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- n parties: sender S with message m and n — 1 receivers
« Validity: all receivers output m if S is honest
* Consistency: all receivers output the same message

* Termination: All parties terminate
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- Tolerates r < n corruptions

« Runsint+ 1 rounds

. Can we terminate earlier when f < ¢ parties are corrupted?
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Results and Comparison with Early-Stopping Literature
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* Dolev-Strong-Reischuk (JACM 1990): Any early stopping protocol runs in
min{f+ 2, t+ 1} rounds in the worst case

« Berman, Garay, Perry (WDAG 1992): min{f + 2, ¢t + 1}, exponential Communication

« Abraham-Dolev (STOC 2015): min{f+ 2, # + 1} rounds for t < n/3 and i.t. security

o Perry-Toueg (Manuscript 1984): 2 - min{f+ 2, t + 1} rounds for ¢ < n/2 and signatures
. This work: O(min{f?,t}) for ¢ < n and signatures
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- Equivocation: Sender S sends different messages m, 71 to parties
« Can be detected through one more round of forwarding

- Yields a proof of equivocation if S signs messages
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« Easy when t < n/2:

— Exchange accusations

— t + 1 accusations prove sender is faulty

« Hard when ¢ >4n/2'/
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Updating Polarisers

» Update polariser with new accusations
- Rule: P only accepts polariser if P € Alive
« —> Polarisers can be forwarded/updated safely between honest parties! AI |Ve

Corrupt
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Constructing a Polariser in f + 2 Rounds, Example 2

« All honest parties Accuse P in Round 2
E E E E « All honest parties Accuse Ps in Round 3
/ - P, and Ps are added to Corrupt in Round 4
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Tool: Justified Outputs and Inputs

T\

« Output m is justified if it comes with a forwardable proof &
« Polarisers justify empty L outputs
* ldea: Recursively combine justified outputs from subprotocols to justify next input

« Caveat: May lead to exponential blowup!
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- Graded Validity: all receivers output (71,2,7) if sender is honest

 Graded Consistency: receivers with g > 0 output the same message

el (m,1,7)

g ﬂ (L,0,7)
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Building Block: Graded Broadcast with Justifiable Output
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- Graded Validity: all receivers output (71,2,7) if sender is honest
 Graded Consistency: receivers with g > 0 output the same message

- Termination: All parties terminate in O( f) rounds
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- Phase King in Dishonest Majority
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* Run GBC in phases with a rotating king
 Current King sends justified output from previous phase via GBC

* First honest king produces forwardable proof of termination

v = NoMsg is possible!

(v,2,7)
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- Phase King in Dishonest Majority

7/ \Y

* Inputs/Outputs are justified Recursively
« Observation: Only one value can ever be justified with grade g > 0
- = Complexity is kept polynomial (send same messages only once)

— = Conflicting proofs of termination do not exist

O

(v,1,7) (v,2,7)
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« Run DC for O(%) rounds
* Use WES to broadcast an early justified output

* If there is no early output, broadcast justified default output

. Total running time is O(min{f?, t}) rounds

O(1) O(f)

0(f%) O(f)

(v, 7)
—

O(f)

(NoMsg, )
& IR

DC WES
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. Can we get an o( f2) round early stopping protocol?
* Can heavy cryptography (obfuscation, FHE, TLPs) help?

« Can we use exponential information gathering?
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