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Linear Cryptanalysis

Let E : Fn
2 × Fκ

2 −→ Fn
2 be a block cipher, E (x ,K ) = EK (x) = y

A linear approximation (Matsui, 1993) is any linear combination of bits of the
plaintext and the ciphertext (and sometimes also the key):

⟨α, x⟩ ⊕ ⟨β, y⟩

α and β are called input and output masks

The correlation measures the statistical imbalance of the approximation:

corK (α, β) =
1

2n

∑
x∈Fn

2

(−1)⟨α,x⟩⊕⟨β,y⟩

Linear cryptanalysis exploits approximations with high correlation
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Linear Key Recovery Attack

Linear approximation of (part of) a block cipher:

⟨α, x̃⟩ ⊕ ⟨β, ỹ⟩ with correlation c

We express the linear approximation as a function of the plaintext,
ciphertext and key with the key recovery map, for example:

E trunc
1 (x , k)⊕ E trunc

2 (y , k), where k is part of the key

We divide the relevant part of the plaintext/ciphertext into segments
and consider key recovery maps of the form:

f0(x)⊕ f1(x1 ⊕ kO
1 , k

I
1)⊕ . . .⊕ fd(xd ⊕ kO

d , k
I
d)︸ ︷︷ ︸

f (X⊕KO ,K I )

x

E1

x̃

Em

ỹ

E2

y

α

β

K
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Linear Key Recovery Attack (cont.)

The objective is to compute the experimental correlations for all key guesses k :

ĉor(k) =
1

N

∑
x∈D

(−1)E
trunc
1 (x ,k)⊕E trunc

2 (y ,k), D data sample of size N ≈ 1/c2

as the correct key guess is expected to have a larger experimental correlation

ĉor(KO ,K I ) =
1

N

∑
x∈D

(−1)f0(x)(−1)f (X⊕KO ,K I )

We can compute this vector either directly or with a distillation step, with costs

N · 2|K I |+|KO | (Matsui, 1993) and N + 2|K
I |+2|KO | (Matsui, 1994)

|x | denotes the number of bits of the vector x .
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Walsh Spectrum of a Boolean Function

Walsh Transform of a (pseudo)Boolean function

We can see f : Fℓ
2 −→ F2 as f : Fℓ

2 −→ {1,−1} ⊆ R by taking (−1)f , and work
in the larger space of pseudoboolean functions f : Fℓ

2 −→ R

The Walsh spectrum or Walsh transform of f is f̂ : Fℓ
2 −→ R is

f̂ (u) =
1

2ℓ

∑
x∈Fℓ

2

(−1)⟨x ,u⟩f (x)

We note that 2ℓ
̂̂
f = f

There is a fast algorithm to obtain f̂ from f requiring ℓ2ℓ additions
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The Walsh Transform Technique

(Collard, Standaert, Quisquater, 2007), (Flórez-Gutiérrez, Naya-Plasencia, 2020)

N + |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

A[X ] =
∑

x∈D
x 7→X

f0(x)
Distillation

AAA

Walsh

For each K I

×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor
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N + |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

A[X ] =
∑

x∈D
x 7→X

f0(x)

Distillation

AAA

Walsh

For each K I

×××

f̂̂f̂f

=== Walsh
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Walsh Transform Pruning

x0x1x2x3

f (x)

α0α1α2α3

β

S S S S

S

We assume S balanced and consider the following map:

We have a nice formula for its Walsh coefficients:

f̂ (α3, α2, α1, α0) = ± 1

4
Ŝ(α3) Ŝ(α2) Ŝ(α1) Ŝ(α0) Ŝ(β),

where βi = 1 ⇔ αi ̸= 0 because S is balanced

If Ŝ(0xF) = 0, then f̂ (α3, α2, α1, α0) ̸= 0 =⇒ αi = 0 for some i

The nonzero Walsh coefficients of f are contained in 4 vector subspaces of
dimension 12 of F16

2 , given by the conditions α0 = 0, α1 = 0, α2 = 0 and α3 = 0

What if Ŝ(0xF) ̸= 0? ...we will discuss this situation later

10 / 25
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Walsh Spectrum Pruning (cont.)

In (Flórez-Gutiérrez, 2022), a technique is introduced to exploit this and other
redundancies, like those induced by the key schedule

These redundancies can be expressed as sparsity properties of the nonzero inputs
and desired outputs of the Walsh transform steps

A variant of the fast Walsh transform algorithm is introduced which has lower
time complexity when the inputs and/or outputs lie in affine subspaces

In particular, the importance of the structure of the support of f is shown

If the spectrum of f lies on a few affine subspaces of small dimension (like in the
previous slide), the time complexity of the attack can be greatly reduced
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Linear Attacks with Walsh Spectrum Puncturing
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Walsh Spectrum Puncturing Example

K I

x0x1x2x3

f (x)

S S S S

S

Let’s return to the example: we know that if Ŝ(0xF) =
0, there is an exploitable structure

But what happens when Ŝ(0xF) ̸= 0? ...we make it so!

Idea 1: We reject some inputs of S so that Ŝnew(0xF) =
0, we increase the data complexity to compensate

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

S 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 −1
N

Ŝ 0 4 0 4 4 0 −4 8 4 0 −4 −8 0 4 0 4

Snew 1 −1 1 1 −1 1 1 0 1 −1 −1 1 0 0 0 −1 4
3
N

Ŝnew 2 2 −2 2 2 2 −2 10 4 0 −4 −4 0 4 0 0
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Walsh Spectrum Puncturing Example (cont.)

Idea 2: We just remove (puncture) the bad coefficient from the spectrum

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

S 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 −1
N

Ŝ 0 4 0 4 4 0 −4 8 4 0 −4 −8 0 4 0 4

Snew

0.75 −0.75 1.25 0.75 −0.75 0.75 0.75 −0.75 1.25 −1.25 −1.25 1.25 0.75 −0.75 −0.75 −1.25
???

Ŝnew 0 4 0 4 4 0 −4 8 4 0 −4 −8 0 4 0 0

This has several advantages:

Intuitively, the key recovery map is modified “as little as possible”

We are able to remove more coefficients, for example 0x7, 0xB, 0xD, 0xE

But we have to resolve some issues:

The key recovery map is no longer a Boolean function

We don’t know what the effect on the data complexity is

14 / 25
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A Simpler Case

K I

x0x1x2x3

f (x)

S S S S

S

We can also consider simpler puncturing strategies

For example, we may want to force an Sbox to be inac-
tive by puncturing the coefficients which make it active

Luckily, this time we don’t have the same problems

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

S 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 −1
N

Ŝ 0 4 0 4 4 0 −4 8 4 0 −4 −8 0 4 0 4

Snew 1 −1 0 1 0 0 0 −1 1 −1 0 1 0 0 0 −1
2N

Ŝnew 0 4 0 4 4 0 −4 8 0 0 0 0 0 0 0 0
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The Puncturing and Approximation Problems

“Classical” key recovery map: A Boolean function f : Fℓ
2 −→ {1,−1}

Each plaintext is contributes by either 1 or −1 to the correlation

Key recovery map with plaintext rejection: g : Fℓ
2 −→ {1,−1, 0}

Plaintexts can contribute 1 or −1 to the correlation, or be rejected
The data complexity is increased by the proportion of rejected plaintexts

Punctured key recovery map: gg : Fℓ
2 −→ R

g is obtained by changing spectrum coefficients of f to zero
Correlation contributions are real numbers, we can consider them “weights”
We don’t know how to compute the new data complexity

Arbitrary real-valued approximation: g : Fℓ
2 −→ R

g is an arbitrary real function which “approximates” f
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Impact of Puncturing on the Data Complexity
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Data Complexity with Approximated Key Recovery

Theorem: Key Recovery Map Approximation

We can substitute the key recovery map f : Fℓ
2 −→ R for the approximation

g : Fℓ
2 −→ R by increasing the data complexity by a factor 1/ρ2, where

ρ =
|⟨f , g⟩|

∥f ∥2 · ∥g∥2
=

1
2ℓ

∑
x∈Fℓ

2
f (x)g(x)√

1
2ℓ

∑
x∈Fℓ

2
f (x)2 ·

√
1
2ℓ

∑
x∈Fℓ

2
g(x)2

The Pearson correlation coefficient ρ can also be obtained from f̂ and ĝ :

ρ =

∑
u∈Fℓ

2
f̂ (u)ĝ(u)√∑

u∈Fℓ
2
f̂ (u)2 ·

√∑
u∈Fℓ

2
ĝ(u)2

.
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Data Complexity with Approximated Key Recovery (cont.)

Example: We can check this result in the specific case of plaintext rejection

We assume we reject a fraction ϵ of the inputs of f : Fℓ
2 −→ F2

∥f ∥2 =
√

1
2ℓ

∑
x∈Fℓ

2
(±1)2 = 1 because f is a Boolean function

∥g∥2 =
√

1
2ℓ

(∑
g(x) ̸=0(±1)2 +

∑
g(x)=0 0

2
)
=

√
1− ϵ

⟨f , g⟩ = 1
2ℓ

(∑
g(x )̸=0(±1)2 +

∑
g(x)=0(±1) · 0

)
= 1− ϵ

So ρ = |⟨f ,g⟩|
∥f ∥2·∥g∥2 =

√
1− ϵ, and the data complexity is 1

ρ2
N = 1

1−ϵ
N as expected

A more elaborate model for this case has been proposed (Wu, Li, Wang, 2024)
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Data Complexity with Approximated Key Recovery (cont.)
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Puncturing Data Complexity

Key Recovery Map Walsh Spectrum Puncturing

Given the key recovery map f : Fℓ
2 −→ F2, a puncture set is any P ⊆ Fℓ

2. We
define g : Fℓ

2 −→ R as a function whose Walsh spectrum is:

ĝ(u) =

{
f̂ (u) if u ̸∈ P
0 if u ∈ P

Theorem: Puncturing Data Complexity

The data complexity is increased by a factor of

1

1− ϵ
, where ϵ =

∑
u∈P

f̂ (u)2
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Conclusion and Applications
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Some Open Problems

Further applications.

Optimization Strategies: Is there a general way to find good puncturing sets?

Automatization: Developing software for key recovery attack design

Dependence: Can it be incorporated into the statistical model?

Key Recovery vs. Distinguishers: Both steps are becoming mixed: can we
describe both under the same model?
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Summary of Applications

Complexity
Target Rounds Data Time Memory PSPSPS Comment

Serpent
(192-bit) 12 2127.5 KP 2189.74 2182.00 80% Most rounds

Serpent
(256-bit)

12 2125.16 KP 2214.362214.362214.36 2125.16 81% Best time
12 2126.30 KP 2210.362210.362210.36 2125.16 80% Best time

GIFT-128
(General) 25 2123.022123.022123.02 KP 2124.612124.612124.61 2112.00 80% Best data/time (for LC)

GIFT-128
(COFB) 17 262.10 KP 2125.09 262.10 80% Most rounds

DES Full 241.62241.62241.62 KP 241.76 234.54234.54234.54 70%
Almost matches best data

with lower memory

Noekeon 12 2119.552119.552119.55 KP 2120.632120.632120.63 2115.002115.002115.00 80% Best data/time/memory
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Data Complexity with Approximated Key Recovery (cont.)

Sketch of the proof:
The main idea is to separate g into two orthogonal components:

g =
⟨f , g⟩2

∥f ∥2
f + g⊥, where ⟨f , g⊥⟩ = 0

The statistical behaviour of ⟨f ,g⟩2
∥f ∥2 f can be obtained by applying existing

models for linear cryptanalysis (Blondeau, Nyberg, 2017)

We assume random (and independent) behaviour for g⊥

We deduce the mean and variance of the experimental correlation, and they
coincide (up to scaling) with those for f under a data sample of size N∗ = N/ρ2
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Some Further Examples

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

S 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 −1
N

Ŝ 0 4 0 4 4 0 −4 8 4 0 −4 −8 0 4 0 4

Snew 0.75 −0.75 1.25 0.75 −0.75 0.75 0.75 −0.75 1.25 −1.25 −1.25 1.25 0.75 −0.75 −0.75 −1.25 16
15
N

Ŝnew 0 4 0 4 4 0 −4 8 4 0 −4 −8 0 4 0 0

We can also puncture all the coefficients of Hamming weight 3 or 4:

Snew 1 −1 2 2 1 −1 0 0 1 −1 0 0 1 −1 −2 −2 16
6
N

Ŝnew 0 4 0 4 4 0 −4 0 4 0 −4 0 0 0 0 0

Or just keep the largest coefficients:

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

Snew 0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0
2N

Ŝnew 0 0 0 0 0 0 0 8 0 0 0 −8 0 0 0 0
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