
Efficient Arithmetic in Garbled Circuits
David Heath
University of Illinois Urbana-Champaign

Garbler Evaluator

2

P
x y

Garbled Circuits

Garbler Evaluator

3

P̃

x y

x̃, ỹ

P

Garbled Circuits

“The garbled circuit”

Garbler Evaluator

4

P̃

x y

x̃, ỹ

P̃(x̃, ỹ) = P(x, y)

P

Garbled Circuits

“The garbled circuit”

(Oblivious Transfer)

5

P̃ x̃, ỹ

Garbled Circuits

≈
Privacy:

Simulator

P(x, y)

Garbler Evaluator

6

P̃

x y

x̃, ỹ

P̃(x̃, ỹ) = P(x, y)

P

Garbled Circuits

constant
round
protocols
fast,
symmetric-
key primitives

(Oblivious Transfer)

Garbler Evaluator

7

P̃

x y

x̃, ỹ

P̃(x̃, ỹ) = P(x, y)

P

Garbled Circuits

constant
round
protocols
fast,
symmetric-
key primitives
high bandwidth
consumption

(Oblivious Transfer)

P̃

P

8

Arithmetic Garbling

Traditionally, is a Boolean circuitP
Garbling of -gate Boolean circuit
has size bits

n
O(n ⋅ λ)

P̃

P

9

Arithmetic Garbling

Traditionally, is a Boolean circuitP

Desirable to garble arithmetic circuits

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

Garbling of -gate Boolean circuit
has size bits

n
O(n ⋅ λ)

P̃

P

10

Arithmetic Garbling

Traditionally, is a Boolean circuitP

Desirable to garble arithmetic circuits

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

Garbling of -gate Boolean circuit
has size bits

n
O(n ⋅ λ)

x ∈ {0,1}
∧y ∈ {0,1}

P̃

P

11

Arithmetic Garbling

Traditionally, is a Boolean circuitP

Desirable to garble arithmetic circuits

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

Garbling of -gate Boolean circuit
has size bits

n
O(n ⋅ λ)

x ∈ ℤm

×y ∈ ℤm

P̃

P

12

This Work

Consider: is an -gate arithmetic
circuit over -bit integers

Goal: Generate small encoding

P n
ℓ

P̃

P̃

P

13

This Work

Consider: is an -gate arithmetic
circuit over -bit integers

Goal: Generate small encoding

P n
ℓ

P̃

Main Result: is bits longP̃ O(n ⋅ ℓ ⋅ λ)

• is a computational security parameter (e.g. 128)

• Assumes circular-correlation robust hashes
(common in practical symmetric-key GC)

λ

P̃

P

14

This Work

Consider: is an -gate arithmetic
circuit over -bit integers

Goal: Generate small encoding

P n
ℓ

P̃

Main Result: is bits longP̃ O(n ⋅ ℓ ⋅ λ)

• is a computational security parameter (e.g. 128)

• Assumes circular-correlation robust hashes
(common in practical symmetric-key GC)

λSurprise Factor: -bit
multiplication at cost

ℓ
O(ℓ ⋅ λ)

15

Domain

Schoolbook

Karatsuba

+ ×

O(ℓ ⋅ λ) O(ℓ2 ⋅ λ)

O(ℓ ⋅ λ) O(ℓ1.585 ⋅ λ)

16

Domain

Schoolbook

Karatsuba

[BMR16]

+ ×

O(ℓ ⋅ λ) O(ℓ2 ⋅ λ)

O(ℓ ⋅ λ) O(ℓ1.585 ⋅ λ)

0 O(2ℓ ⋅ λ)

17

Domain

Schoolbook

Karatsuba

[BMR16]

+ ×

O(ℓ ⋅ λ) O(ℓ2 ⋅ λ)

O(ℓ ⋅ λ) O(ℓ1.585 ⋅ λ)

0 O(2ℓ ⋅ λ) prime ℤp

any ℤm

any ℤm

18

Domain

Schoolbook

Karatsuba

[BMR16]

[BMR16] + CRT

+ ×

O(ℓ ⋅ λ) O(ℓ2 ⋅ λ)

O(ℓ ⋅ λ) O(ℓ1.585 ⋅ λ)

0 O(2ℓ ⋅ λ) prime ℤp

any ℤm

any ℤm

0 O((ℓ2/log ℓ) ⋅ λ) CRT friendly ℤN

19

Domain

Schoolbook

Karatsuba

[BMR16]

[BMR16] + CRT

Boolean CRT

+ ×

O(ℓ ⋅ λ) O(ℓ2 ⋅ λ)

O(ℓ ⋅ λ) O(ℓ1.585 ⋅ λ)

0 O(2ℓ ⋅ λ) prime ℤp

any ℤm

any ℤm

0 O((ℓ2/log ℓ) ⋅ λ) CRT friendly ℤN

O(ℓ ⋅ λ) O(ℓ log ℓ ⋅ λ) CRT friendly ℤN

20

Domain

Schoolbook

Karatsuba

[BMR16]

[BMR16] + CRT

Boolean CRT

+ ×

O(ℓ ⋅ λ) O(ℓ2 ⋅ λ)

O(ℓ ⋅ λ) O(ℓ1.585 ⋅ λ)

0 O(2ℓ ⋅ λ) prime ℤp

any ℤm

any ℤm

0 O((ℓ2/log ℓ) ⋅ λ) CRT friendly ℤN

O(ℓ ⋅ λ) O(ℓ log ℓ ⋅ λ) CRT friendly ℤN

[AIK11] and [BLL+23] also garble arithmetic, but require public-key cryptography

21

Domain
This Work

Schoolbook

Karatsuba

[BMR16]

[BMR16] + CRT

Boolean CRT

O(ℓ ⋅ λ) O(ℓ ⋅ λ)

+ ×
any ℤm

O(ℓ ⋅ λ) O(ℓ2 ⋅ λ)

O(ℓ ⋅ λ) O(ℓ1.585 ⋅ λ)

0 O(2ℓ ⋅ λ) prime ℤp

any ℤm

any ℤm

0 O((ℓ2/log ℓ) ⋅ λ) CRT friendly ℤN

O(ℓ ⋅ λ) O(ℓ log ℓ ⋅ λ) CRT friendly ℤN

[AIK11] and [BLL+23] also garble arithmetic, but require public-key cryptography

22

This Work

Goal
Integer

Arithmetic

23

This Work

Goal
Long Integer
Arithmetic

Short Integer
Arithmetic

Chinese
Remainder
Theorem

24

This Work

Goal
Long Integer
Arithmetic

Short Integer
Arithmetic

Switch
System

Novel
computational

model

Chinese
Remainder
Theorem

Inspired by tri-state
circuits [HKO23]

25

This Work

Goal
Long Integer
Arithmetic

Short Integer
Arithmetic

Switch
System

Novel
computational

model

Secure
Garbling
Scheme

Chinese
Remainder
Theorem

Inspired by tri-state
circuits [HKO23]

Relatively
Standard

26

This Work

Goal
Long Integer
Arithmetic

Short Integer
Arithmetic

Switch
System

Novel
computational

model

Today’s Focus

Secure
Garbling
Scheme

Chinese
Remainder
Theorem

Relatively
Standard

Inspired by tri-state
circuits [HKO23]

27

+

Switch Systems

Alternative to Boolean Circuits

Relatively Straightforward to Garble

See Paper
Models Computation as a
Constraint System that the
evaluator will solve

Gate g

28

+

Switch Systems

Alternative to Boolean Circuits

Relatively Straightforward to Garble

See Paper
Models Computation as a
Constraint System that the
evaluator will solve

Gate g

29

+

Switch Systems

Alternative to Boolean Circuits

Relatively Straightforward to Garble

See Paper
Models Computation as a
Constraint System that the
evaluator will solve

Gate g

30

+

Switch Systems

Alternative to Boolean Circuits

Relatively Straightforward to Garble

See Paper
Models Computation as a
Constraint System that the
evaluator will solve

Captures much of the state-of-the-
art in symmetric-key garbling

Free XOR, Half-AND Gates, Garbled RAM, One-Hot
Garbling, Arithmetic Computations

Gate g

31

Switch Systems

x

y

control wire

data wire z data wire

Switch

32

Switch Systems

1,2,3,...

y z

control wire

data wire data wire

Switch

33

Switch Systems

0

y z

control wire

data wire data wire

Switch

34

Switch Systems

0

x = 0 ⟹ y = z

y z

control wire

data wire data wire

Switch

35

Switch Systems

0

y

x = 0 ⟹ y = z

A switch enforces a constraint

Namely, it is bidirectional

Switch

36

Switch Systems

0

x = 0 ⟹ y = z

z

Switch
A switch enforces a constraint

Namely, it is bidirectional

37

Switch Systems

0

x = 0 ⟹ y = z

y z

Insight: Garbler chooses one key per value per wire.

Difference between keys on data wires is equal to the hash of the zero control key

control wire

data wire data wire

Switch

38

Switch Systems

0

x = 0 ⟹ y = z

z

GC Evaluator will learn
value of every control wire

Switch

39

Switch Systems

0

x = 0 ⟹ y = z

z

GC Evaluator will learn
value of every control wire

Oblivious switch system:

The control wire values
can be simulated

Switch

40

Switch Systems

0

x = 0 ⟹ y = z

z

GC Evaluator will learn
value of every control wire

Oblivious switch system:

The control wire values
can be simulated

Switch

Insight: Garbler can
introduce one-time-pad
masks that allow to safely
reveal control values

41

Switch Systems

x y

x = y

Join

42

Switch Systems

x y

x = y

Join

NOTE! The only gates that contribute to
the size of a garbled circuit are joins!

43

Switch Systems

x y

x = y

Join Switch systems evaluate as a
system of constraints, but they
must be set up as a circuit

NOTE! The only gates that contribute to
the size of a garbled circuit are joins!

44

Switch Systems

x y

x = y

Join Switch systems evaluate as a
system of constraints, but they
must be set up as a circuit

Insight: Garbler encrypts
system in circuit order,
evaluator solves constraints

NOTE! The only gates that contribute to
the size of a garbled circuit are joins!

45

Switch Systems

x y

x = y

Join Switch systems evaluate as a
system of constraints, but they
must be set up as a circuit

NOTE! The only gates that contribute to
the size of a garbled circuit are joins!

To improve GC handling, reduce the
number of joins!

Insight: Garbler encrypts
system in circuit order,
evaluator solves constraints

46

Switch Systems

x
z

ADD

y +

x + y = z

47

Switch Systems

+

48

Switch Systems

+

⋅ mod 2

⋅ /2

See paper

49

Switch Systems

+

⋅ mod 2

⋅ /2

See paper

$$$

50

0

0

0

0

x0

x1

x2

x3

+ s

Example: Scaling a one-hot vector

51

0

0

0

0

0

0

1

0

+ s

Example: Scaling a one-hot vector

52

0

0

0

0

0

0

1

0

+ s

Example: Scaling a one-hot vector

53

0

0

0

0

0

0

1

0

+ s

0

0

0

???

Example: Scaling a one-hot vector

54

0

0

0

0

0

0

1

0

+ s

0

0

0

s

Example: Scaling a one-hot vector

Scaling length- one-hot
vector uses only a
single join!

n

Generalizes “One-Hot
Garbling” [HK21]

55

How to Multiply Short Integers

Let x, y ∈ ℤ2k

56

Let x, y ∈ ℤ2k

Suppose we have one-hot encoding of and a single wire that encodes x y

0
0
0
0
1
0
0
0

For sake of
example, let x = 4

How to Multiply Short Integers

-th positionx

57

Let x, y ∈ ℤ2k

Suppose we have one-hot encoding of and a single wire that encodes x y

0
0
0
0
1
0
0
0

For sake of
example, let x = 4

0
0
0
0
y
0
0
0

How to Multiply Short Integers

-th positionx scale by y

58

Let x, y ∈ ℤ2k

Suppose we have one-hot encoding of and a single wire that encodes x y

0
0
0
0
1
0
0
0

0
1
2
3
4
5
6
7

⊺

⋅

0
0
0
0
y
0
0
0

For sake of
example, let x = 4 Via ADD gates

How to Multiply Short Integers

-th positionx scale by y

59

Let x, y ∈ ℤ2k

Suppose we have one-hot encoding of and a single wire that encodes x y

0
0
0
0
1
0
0
0

-th positionx scale by y

0
1
2
3
4
5
6
7

⊺

⋅

0
0
0
0
y
0
0
0

= 4 ⋅ y = x ⋅ y

For sake of
example, let x = 4 Via ADD gates

Single wire
that encodes

x ⋅ y

How to Multiply Short Integers

60

Let x, y ∈ ℤ2k

Suppose we have one-hot encoding of and a single wire that encodes x y

0
0
0
0
1
0
0
0

0
1
2
3
4
5
6
7

⊺

⋅

0
0
0
0
y
0
0
0

= 4 ⋅ y = x ⋅ y

Single wire
that encodes

x ⋅ y

Uses only a single join gate

How to Multiply Short Integers

scale by y

61

Let x, y ∈ ℤ2k

Suppose we have one-hot encoding of and a single wire that encodes x y

0
0
0
0
1
0
0
0

0
1
2
3
4
5
6
7

⊺

⋅

0
0
0
0
y
0
0
0

= 4 ⋅ y = x ⋅ y

Single wire
that encodes

x ⋅ y

Uses only a single join gate garbled encoding of size bitsk ⋅ λ

How to Multiply Short Integers

scale by y

62

hot(x), y ↦ x ⋅ y

How to Multiply Short Integers

To multiply again, we need to convert single wire to one-hot encoding

This is achieved by another (complex) switch system,
somewhat similar to one-hot scaling

See paper

63

This Work

switch systems generalize much of
the garbled circuit literature

First symmetric-key garbling scheme
for arithmetic circuits that achieves

linear-cost multiplication

Opens possibility of new custom
arithmetic garbled “gates”

See Paper For

More details on (oblivious)
switch systems

Switch system that converts between
one-hot representation and arithmetic

representation

Long integer handling, based on
Chinese Remainder Theorem

How to garble switch systems

