“ICISPA

-
’/ EEEEEEEEEEEEEEEEEEE
llllllllllllllllllllll

Early Stopping for Any
Number of Corruptions

Julian Loss, CISPA Helmholtz Center for Information Security
Jesper Buus Nielsen, Aarhus University

\"I

3 Broadcast

%>

\"I

. Broadcast

%>

- n parties: sender S with message m and n — 1 receivers

VI

3 Broadcast

7/ \Y

- n parties: sender S with message m and n — 1 receivers

®)
®)

VI

. Broadcast

- n parties: sender S with message m and n — 1 receivers

« Validity: all receivers output m if S is honest

m

0 -Q @

m

\-l

VI

~ Broadcast

%>

- n parties: sender S with message m and n — 1 receivers

« Validity: all receivers output m if S is honest

VI

~ Broadcast

%>

- n parties: sender S with message m and n — 1 receivers

« Validity: all receivers output m if S is honest

* Consistency: all receivers output the same message

N

W/

_ Broadcast

%>

- n parties: sender S with message m and n — 1 receivers
« Validity: all receivers output m if S is honest
* Consistency: all receivers output the same message

* Termination: All parties terminate

-

vy

3>

3>

3>

*lre,,

- _ Dolev-Strong Protocol

M\

*lre,,

- _ Dolev-Strong Protocol

%>

- Tolerates r < n corruptions

Vi,

- _ Dolev-Strong Protocol

- Tolerates r < n corruptions

Vi,

- _ Dolev-Strong Protocol

- Tolerates r < n corruptions

« Runsint+ 1 rounds

I
\\/

- Dolev-Strong Protocol

%>

- Tolerates r < n corruptions

« Runsint+ 1 rounds

VI

N /
>

Dolev-Strong Protocol

%>

- Tolerates r < n corruptions

« Runsint+ 1 rounds

. Can we terminate earlier when f < ¢ parties are corrupted?

*lre,,

- Results and Comparison with Early-Stopping Literature

%>

\"1

N /
>

Results and Comparison with Early-Stopping Literature

T\

* Dolev-Strong-Reischuk (JACM 1990): Any early stopping protocol runs in
min{f+ 2, t+ 1} rounds in the worst case

\"I

N /
>

Results and Comparison with Early-Stopping Literature

%>

* Dolev-Strong-Reischuk (JACM 1990): Any early stopping protocol runs in
min{f+ 2, t+ 1} rounds in the worst case

« Berman, Garay, Perry (WDAG 1992): min{f + 2, ¢t + 1}, exponential Communication

\"I

N /
>

Results and Comparison with Early-Stopping Literature

%>

* Dolev-Strong-Reischuk (JACM 1990): Any early stopping protocol runs in
min{f+ 2, t+ 1} rounds in the worst case

« Berman, Garay, Perry (WDAG 1992): min{f + 2, ¢t + 1}, exponential Communication
« Abraham-Dolev (STOC 2015): min{f+ 2, # + 1} rounds for t < n/3 and i.t. security

\"I

N /
>

Results and Comparison with Early-Stopping Literature

%>

* Dolev-Strong-Reischuk (JACM 1990): Any early stopping protocol runs in
min{f+ 2, t+ 1} rounds in the worst case

« Berman, Garay, Perry (WDAG 1992): min{f + 2, ¢t + 1}, exponential Communication
« Abraham-Dolev (STOC 2015): min{f+ 2, # + 1} rounds for t < n/3 and i.t. security
o Perry-Toueg (Manuscript 1984): 2 - min{f+ 2, t + 1} rounds for ¢ < n/2 and signatures

\"I

N /
>

Results and Comparison with Early-Stopping Literature

%>

* Dolev-Strong-Reischuk (JACM 1990): Any early stopping protocol runs in
min{f+ 2, t+ 1} rounds in the worst case

« Berman, Garay, Perry (WDAG 1992): min{f + 2, ¢t + 1}, exponential Communication

« Abraham-Dolev (STOC 2015): min{f+ 2, # + 1} rounds for t < n/3 and i.t. security

o Perry-Toueg (Manuscript 1984): 2 - min{f+ 2, t + 1} rounds for ¢ < n/2 and signatures
. This work: O(min{f?,t}) for ¢ < n and signatures

\"1

N /
>

Detecting Equivocation is Easy

%>

\"1

N /
>

Detecting Equivocation is Easy

%>

- Equivocation: Sender S sends different messages m, 71 to parties

\"1

N /
>

Detecting Equivocation is Easy

%>

- Equivocation: Sender S sends different messages m, 71 to parties

\"1

N /
>

Detecting Equivocation is Easy

%>

- Equivocation: Sender S sends different messages m, 71 to parties

\"1

N /
-

Detecting Equivocation is Easy

%>

- Equivocation: Sender S sends different messages m, 71 to parties

\"1

N /
>

Detecting Equivocation is Easy

%>

- Equivocation: Sender S sends different messages m, 71 to parties

« Can be detected through one more round of forwarding

\"1

N /
>

Detecting Equivocation is Easy

%>

- Equivocation: Sender S sends different messages m, 71 to parties

« Can be detected through one more round of forwarding

\"1

N /
>

Detecting Equivocation is Easy

T\

- Equivocation: Sender S sends different messages m, 71 to parties

« Can be detected through one more round of forwarding

\"1

N /
>

Detecting Equivocation is Easy

T\

- Equivocation: Sender S sends different messages m, 71 to parties

« Can be detected through one more round of forwarding

\"1

N /
>

Detecting Equivocation is Easy

T\

- Equivocation: Sender S sends different messages m, 71 to parties
« Can be detected through one more round of forwarding

- Yields a proof of equivocation if S signs messages

\"1

N /
>

Detecting Sender Crash is Hard

%>

\"1

N /
>

Detecting Sender Crash is Hard

%>

* How to prove that sender sent no message?

\"1

N /
>

Detecting Sender Crash is Hard

%>

* How to prove that sender sent no message?

« Easy when t < n/2:

\"1

N /
>

Detecting Sender Crash is Hard

%>

* How to prove that sender sent no message?
« Easy when t < n/2:

— Exchange accusations

\"1

N /
>

Detecting Sender Crash is Hard

%>

* How to prove that sender sent no message?

« Easy when t < n/2:

— Exchange accusations

\"1

N /
>

Detecting Sender Crash is Hard

%>

* How to prove that sender sent no message?

« Easy when t < n/2:

— Exchange accusations

A -4

\"1

N /
>

Detecting Sender Crash is Hard

T\

* How to prove that sender sent no message?

« Easy when t < n/2:

— Exchange accusations

A -4

\"1

N /
>

Detecting Sender Crash is Hard

T\

* How to prove that sender sent no message?

« Easy when t < n/2:

— Exchange accusations

— t + 1 accusations prove sender is faulty

A -4

\"1

N /
>

Detecting Sender Crash is Hard

T\

* How to prove that sender sent no message?

« Easy when t < n/2:

— Exchange accusations

- t+ 1 accusations prove sender is faulty Q O

« Hard when t > n/2!
(

A -4

\"1

N /
>

Detecting Sender Crash is Hard

%>

* How to prove that sender sent no message?

« Easy when t < n/2:

— Exchange accusations

— t + 1 accusations prove sender is faulty

« Hard when ¢ >4n/2'/

\"I

: Main Tool: Polarisers

/II\\\

\"I

. Main Tool: Polarisers

%>

. Act as “certificates’ when t > n/2

\"I

. Main Tool: Polarisers

%>

. Act as “certificates’ when t > n/2

» Splits parties into sets Alive and Corrupt

\"I

. Main Tool: Polarisers

%>

. Act as “certificates’ when t > n/2

» Splits parties into sets Alive and Corrupt

Corrupt

\"I

Main Tool: Polarisers

2
o
7/ \\\

f}

. Act as “certificates’ when t > n/2 AI |Ve

» Splits parties into sets Alive and Corrupt

Corrupt e

\"I

. Main Tool: Polarisers

%>

. Act as “certificates’ when t > n/2 AI |Ve

» Splits parties into sets Alive and Corrupt

- All parties in Alive accuse parties in Corrupt

Corrupt e

\"I

. Main Tool: Polarisers

%>

- Act as “certificates’ when t > n/2
» Splits parties into sets Alive and Corrupt

- All parties in Alive accuse parties in Corrupt

x

Corrupt

\"I

. Main Tool: Polarisers

%>

- Act as “certificates’ when t > n/2
» Splits parties into sets Alive and Corrupt

- All parties in Alive accuse parties in Corrupt

x

Corrupt

\"I

. Main Tool: Polarisers

%>

- Act as “certificates’ when t > n/2
» Splits parties into sets Alive and Corrupt

- All parties in Alive accuse parties in Corrupt

x

Corrupt

\"I

. Main Tool: Polarisers

%>

- Act as “certificates’ when t > n/2
» Splits parties into sets Alive and Corrupt

- All parties in Alive accuse parties in Corrupt

\"I

. Main Tool: Polarisers

%>

- Act as “certificates’ when t > n/2
» Splits parties into sets Alive and Corrupt

- All parties in Alive accuse parties in Corrupt

\"I

. Main Tool: Polarisers

%>

- Act as “certificates’ when t > n/2
» Splits parties into sets Alive and Corrupt

- All parties in Alive accuse parties in Corrupt

\"I

: Polariser Features

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other

- Key Observation: Either honest parties are all in Alive or all in Corrupt

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other AI Ive
- Key Observation: Either honest parties are all in Alive or all in Corrupt

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other AI Ive
- Key Observation: Either honest parties are all in Alive or all in Corrupt

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other AI Ive
- Key Observation: Either honest parties are all in Alive or all in Corrupt

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other AI Ive
- Key Observation: Either honest parties are all in Alive or all in Corrupt

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other AI Ive
- Key Observation: Either honest parties are all in Alive or all in Corrupt

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other AI Ive
- Key Observation: Either honest parties are all in Alive or all in Corrupt

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other AI Ive
- Key Observation: Either honest parties are all in Alive or all in Corrupt

\"I

. Polariser Features

%>

* Invariant: Honest Parties do not accuse each other AI Ive
- Key Observation: Either honest parties are all in Alive or all in Corrupt

I
\‘/
-
-

%>

Updating Polarisers

I
\‘/
=

T\

Updating Polarisers

» Update polariser with new accusations

\"1

., . Updating Polarisers

» Update polariser with new accusations

Corrupt

\"1

., . Updating Polarisers

» Update polariser with new accusations

I
\‘/

Updating Polarisers

%>

» Update polariser with new accusations

x

Corrupt

Updating Polarisers

V4
%>

» Update polariser with new accusations

- Rule: P only accepts polariser if P € Alive

Corrupt

*lre,,

N
>

%>

Updating Polarisers

» Update polariser with new accusations
- Rule: P only accepts polariser if P € Alive
« —> Polarisers can be forwarded/updated safely between honest parties! AI |Ve

Corrupt

. _ Constructing a Polariser in f + 2 Rounds, Example 1
9 ¥ ¥ 9

© ©

3

@

@ ¢ ¢ ¢
¢ & & @

. _ Constructing a Polariser in f + 2 Rounds, Example 1

. ¥ 9 ©

‘e ©

3
&
x

@

& @ W
X ¢ @

Constructing a Polariser in f + 2 Rounds, Example 1
¥. 9 9 9

© '©

=7

&
¢ @&

@ W
¢ @

Constructing a Polariser in f + 2 Rounds, Example 1
9.9 ¥ ©
© ©

4

D €

@ @
¢ @&

@ W
¢ @

Constructing a Polariser in f + 2 Rounds, Example 1

¥. 9 9 9
4

©//©

o

g

7

° N

&
X

@

&
x

&
x

&
X

Constructing a Polariser in f + 2 Rounds, Example 1

& . Constructing a Polariser in f + 2 Rounds, Example 1

’ " : - All parties output P;’s message by Round 4

\"1

N /
-

Constructing a Polariser in f + 2 Rounds, Example 1
- All parties output P;’s message by Round 4
E E E * No malicious party identified

ey,

%>

O

) 3

4

© W
L

&
¢ @

. . Constructing a Polariser in f + 2 Rounds, Example 2
9 ¥ ¥ 9

© ©

3

@

@ ¢ ¢ ¢
¢ & & @

Constructing a Polariser in f + 2 Rounds, Example 2
v % 9 ©

@ © ¢
¢ @& @

&
&

1

Constructing a Polariser in f + 2 Rounds, Example 2

E E E E « All honest parties Accuse P in Round 2

@ © ¢
¢ @& @

&
&

1

Constructing a Polariser in f + 2 Rounds, Example 2

E E E E « All honest parties Accuse P in Round 2

%e

X

&
x

© @
¢ @

\"1

N /
>

Constructing a Polariser in f + 2 Rounds, Example 2

E E E E « All honest parties Accuse P in Round 2
/ « All honest parties Accuse Ps in Round 3

:

®)
o

&
¢ @

© @
¢ @

\"1

N /
>

Constructing a Polariser in f + 2 Rounds, Example 2

« All honest parties Accuse P in Round 2
E E E E « All honest parties Accuse Ps in Round 3
/ - P, and Ps are added to Corrupt in Round 4

I
\\/
=

Tool: Justified Outputs and Inputs

T\

13

I
\\/
=

Tool: Justified Outputs and Inputs

T\

« Output m is justified if it comes with a forwardable proof &

13

I
\\/
=

Tool: Justified Outputs and Inputs

T\

« Output m is justified if it comes with a forwardable proof &

« Polarisers justify empty L outputs

13

I
\\/
=

Tool: Justified Outputs and Inputs

T\

« Output m is justified if it comes with a forwardable proof &
« Polarisers justify empty L outputs

* ldea: Recursively combine justified outputs from subprotocols to justify next input

13

I
\\/
=

Tool: Justified Outputs and Inputs

T\

« Output m is justified if it comes with a forwardable proof &
« Polarisers justify empty L outputs
* ldea: Recursively combine justified outputs from subprotocols to justify next input

« Caveat: May lead to exponential blowup!

13

. Building Block: Graded Broadcast with Justifiable Output

®)
®)

S

14

. Building Block: Graded Broadcast with Justifiable Output

- Graded Validity: all receivers output (71,2,7) if sender is honest

S

Vs
/

<

®)
®)

n

35
N - 4

14

i,

- Building Block: Graded Broadcast with Justifiable Output

%1\

- Graded Validity: all receivers output (71,2,7) if sender is honest

®)
®)

14

\\’/

Building Block: Graded Broadcast with Justifiable Output

%1\

- Graded Validity: all receivers output (71,2,7) if sender is honest

 Graded Consistency: receivers with g > 0 output the same message

®)
®)

14

I
\\/

Building Block: Graded Broadcast with Justifiable Output

%>

- Graded Validity: all receivers output (71,2,7) if sender is honest

 Graded Consistency: receivers with g > 0 output the same message

el (m,1,7)

g ﬂ (L,0,7)

% (m,1,7)

L W

14

I
\\/
>

Building Block: Graded Broadcast with Justifiable Output

%>

- Graded Validity: all receivers output (71,2,7) if sender is honest
 Graded Consistency: receivers with g > 0 output the same message

- Termination: All parties terminate in O(f) rounds

14

*lre,,

- _ Phase King in Dishonest Majority

%>

15

*lre,,

- _ Phase King in Dishonest Majority

T\

* Run GBC in phases with a rotating king

15

W/

- Phase King in Dishonest Majority

7. \Y

* Run GBC in phases with a rotating king

15

VI

- Phase King in Dishonest Majority

7/ \Y

* Run GBC in phases with a rotating king

 Current King sends justified output from previous phase via GBC

i

15

VI

- Phase King in Dishonest Majority

7/ \Y

* Run GBC in phases with a rotating king

 Current King sends justified output from previous phase via GBC

O

(v,1,7)

15

VI

- Phase King in Dishonest Majority

7/ \Y

* Run GBC in phases with a rotating king

 Current King sends justified output from previous phase via GBC

15

VI

- Phase King in Dishonest Majority

7/ \Y

* Run GBC in phases with a rotating king
 Current King sends justified output from previous phase via GBC

* First honest king produces forwardable proof of termination

15

VI

- Phase King in Dishonest Majority

7/ \Y

* Run GBC in phases with a rotating king
 Current King sends justified output from previous phase via GBC

* First honest king produces forwardable proof of termination

(v,2,7)

15

VI

- Phase King in Dishonest Majority

7/ \Y

* Run GBC in phases with a rotating king
 Current King sends justified output from previous phase via GBC

* First honest king produces forwardable proof of termination

v = NoMsg is possible!

(v,2,7)

15

\

= '\ Phase King in Dishonest Majority

0/

i

16

\

= '\ Phase King in Dishonest Majority

0/

* Inputs/Outputs are justified Recursively

(v,1,7) (v,2,7)

16

VI

- Phase King in Dishonest Majority

7/ \Y

* Inputs/Outputs are justified Recursively

« Observation: Only one value can ever be justified with grade g > 0

O

(v,1,7) (v,2,7)

16

VI

- Phase King in Dishonest Majority

7/ \Y

* Inputs/Outputs are justified Recursively
« Observation: Only one value can ever be justified with grade g > 0

- = Complexity is kept polynomial (send same messages only once)

O

(v,1,7) (v,2,7)

16

VI

- Phase King in Dishonest Majority

7/ \Y

* Inputs/Outputs are justified Recursively
« Observation: Only one value can ever be justified with grade g > 0
- = Complexity is kept polynomial (send same messages only once)

— = Conflicting proofs of termination do not exist

O

(v,1,7) (v,2,7)

16

\"I

N /
>

Remaining Issue

%>

17

\"I

N /
>

Remaining Issue

%>

. Construction always runs f + 1 phase king iterations of length O(f)

17

\"I

N /
>

Remaining Issue

%>

» Construction always runs f + 1 phase king iterations of length O(f)
. Might lead to O(f?) > O(¢) rounds!

17

\"I

N /
>

Remaining Issue

%>

. Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!
* Our final building block is Weak Early Stopping (WES) broadcast:

17

\"I

N /
>

Remaining Issue

%>

. Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!
* Our final building block is Weak Early Stopping (WES) broadcast:
— Terminates in O(f) rounds for honest sender

17

\"I

N /
>

Remaining Issue

%>

- Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!
* Our final building block is Weak Early Stopping (WES) broadcast:
— Terminates in O(f) rounds for honest sender

17

\"I

N /
>

Remaining Issue

%>

- Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!
* Our final building block is Weak Early Stopping (WES) broadcast:
— Terminates in O(f) rounds for honest sender

O(f)

17

\"I

N /
>

Remaining Issue

%>

- Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!
* Our final building block is Weak Early Stopping (WES) broadcast:
— Terminates in O(f) rounds for honest sender

O(f)

17

\"I

N /
>

Remaining Issue

%>

- Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!
* Our final building block is Weak Early Stopping (WES) broadcast:
— Terminates in O(f) rounds for honest sender

i

17

\"1

N /
>

Remaining Issue

%>

» Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!

* Our final building block is Weak Early Stopping (WES) broadcast:
— Terminates in O(f) rounds for honest sender

— Terminates in O(¢) for dishonest sender

i

17

\"1

N /
>

Remaining Issue

%>

» Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!

* Our final building block is Weak Early Stopping (WES) broadcast:
— Terminates in O(f) rounds for honest sender

— Terminates in O(¢) for dishonest sender

i

O(1)

17

\"1

N /
>

Remaining Issue

%>

» Construction always runs f + 1 phase king iterations of length O(f)

. Might lead to O(f?) > O(¢) rounds!

* Our final building block is Weak Early Stopping (WES) broadcast:
— Terminates in O(f) rounds for honest sender

— Terminates in O(¢) for dishonest sender

i

O(1)

17

\

.~ Final Protocol

%>

18

\

.~ Final Protocol

%>

« Run DC for O(%) rounds

18

\

.~ Final Protocol

%>

« Run DC for O(%) rounds

18

\

.~ Final Protocol

%>

« Run DC for O(%) rounds

* Use WES to broadcast an early justified output

18

\

.~ Final Protocol

T\

« Run DC for O(%) rounds

* Use WES to broadcast an early justified output

(v, 7)

18

\

.~ Final Protocol

%>

« Run DC for O(%) rounds

* Use WES to broadcast an early justified output

(v, 7)

18

\‘,/

Final Protocol

-
%>

« Run DC for O(%) rounds

* Use WES to broadcast an early justified output

O(f?)

(v, 7)

18

\‘,/

Final Protocol

-
%>

« Run DC for O(%) rounds

* Use WES to broadcast an early justified output

0(f%) O(f)

(v, 7)

18

\Il/

%>

\

I
/

18

Final Protocol

« Run DC for O(%) rounds

* Use WES to broadcast an early justified output

O(t)
0(f%) O(f)

(v, 7)
—

DC WES

\

.~ Final Protocol

%>

« Run DC for O(%) rounds
* Use WES to broadcast an early justified output

* If there is no early output, broadcast justified default output

O(t)
0(f%) O(f)

(v, 7)
—

DC WES

18

\

.~ Final Protocol

%>

« Run DC for O(%) rounds
* Use WES to broadcast an early justified output

* If there is no early output, broadcast justified default output

O(t)
0(f%) O(f)

(v, 7)
—

(NoMsg, TT)
& IR

DC WES

18

\

.~ Final Protocol

%>

« Run DC for O(%) rounds
* Use WES to broadcast an early justified output

* If there is no early output, broadcast justified default output

O(1)
O(f?) & O(f)

(v, 7)
—

(NoMsg,)
-4 —

18

\

.~ Final Protocol

%>

« Run DC for O(%) rounds
* Use WES to broadcast an early justified output

* If there is no early output, broadcast justified default output

O(1)
O(f?) & O(f)

(v, 7)
—

O(f)

(NoMsg,)
-4 —

18

\‘,/

Final Protocol

-
%>

« Run DC for O(%) rounds
* Use WES to broadcast an early justified output

* If there is no early output, broadcast justified default output

O(1) O(f)

0(f%) O(f)

(v, 7)
—

O(f)

(NoMsg,)
& IR

DC WES

18

\

.~ Final Protocol

%>

« Run DC for O(%) rounds
* Use WES to broadcast an early justified output

* If there is no early output, broadcast justified default output

. Total running time is O(min{f?, t}) rounds

O(1) O(f)

0(f%) O(f)

(v, 7)
—

O(f)

(NoMsg,)
& IR

DC WES

18

I
\‘/
=

%>

Open Questions

19

I
\‘/
=

T\

Open Questions

. Can we get an o(f2) round early stopping protocol?

19

\"1

N /
>

Open Questions

T\

. Can we get an o(f2) round early stopping protocol?

* Can heavy cryptography (obfuscation, FHE, TLPs) help?

19

\"1

N /
>

Open Questions

T\

. Can we get an o(f2) round early stopping protocol?
* Can heavy cryptography (obfuscation, FHE, TLPs) help?

« Can we use exponential information gathering?

19

-, . Funding Information

Funded by
the European Union

s\“. 1. "

o\,

/'I] I\\\

CISPA

HELMHOLTZ CENTER FOR
INFORMATION SECURITY

Thank you!

