Efficient Arithmetic in Garbled Circuits David Heath University of Illinois Urbana-Champaign

Garbled Circuits

 ${\mathcal X}$

Garbler

"The garbled circuit"

 ${\mathcal X}$

Garbled Circuits

Simulator

fast, symmetrickey primitives

constant round protocols

 $\boldsymbol{\chi}$

high bandwidth consumption

fast, symmetrickey primitives

constant round protocols

Garbler

 $\boldsymbol{\chi}$

Traditionally, P is a Boolean circuit Garbling of *n*-gate Boolean circuit has size $O(n \cdot \lambda)$ bits

Traditionally, P is a Boolean circuit

Garbling of *n*-gate Boolean circuit has size $O(n \cdot \lambda)$ bits

Desirable to garble **arithmetic circuits**

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

Traditionally, P is a Boolean circuit

Garbling of *n*-gate Boolean circuit has size $O(n \cdot \lambda)$ bits

Desirable to garble **arithmetic circuits**

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

$x \in \{0,1\}$

Traditionally, P is a Boolean circuit

Garbling of *n*-gate Boolean circuit has size $O(n \cdot \lambda)$ bits

Desirable to garble **arithmetic circuits**

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

Consider: *P* is an *n*-gate arithmetic circuit over ℓ -bit integers

Goal: Generate small encoding \hat{P}

Consider: *P* is an *n*-gate arithmetic circuit over ℓ -bit integers

Goal: Generate small encoding P

Main Result: \tilde{P} is $O(n \cdot \ell \cdot \lambda)$ bits long

- λ is a computational security parameter (e.g. 128) \bullet
- Assumes circular-correlation robust hashes (common in practical symmetric-key GC)

Consider: *P* is an *n*-gate arithmetic circuit over ℓ -bit integers

Goal: Generate small encoding P

Main Result: \tilde{P} is $O(n \cdot \ell \cdot \lambda)$ bits long

Surprise Factor: *l*-bit multiplication at cost $O(\ell \cdot \lambda)$

- λ is a computational security parameter (e.g. 128) lacksquare
- Assumes circular-correlation robust hashes (common in practical symmetric-key GC)

			Domain
Schoolbook	$O(\ell \cdot \lambda)$	$O(\ell^2\cdot\lambda)$	
Karatsuba	$O(\ell\cdot\lambda)$	$O(\ell^{1.585}\cdot\lambda)$	

			Domain
Schoolbook	$O(\ell\cdot\lambda)$	$O(\ell^2\cdot\lambda)$	
Karatsuba	$O(\ell\cdot\lambda)$	$O(\ell^{1.585}\cdot\lambda)$	
[BMR16]	0	$O(2^{\ell}\cdot\lambda)$	

			Domain
Schoolbook	$O(\ell\cdot\lambda)$	$O(\ell^2\cdot\lambda)$	any \mathbb{Z}_m
Karatsuba	$O(\ell\cdot\lambda)$	$O(\ell^{1.585}\cdot\lambda)$	any ℤ _m
[BMR16]	0	$O(2^{\ell}\cdot\lambda)$	prime \mathbb{Z}_p

			Domain
Schoolbook	$O(\ell \cdot \lambda)$	$O(\ell^2\cdot\lambda)$	any \mathbb{Z}_m
Karatsuba	$O(\ell\cdot\lambda)$	$O(\ell^{1.585}\cdot\lambda)$	any ℤ _m
[BMR16]	0	$O(2^{\ell}\cdot\lambda)$	prime \mathbb{Z}_p
[BMR16] + CRT	0	$O((\ell^2/\log\ell)\cdot\lambda)$	CRT friendly \mathbb{Z}_N

			Domain
Schoolbook	$O(\ell\cdot\lambda)$	$O(\ell^2\cdot\lambda)$	any ℤ _m
Karatsuba	$O(\ell\cdot\lambda)$	$O(\ell^{1.585}\cdot\lambda)$	any ℤ _m
[BMR16]	0	$O(2^{\ell}\cdot\lambda)$	prime \mathbb{Z}_p
[BMR16] + CRT	0	$O((\ell^2/\log \ell) \cdot \lambda)$	CRT friendly \mathbb{Z}_N
Boolean CRT	$O(\ell \cdot \lambda)$	$O(\ell \log \ell \cdot \lambda)$	CRT friendly \mathbb{Z}_N

[AIK11] and [BLL+23] also garble arithmetic, but require public-key cryptography

	Domain
$O(\ell^2\cdot\lambda)$	any \mathbb{Z}_m
$O(\ell^{1.585}\cdot\lambda)$	any ℤ _m
$O(2^{\ell}\cdot\lambda)$	prime \mathbb{Z}_p
$O((\ell^2/\log\ell)\cdot\lambda)$	CRT friendly \mathbb{Z}_N
$O(\ell \log \ell \cdot \lambda)$	CRT friendly \mathbb{Z}_N

		X	Domain
This Work	$O(\ell \cdot \lambda)$	$O(\ell\cdot\lambda)$	any \mathbb{Z}_m
Schoolbook	$O(\ell\cdot\lambda)$	$O(\ell^2\cdot\lambda)$	any ℤ _m
Karatsuba	$O(\ell\cdot\lambda)$	$O(\ell^{1.585}\cdot\lambda)$	any ℤ _m
[BMR16]	0	$O(2^{\ell}\cdot\lambda)$	prime \mathbb{Z}_p
[BMR16] + CRT	0	$O((\ell^2/\log \ell) \cdot \lambda)$	CRT friendly \mathbb{Z}_N
Boolean CRT	$O(\ell \cdot \lambda)$	$O(\ell \log \ell \cdot \lambda)$	CRT friendly \mathbb{Z}_N

[AIK11] and [BLL+23] also garble arithmetic, but require public-key cryptography

Goal

Integer Arithmetic

Goal

Long Integer Arithmetic

Short Integer Arithmetic

Chinese Remainder Theorem

Goal Long Integer Short Integer Arithmetic Arithmetic

Chinese Remainder Theorem

Inspired by tri-state circuits [HKO23]

Goal Short Integer Long Integer Arithmetic Arithmetic

Chinese Remainder Theorem

Novel model

Inspired by tri-state circuits [HKO23]

Goal

Long Integer Arithmetic

Chinese

Remainder

Theorem

Short Integer Arithmetic

Inspired by tri-state circuits [<u>H</u>KO23]

Alternative to Boolean Circuits

Relatively Straightforward to Garble

Models Computation as a **Constraint System** that the evaluator will solve

Alternative to Boolean Circuits

Relatively Straightforward to Garble

Models Computation as a **Constraint System** that the evaluator will solve

Alternative to Boolean Circuits

Relatively Straightforward to Garble

Models Computation as a **Constraint System** that the evaluator will solve

Alternative to Boolean Circuits

Relatively Straightforward to Garble

Models Computation as a **Constraint System** that the evaluator will solve

Captures much of the state-of-theart in symmetric-key garbling

Garbling, Arithmetic Computations

Switch

control wire

data wire

 ${\mathcal X}$

Switch

control wire

data wire

Switch

control wire

data wire

()

data wire

Switch

control wire

data wire

()

data wire

Switch

y

A switch enforces a *constraint* Namely, it is *bidirectional*

Switch

A switch enforces a *constraint* Namely, it is *bidirectional*

control wire

Switch

data wire

Insight: Garbler chooses one key per value per wire.

 \mathcal{V}

Difference between keys on data wires is equal to the hash of the zero control key

 $x = 0 \implies y = z$

Switch

GC Evaluator will learn value of every control wire

Switch

 $x = 0 \implies y = z$

GC Evaluator will learn value of every control wire

Oblivious switch system:

The control wire values can be simulated

Z

e 1:

Switch

GC Evaluator will learn value of every control wire

Oblivious switch system:

The control wire values can be simulated

 $x = 0 \implies y = z$

Z

Insight: Garbler can introduce one-time-pad masks that allow to safely reveal control values

Join

 \mathcal{X}

x = y

41

Join

NOTE! The only gates that contribute to the size of a garbled circuit are joins!

 $\boldsymbol{\chi}$

42

Join

NOTE! The only gates that contribute to the size of a garbled circuit are joins!

X

Switch systems evaluate as a system of constraints, but they must be set up as a circuit

Join

NOTE! The only gates that contribute to the size of a garbled circuit are joins!

X

Switch systems evaluate as a system of constraints, but they must be set up as a circuit

Join

NOTE! The only gates that contribute to the size of a garbled circuit are joins!

X

Switch systems evaluate as a system of constraints, but they must be set up as a circuit

Insight: Garbler encrypts system in circuit order, evaluator solves constraints

To improve GC handling, reduce the number of joins!

x = y

ADD

x + y = z

See paper

See paper

Let $x, y \in \mathbb{Z}_{2^k}$

Let $x, y \in \mathbb{Z}_{2^k}$

For sake of example, let x = 4

Let $x, y \in \mathbb{Z}_{2^k}$

For sake of example, let x = 4

Suppose we have one-hot encoding of *x* and a single wire that encodes *y*

Let $x, y \in \mathbb{Z}_{2^k}$

For sake of example, let x = 4

Let $x, y \in \mathbb{Z}_{2^k}$

For sake of example, let x = 4

Let $x, y \in \mathbb{Z}_{2^k}$

Let $x, y \in \mathbb{Z}_{2^k}$

This is achieved by another (complex) switch system, somewhat similar to one-hot scaling See paper

 $hot(x), y \mapsto x \cdot y$

To multiply again, we need to convert single wire to one-hot encoding

First symmetric-key garbling scheme for arithmetic circuits that achieves linear-cost multiplication

switch systems generalize much of the garbled circuit literature

Opens possibility of new custom arithmetic garbled "gates"

See Paper For

More details on (oblivious) switch systems

How to garble switch systems

Switch system that converts between one-hot representation and arithmetic representation

Long integer handling, based on **Chinese Remainder Theorem**

