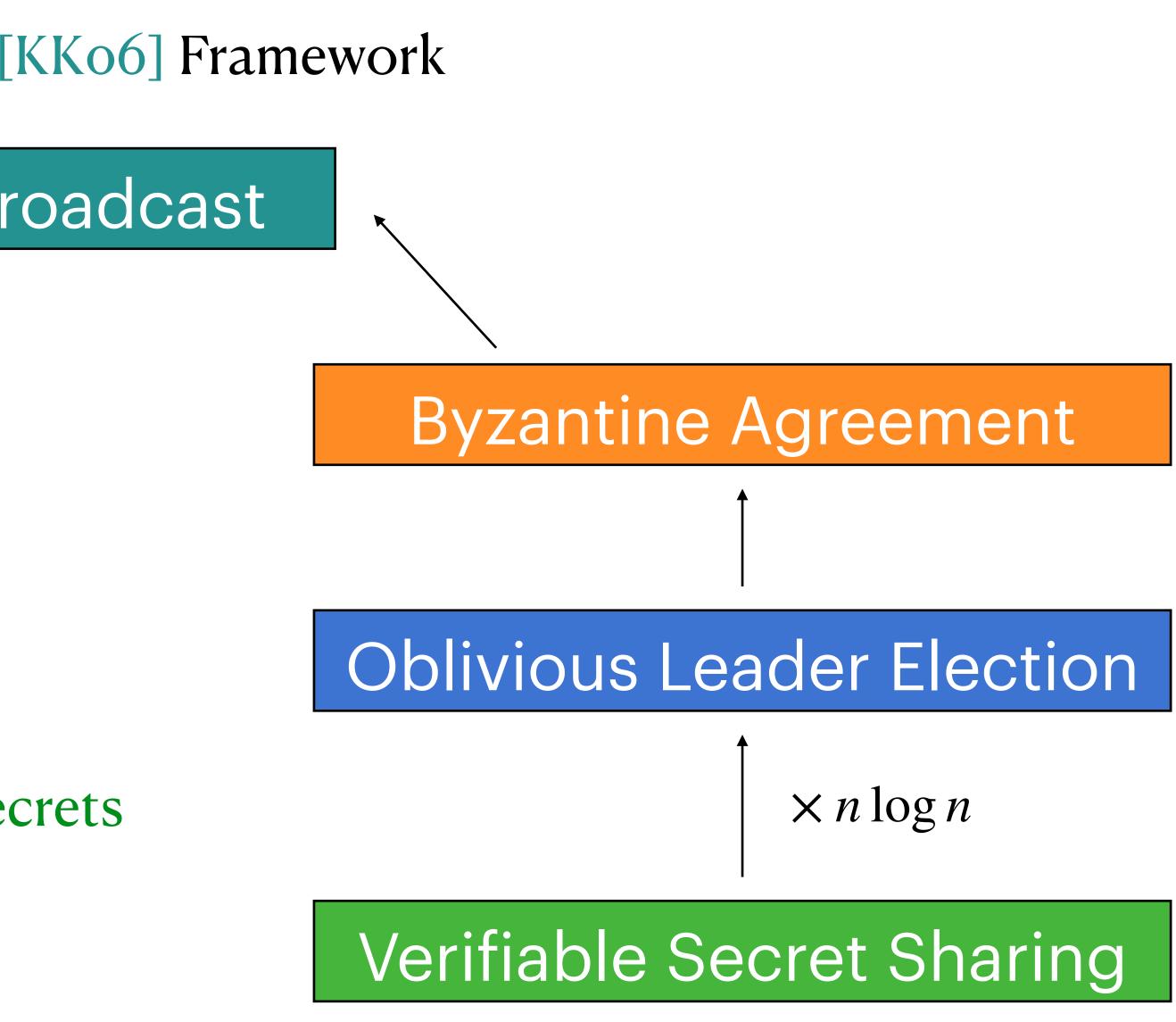


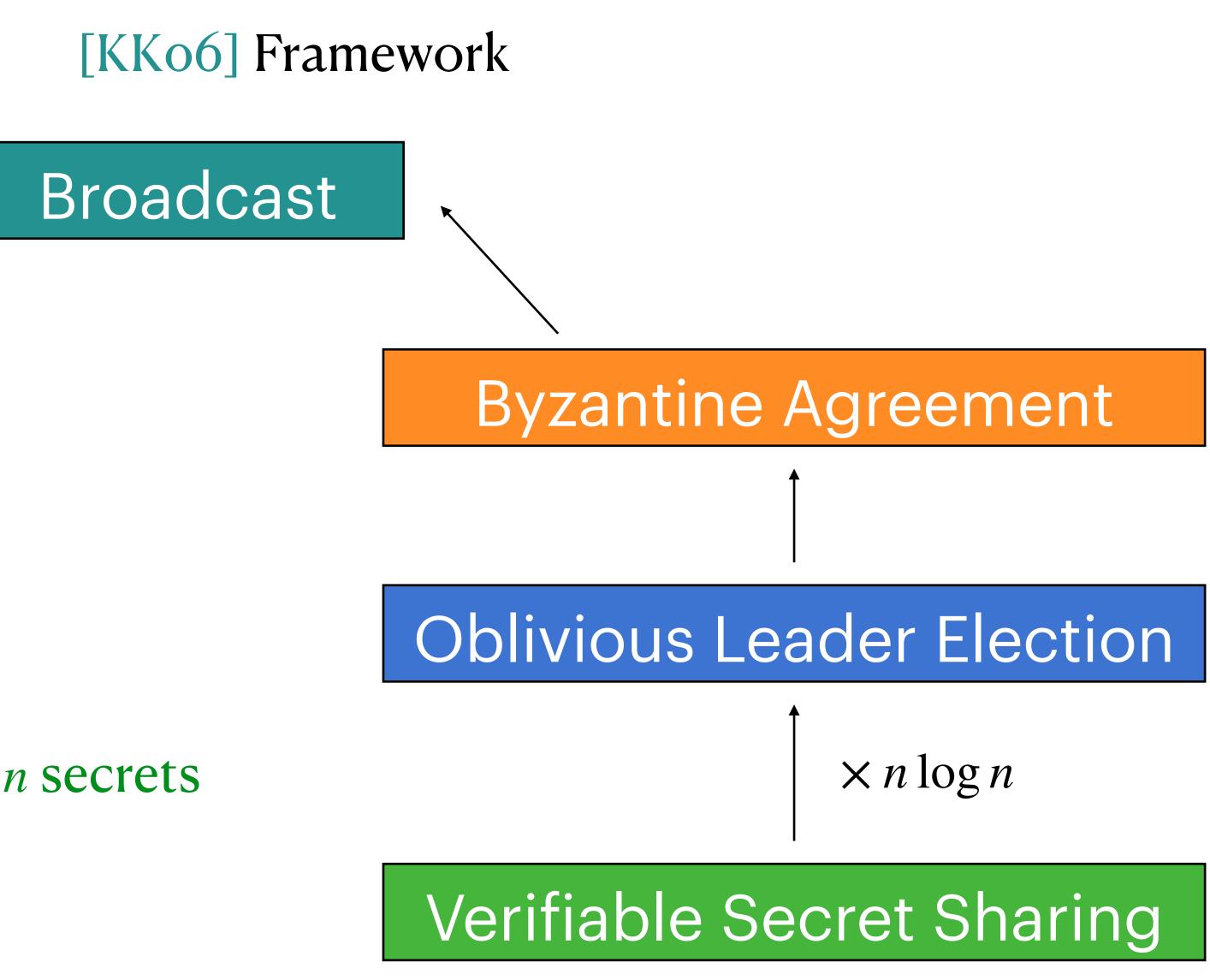
## Gradecast

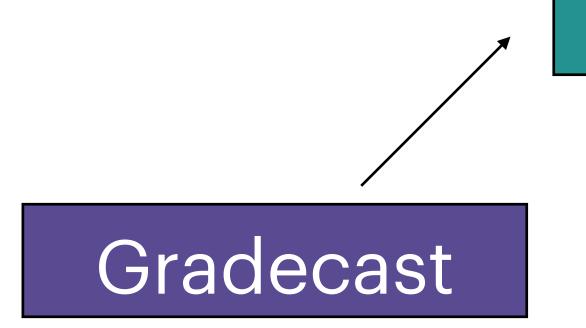




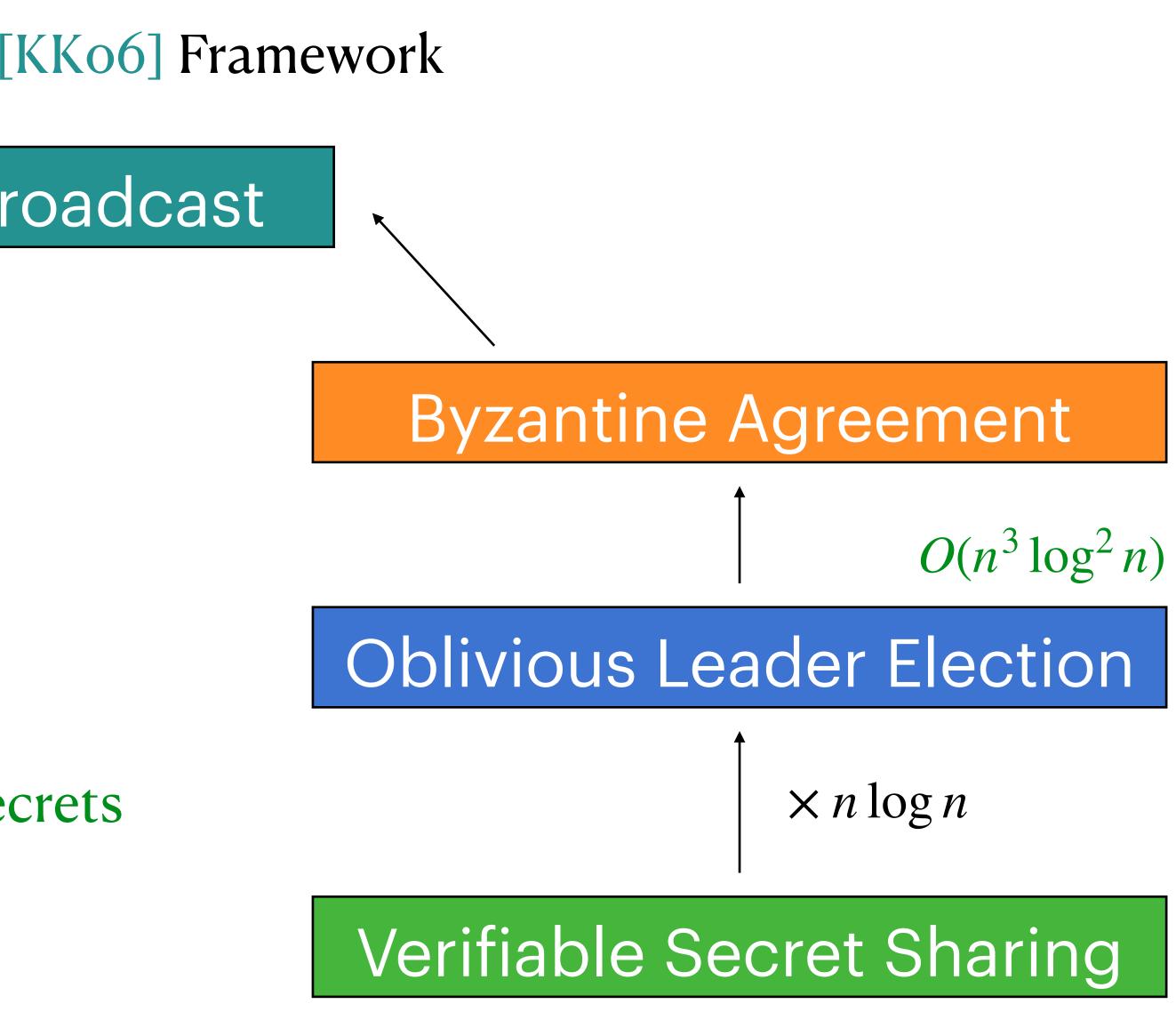


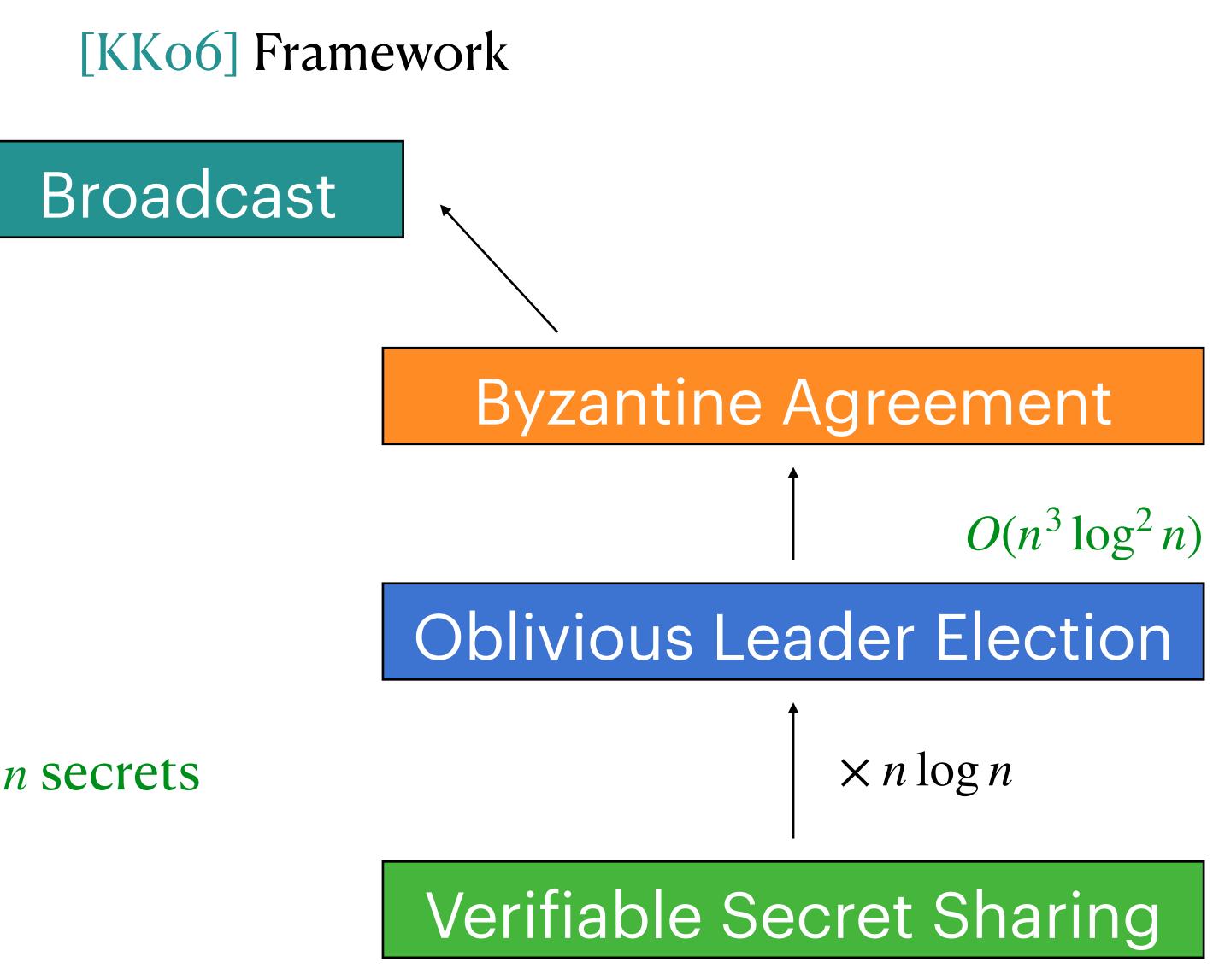


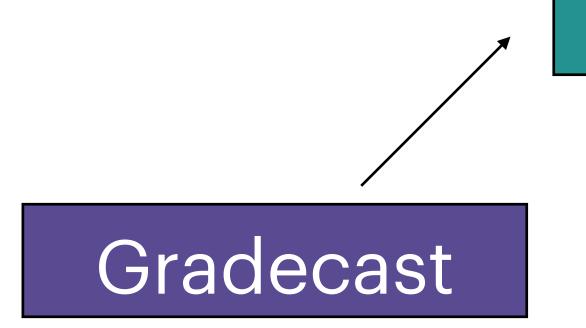




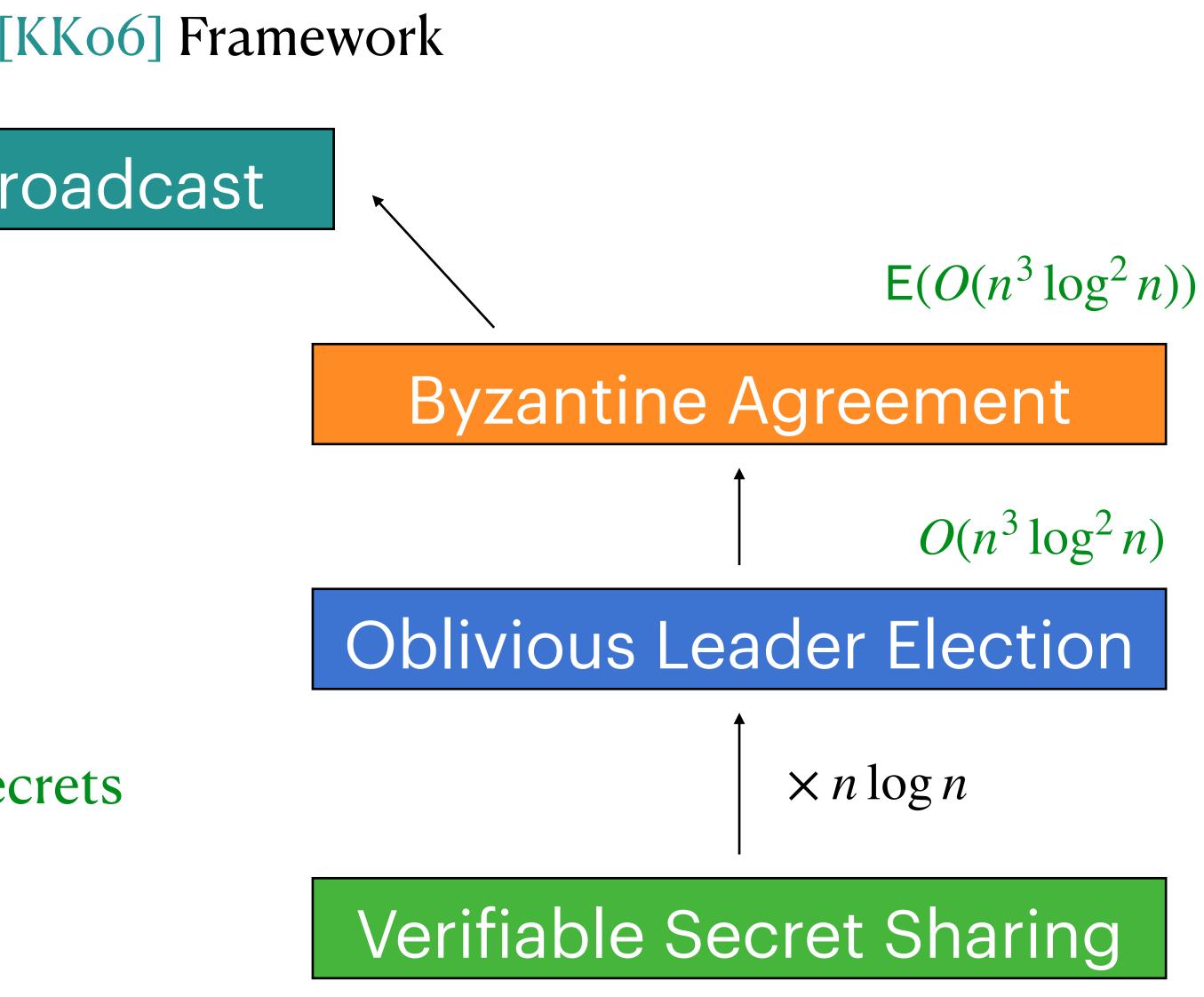
 $O(n^2 \log n)$  per secret for  $\log n$  secrets

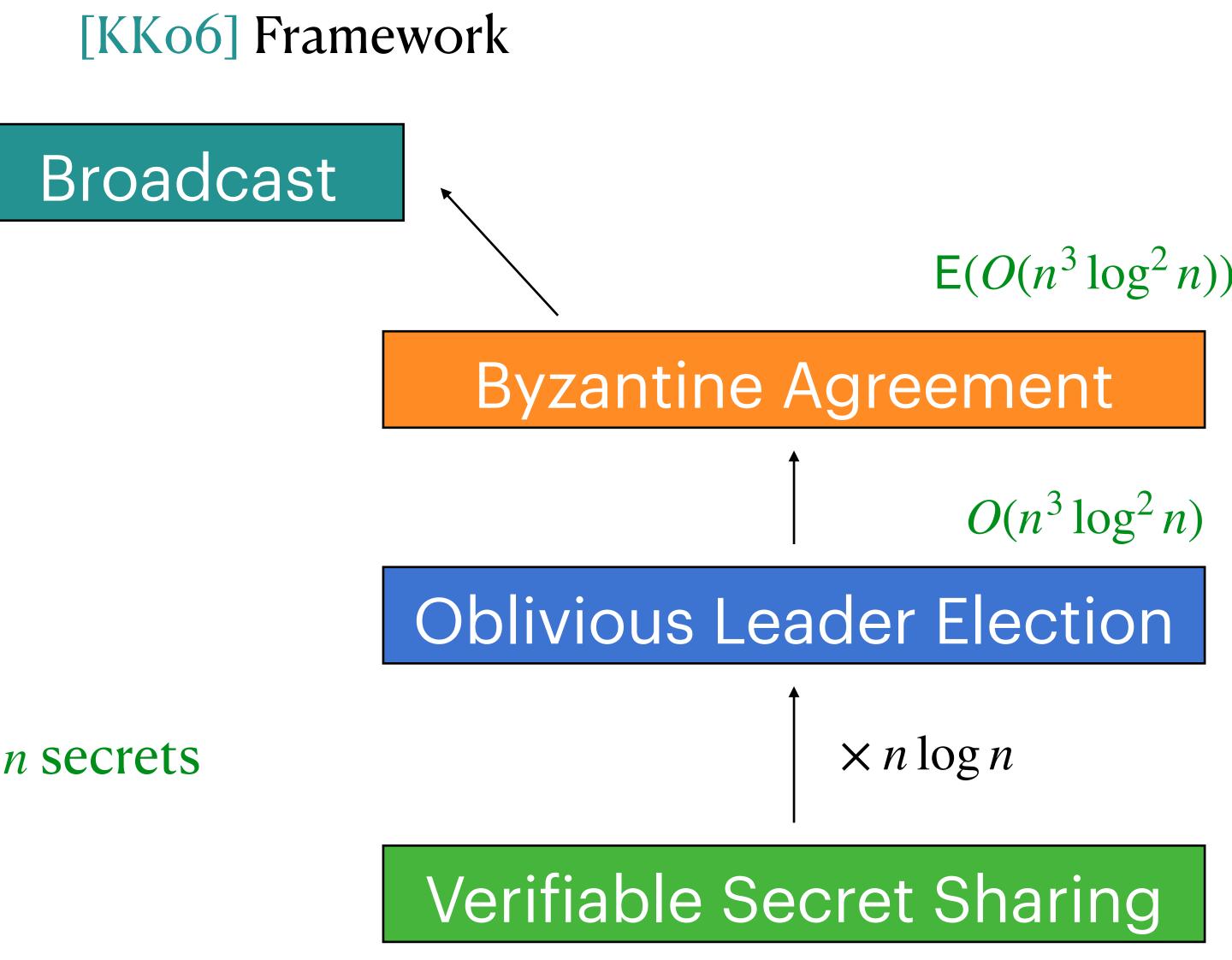


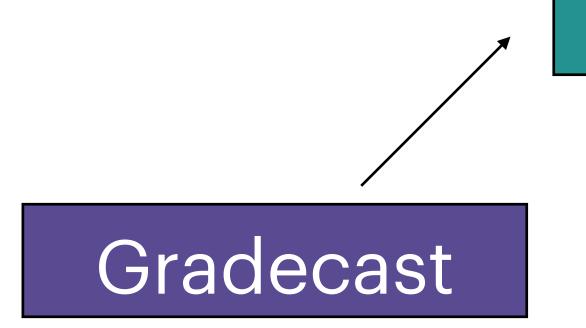




 $O(n^2 \log n)$  per secret for  $\log n$  secrets

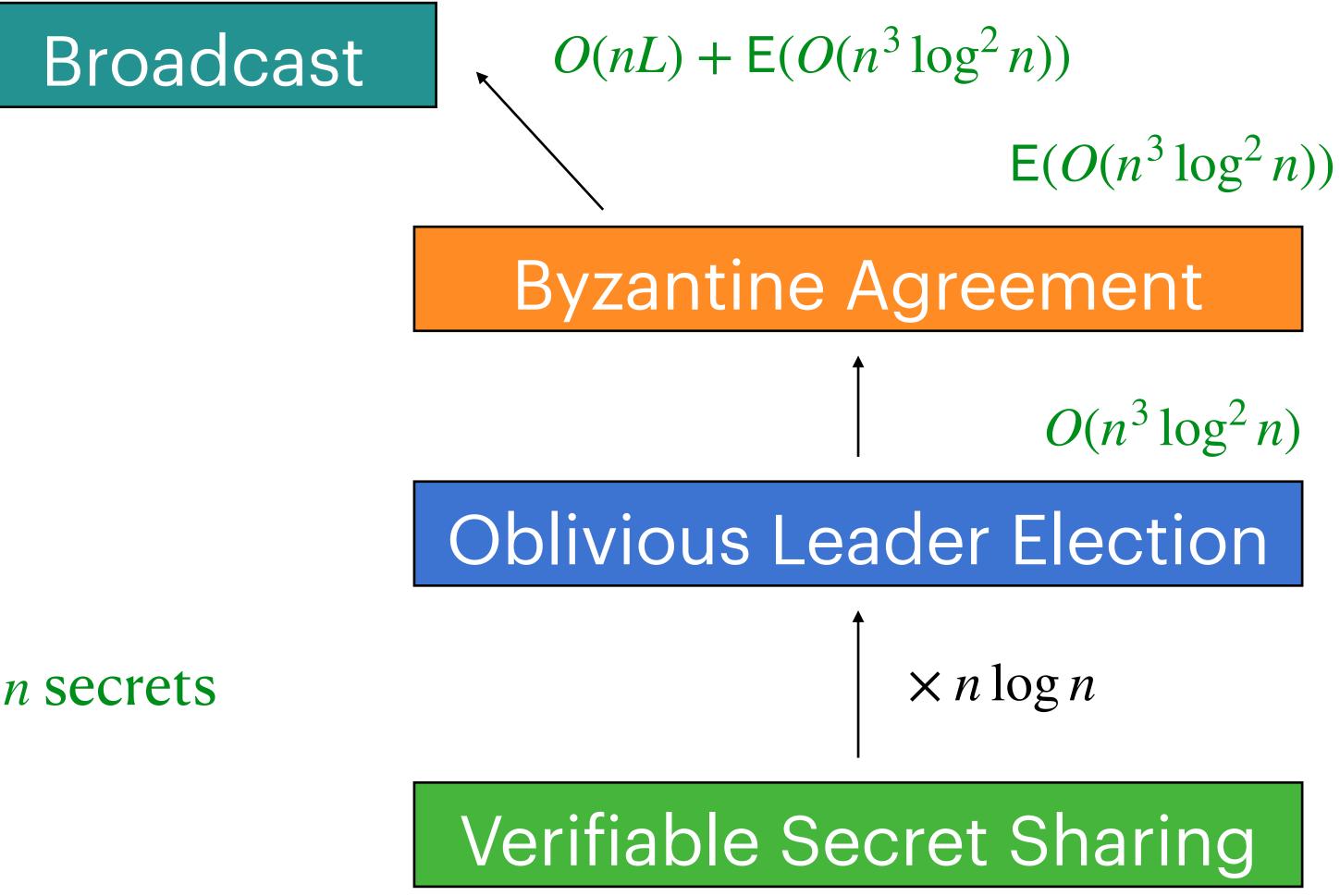


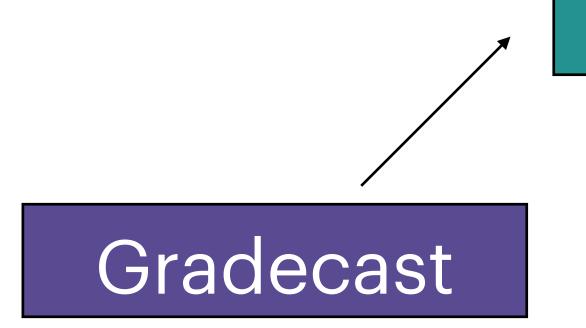




 $O(n^2 \log n)$  per secret for  $\log n$  secrets







 $O(n^2 \log n)$  per secret for  $\log n$  secrets

### [KKo6] Framework

# Contributions

- Conceptual contributions:
  - Statistical OLE suffices
  - OLE from statistical VSS
- Technical contributions:
  - Statistical OLE with lesser secrets
  - Amortized Statistical VSS for lesser secrets

### Communication

 $O(nL) + \mathsf{E}(O(n^3 \log^2 n))$ 

 $O(n^2L) + \mathsf{E}(O(n^3\log^2 n))$ 

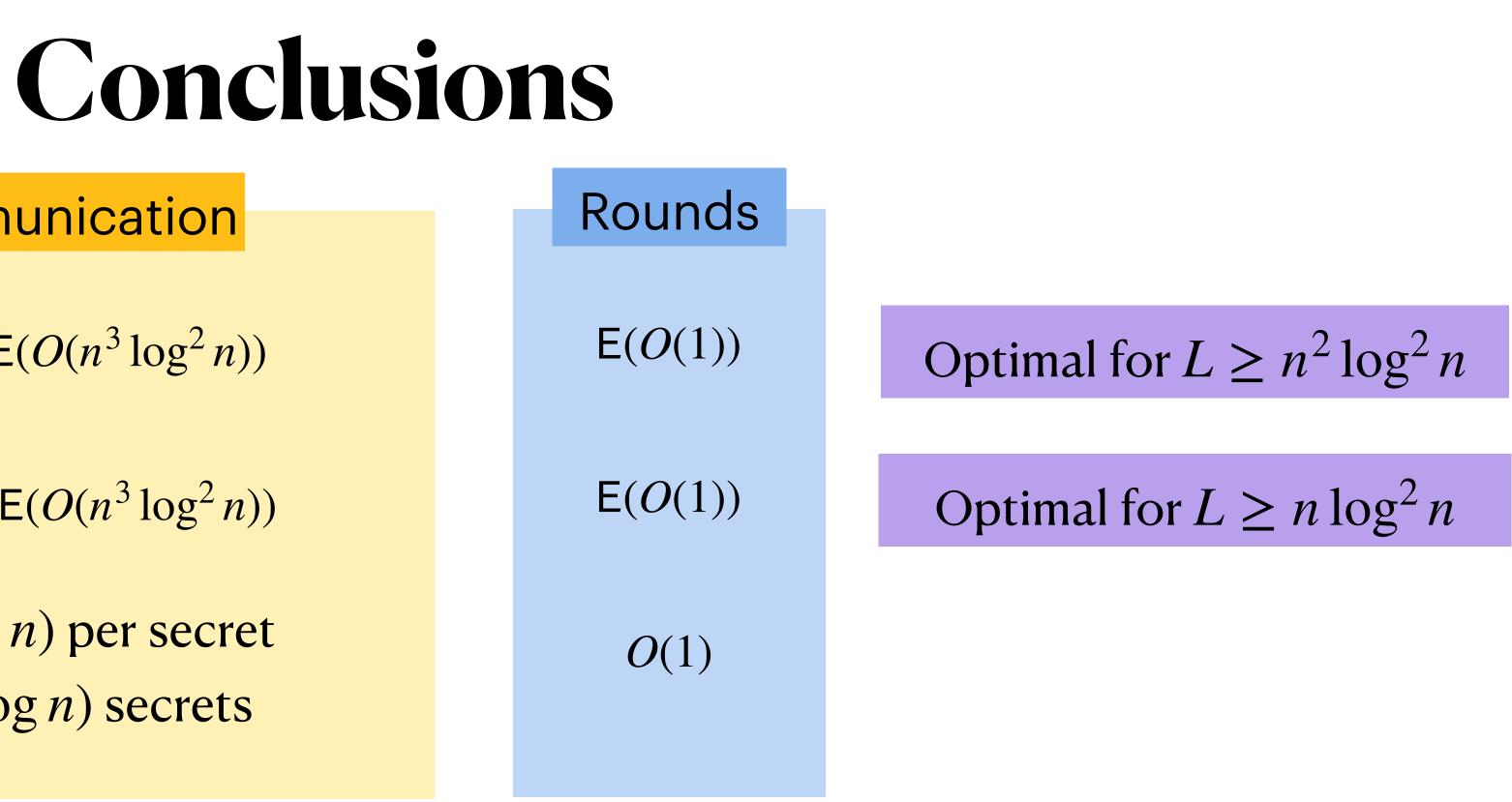
 $O(n^2 \log n)$  per secret for  $O(\log n)$  secrets

Statistical OLE  $\implies$  Perfect broadcast in constant expected time

### Perfect Broadcast

Perfect (Parallel) Broadcast

Statistical VSS



### Communication

 $O(nL) + \mathsf{E}(O(n^3 \log^2 n))$ 

 $O(n^2L) + \mathsf{E}(O(n^3\log^2 n))$ 

 $O(n^2 \log n)$  per secret for *O*(log *n*) secrets

Statistical OLE  $\implies$  Perfect broadcast in constant expected time

# Thank you!

### Perfect Broadcast

Perfect (Parallel) Broadcast

Statistical VSS

