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Desirable to garble arithmetic circuits
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Garbling arithmetic gates was a challenge

Garbling of -gate Boolean circuit 
has size  bits

n
O(n ⋅ λ)

x ∈ {0,1}
∧y ∈ {0,1}
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Arithmetic Garbling

Traditionally,  is a Boolean circuitP

Desirable to garble arithmetic circuits

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

Garbling of -gate Boolean circuit 
has size  bits

n
O(n ⋅ λ)

x ∈ ℤm

×y ∈ ℤm
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This Work

Consider:  is an -gate arithmetic 
circuit over -bit integers 

Goal: Generate small encoding 

P n
ℓ

P̃

Main Result:  is  bits longP̃ O(n ⋅ ℓ ⋅ λ)

•  is a computational security parameter (e.g. 128)


• Assumes circular-correlation robust hashes 
(common in practical symmetric-key GC)

λSurprise Factor: -bit 
multiplication at cost 

ℓ
O(ℓ ⋅ λ)
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This Work

Goal
Long Integer 
Arithmetic

Short Integer 
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System

Novel 
computational 
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Theorem

Relatively 
Standard

Inspired by tri-state 
circuits [HKO23]
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Switch Systems

Alternative to Boolean Circuits

Relatively Straightforward to Garble

See Paper
Models Computation as a 
Constraint System that the 
evaluator will solve

Captures much of the state-of-the-
art in symmetric-key garbling

Free XOR, Half-AND Gates, Garbled RAM, One-Hot 
Garbling, Arithmetic Computations

Gate g
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z

GC Evaluator will learn 
value of every control wire

Oblivious switch system: 

The control wire values 
can be simulated

Switch

Insight: Garbler can 
introduce one-time-pad 
masks that allow to safely 
reveal control values
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Switch Systems

x y

x = y

Join Switch systems evaluate as a 
system of constraints, but they 
must be set up as a circuit

NOTE! The only gates that contribute to 
the size of a garbled circuit are joins!

To improve GC handling, reduce the 
number of joins!

Insight: Garbler encrypts 
system in circuit order, 
evaluator solves constraints



46

Switch Systems

x
z

ADD

y +

x + y = z



47

Switch Systems

+



48

Switch Systems

+

⋅ mod 2

⋅ /2

See paper



49

Switch Systems

+

⋅ mod 2

⋅ /2

See paper

$$$



50

0

0

0

0

x0

x1

x2

x3

+ s

Example: Scaling a one-hot vector



51

0

0

0

0

0

0

1

0

+ s

Example: Scaling a one-hot vector



52

0

0

0

0

0

0

1

0

+ s

Example: Scaling a one-hot vector



53

0

0

0

0

0

0

1

0

+ s

0

0

0

???

Example: Scaling a one-hot vector



54

0

0

0

0

0

0

1

0

+ s

0

0

0

s

Example: Scaling a one-hot vector

Scaling length-  one-hot 
vector  uses only a 
single join!

n

Generalizes “One-Hot 
Garbling” [HK21]
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Let x, y ∈ ℤ2k

Suppose we have one-hot encoding of  and a single wire that encodes x y

0
0
0
0
1
0
0
0

0
1
2
3
4
5
6
7

⊺

⋅

0
0
0
0
y
0
0
0

= 4 ⋅ y = x ⋅ y

Single wire 
that encodes 

x ⋅ y

Uses only a single join gate garbled encoding of size  bitsk ⋅ λ

How to Multiply Short Integers

scale by y
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hot(x), y ↦ x ⋅ y

How to Multiply Short Integers

To multiply again, we need to convert single wire to one-hot encoding

This is achieved by another (complex) switch system, 
somewhat similar to one-hot scaling

See paper
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This Work

switch systems generalize much of 
the garbled circuit literature

First symmetric-key garbling scheme 
for arithmetic circuits that achieves 

linear-cost multiplication

Opens possibility of new custom 
arithmetic garbled “gates”

See Paper For

More details on (oblivious) 
switch systems 

Switch system that converts between 
one-hot representation and arithmetic 

representation

Long integer handling, based on 
Chinese Remainder Theorem

How to garble switch systems


