
Universal Composable Password Authenticated Key
Exchange for the Post-Quantum World

You Lyu, Shengli Liu, Shuai Han
Shanghai Jiao Tong University

Contents

PAKE & Its UC Security

Construction of PAKE & Security Analysis

1

2

2

3 Conclusion

Contents

PAKE & Its UC Security

Construction of PAKE & Security Analysis

1

3

2

3 Conclusion

Password Authenticated Key Exchange

𝑚!

Client Server

𝑘"

(𝑝𝑤) (𝑝𝑤)

𝑘#

𝑚$

…⇓ ⇓

The Goal of PAKE：

• Authentication：Client and Server can authenticate each other

• Key Exchange： Client and Server can exchange a pseudo-random session key.

Security Requirements

Note that the password only has low entropy.

Security Requirements:

• The best strategy for adversary is to implement online-dictionary attack (guess password online)

• Resist offline-dictionary attack

𝑚!

Client Server

𝑘"

(𝑝𝑤) (𝑝𝑤)

𝑘#

𝑚$

…⇓ ⇓

low entropy

UC-security for PAKE

𝒵

𝐶(") 𝐶($) … 𝑆(") 𝑆($)

𝒜

RO

𝒵

𝐶(") 𝐶($)

…
𝑆(") 𝑆($)

RO

Sim

ℱ%&'(

Real World Ideal World

Roughly speaking, to prove UC security, we need to construct a simulator Sim s.t.

• Sim can simulate indistinguishable transcript of PAKE protocol in the real world.

• Sim can simulate indistinguishable output session key for each client/server.

• Sim has no information of pw, except with a Testpw() oracle that tells whether a pw is
the password client/server uses. Sim can only Testpw once for a client/server instance.

Our Contribution

• New generic construction for UC-secure PAKE in ROM, which implies

a) UC-secure PAKE in ROM from LWE assumption

b) UC-secure PAKE in ROM from GA-DDH assumption (the first from isogenies)

• New generic construction for UC-secure PAKE in QROM (the first), which implies

a) UC-secure PAKE in QROM from LWE assumption (with super-poly modulus q)

b) UC-secure PAKE in QROM from GA-DDH assumption

Contents

PAKE & Its UC Security

Construction of PAKE & Security Analysis

1

8

2

3 Conclusion

Basic Idea: make PKE associate with pw

We introduce a labeled public key encryption LPKE as our fundamental building block.

• LPKE.Setup: It outputs a public parameter pp and a trapdoor td.

• LPKE.KeyGen(pp, b = H(pw)): It takes as input a label (H(pw) in the PAKE setting) and outputs
a key pair (pk, sk)

• LPKE.Enc(pp, pk, b = H(pw), m): It outputs a ciphertext c

• LPKE.Dec(pp, sk, c): It outputs a message m.

• LPKE.Check(td, pk, b): It outputs a bit β indicates whether b is a label of pk.

With LPKE, there is a natural idea to construct a PAKE protocol.

PAKE from LPKE

𝑝𝑘

Client (pw) Server (pw)

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤))

crs: pp

PAKE from LPKE

𝑝𝑘

Client (pw) Server (pw)

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)𝑐

crs: pp

Fujisaki-Okamoto transform

PAKE from LPKE

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)

⇓

𝑐𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝜎

crs: pp

PAKE from LPKE

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝑐𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

crs: pp

PAKE from LPKE

To prove UC security with LPKE of PAKE, here are two key points:

1. What security properties are needed for LPKE ?

2. How the simulator works?

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝑐𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

crs: pp

Simulation for the First Message

To simulate the first message 𝑝𝑘,

Required LPKE property: For every tag 𝑏, 𝑝𝑘 ∶ 𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen 𝑏 ≈$ {𝑝𝑘: 𝑝𝑘 ←$ 𝒫𝒦}

Simulation of the first message: Sim can simulate 𝑝𝑘 by 𝑝𝑘 ←$ 𝒫𝒦

𝒑𝒌

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝,𝑯(𝒑𝒘)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝑐𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

crs: pp

Simulation for the Second Message

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘,𝑯 𝒑𝒘 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝒄𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

crs: pp

To simulate the second message 𝑐 upon Sim receiving 𝑝𝑘 from the adversary 𝒜,

Required LPKE property: For every 𝑝𝑘, there is at most one 𝑝𝑤 s.t. 𝐻(𝑝𝑤) is the label of 𝑝𝑘

Extract the password embedded in 𝑝𝑘 with trapdoor 𝑡𝑑:
Sim can search all RO query 𝐻 𝑝𝑤 to find LPKE.Check(td, pk, H(pw)) = 1

Simulation for the Second Message

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘,𝑯 𝒑𝒘 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝒄𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

crs: pp

To simulate the second message 𝑐 upon Sim receiving 𝑝𝑘 from the adversary 𝒜,

𝑝𝑘 𝑝𝑤
extracted by Sim

𝑝𝑤 is correct: Sim can generate 𝑐 perfectly with 𝑝𝑤

𝑝𝑤 is wrong: c is generated by a different label from the
label used in pk

Simulation for the Second Message

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘,𝑯 𝒑𝒘 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝒄𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

crs: pp

To simulate the second message 𝑐 upon Sim receiving 𝑝𝑘 from the adversary 𝒜,
𝑝𝑤 is wrong:

Required LPKE property: For every 𝑝𝑘, 𝑏 satisfied LPKE.Check(td, pk, b) = 0, for every message m,
it holds that LPKE. Enc 𝑝𝑘, 𝑏,𝑚 ≈& {𝑐: 𝑐 ←$ 𝒞𝒯}

Simulation of 𝑐: Sim can simulate 𝑐 by 𝑐 ←$ 𝒞𝒯

Simulation for the Third Message

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝑐𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝒎 to Check
𝝈 ≔ 𝑮𝟏(𝒎, 𝒑𝒌, 𝒄)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝝈 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

crs: pp

To simulate the third message 𝜎 upon Sim receiving 𝑐 from the adversary 𝒜,

Required LPKE property: CPA security and weak spreadness (for security of FO-transformation)

Simulation for 𝜎: Note that Sim does not have sk corresponding to pk.
Here Sim uses a technique similar to FO-transformation to extract m from c

Simulation for the Third Message

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝑐𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝒎 to Check
𝝈 ≔ 𝑮𝟏(𝒎, 𝒑𝒌, 𝒄)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

𝝈 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜎)

crs: pp

To simulate the third message 𝜎 upon Sim receiving 𝑐 from the adversary 𝒜,

Required LPKE property: CPA security and weak spreadness (for security of FO-transformation)

Simulation for 𝜎: Search RO queries 𝐻(𝑝𝑤) and 𝐻(𝑚 s.t. 𝑐 = LPKE. Enc(𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚))
If exists such 𝑝𝑤 and 𝑚, then Sim can generate 𝜎 perfectly with 𝑚 and 𝑝𝑤
Otherwise, Sim can reject 𝑐 by setting 𝑠𝐾𝑒𝑦 ≔ ⊥

Upgrade Our Construction from ROM to QROM

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝑐𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check
Re-Encrypt 𝑝𝑤|𝑇𝑟𝑎𝑛𝑠 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐, 𝜙)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜙, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐, 𝜙
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜙, 𝜎)

crs: pp

In our construction, the usage of RO can be divided into three functionalities.

1. The red RO is used to extract the password from public key 𝑝𝑘 and 𝑐

2. The blue RO is used to the FO-transformation and extract the message 𝑚 from 𝑐

3. The green RO serves as pseudo-random functions.

Upgrade Our Construction from ROM to QROM

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)
𝝓 = 𝐏𝐊𝐄. 𝐄𝐧𝐜 𝒄𝒑𝒌, 𝒑𝒘|𝑻𝒓𝒂𝒏𝒔; 𝑮(𝒎)

⇓ ⇓
sKey ≔ 𝑘

𝑐,𝝓𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check
Re-Encrypt 𝒑𝒘|𝑻𝒓𝒂𝒏𝒔 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐, 𝜙)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜙, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐, 𝜙
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜙, 𝜎)

crs: pp, cpk

We first add a CCA-secure PKE encryption in the second message. The randomness is derived from m.

When Sim receives the second message 𝑐,𝜙, it can first decrypt 𝜙 to obtain pw, then extract message 𝑚
through ciphertext 𝑐.

Now the extraction of m from 𝑐 becomes a standard FO-transformation technique.

Upgrade Our Construction from ROM to QROM

1. The red RO is used to extract the password from public key 𝑝𝑘
2. The blue RO is used to the FO-transformation and extract the message from 𝑐
3. The green RO serves as pseudo-random functions.

The blue RO can be adapted into QROM using online-extractable technique in [EC: DFMS21]
The green RO can be proven in QROM using the O2H Lemma [C: AHU19]
The red RO seems hard to adapt into QROM.

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← LPKE. KeyGen(𝑝𝑝, 𝐻(𝑝𝑤)) 𝑚 ← 0,1 !

𝑐 = LPKE. Enc 𝑝𝑘, 𝐻 𝑝𝑤 ,𝑚;𝐻′(𝑚)
𝜙 = PKE. Enc 𝑐𝑝𝑘, 𝑝𝑤|𝑇𝑟𝑎𝑛𝑠; 𝐺(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝑐, 𝜙𝑚 ← LPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check
Re-Encrypt 𝑝𝑤|𝑇𝑟𝑎𝑛𝑠 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐, 𝜙)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜙, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐, 𝜙
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜙, 𝜎)

crs: pp, cpk

Upgrade Our Construction from ROM to QROM

High Level Idea:
1. Remove the usage of RO

2. Enhance the underlying LPKE such that it can extract pw only with trapdoor td
(and without the help of RO)

𝑝𝑘

Client (pw) Server (pw)

sKey ≔ 𝑘

𝑝𝑘, 𝑠𝑘 ← eLPKE. KeyGen(𝑝𝑝, 𝑝𝑤) 𝑚 ← 0,1 !

𝑐 = eLPKE. Enc 𝑝𝑘, 𝑝𝑤,𝑚;𝐻′(𝑚)
𝜙 = PKE. Enc 𝑐𝑝𝑘, 𝑝𝑤|𝑇𝑟𝑎𝑛𝑠; 𝐺(𝑚)

⇓ ⇓
sKey ≔ 𝑘

𝑐, 𝜙𝑚 ← eLPKE. Dec 𝑠𝑘, 𝑐
Re-Encrypt 𝑚 to Check
Re-Encrypt 𝑝𝑤|𝑇𝑟𝑎𝑛𝑠 to Check

𝜎 ≔ 𝐺"(𝑚, 𝑝𝑘, 𝑐, 𝜙)
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜙, 𝜎)

𝜎 Reject if 𝜎 ≠ 𝐺" 𝑚, 𝑝𝑘, 𝑐, 𝜙
𝑘 ≔ 𝐺#(𝑚, 𝑝𝑘, 𝑐, 𝜙, 𝜎)

crs: pp, cpk

Contents

PAKE & Its UC Security

Construction of PAKE & Security Analysis

1

25

Conclusion

2

3

Efficiency Comparison

Our LWE-based PAKE in QROM might not be practical, but we are the first to achieve this.

Our other PAKE protocols are practical.

Conclusion

• In this paper, we propose generic constructions for UC-secure PAKE from LPKE in ROM/QROM.

• These constructions admit four specific PAKE schemes with UC security in ROM or QROM, based

on LWE or GA-DDH.

• For more information, please refer to the full version our paper.

https://eprint.iacr.org/2024/374.pdf

Thanks! Questions?

https://eprint.iacr.org/2024/374.pdf

Instantiation LPKE from LWE Assumption

Adopt from the Regev encryption scheme

Setup: 𝐀, 𝐓 ← TrapGen. With trapdoor 𝐓, one can solve the LWE problem.

LPKE.KeyGen(𝐻(𝑝𝑤)): 𝑠𝑘 ≔ 𝑠, 𝑝𝑘 ≔ 𝐀)𝑠 + 𝑒 − 𝐻 𝑝𝑤

LPKE.Enc(𝑝𝑘,𝑚,𝐻(𝑝𝑤)): 𝑝 ≔ 𝑝𝑘 + 𝐻 𝑝𝑤 . 𝑐" ≔ 𝐀𝑟, 𝑐# ≔< 𝑝, 𝑟 > +𝑚 × *
#

LPKE.Dec(𝑠𝑘 = 𝑠, 𝑐 = (𝑐", 𝑐$)): 𝑚 ≔ 𝑐#−< 𝑠, 𝑐" > *

LPKE.Test(𝐓, 𝑝𝑘, 𝑝𝑤): solve 𝑝𝑘 − 𝐻 𝑝𝑤 = 𝐀)𝑠 + 𝑒 and check whether e is small enough

If pk and c contain different labels, then c is encrypted by a uniform p and thus uniform
by the leftover hash lemma.

It is also unlikely for two random vector v1, v2 s.t. v1 – v2 is close to the lattice Λ(𝐀)).
(Uniqueness of labels contained in pk)

Construction of extractable LPKE

Now Sim can extract pw from 𝑝𝑘 = 𝑝𝑘", … , 𝑝𝑘* via a bit-by-bit approach.

When 𝑝𝑘 and 𝑐 use different labels, at least one 𝑧+ in 𝑐+ becomes uniform and thus the whole m is uniform.

But now the ciphertext 𝑐 leaks too much information of 𝑝𝑤.

So we additionally require Ciphertext Randomness in case of Random Messages for underlying
LPKE. (and this is why our PAKE in QROM requires super-polynomial modulus q)

We construct the extractable LPKE from a bit-by-bit approach. Suppose pw has 𝜆 bits.

Setup will generate a crs (along with its trapdoor) and 2𝜆 uniform strings {𝑣",, 𝑣"", … , 𝑣!
,, 𝑣!"}

eLPKE.KeyGen generates 𝜆 public keys, the i-th public key is generated by label 𝑣+
-.%

eLPKE.Enc chooses random 𝑧", 𝑧#, … , 𝑧! s.t. 𝑚 = 𝑧"⊕𝑧$⊕⋯⊕ 𝑧*. Then encrypt 𝑧+ using 𝑝𝑘+ with label 𝑣+
-.%

