Efficient Arithmetic in Garbled Circuits David Heath University of Illinois Urbana-Champaign

Garbled Circuits P

 $\boldsymbol{\mathcal{X}}$

Garbler

"The garbled circuit"

 $\boldsymbol{\mathcal{X}}$

Garbled Circuits

Simulator

constant round protocols

fast, symmetrickey primitives

constant round protocols

fast, symmetrickey primitives

high bandwidth consumption

Traditionally, *P* is a Boolean circuit Garbling of *n*-gate Boolean circuit has size bits *O*(*n* ⋅ *λ*)

Traditionally, *P* is a Boolean circuit

Desirable to garble **arithmetic circuits**

Garbling of *n*-gate Boolean circuit has size bits *O*(*n* ⋅ *λ*)

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

Traditionally, *P* is a Boolean circuit

Desirable to garble **arithmetic circuits**

Garbling of *n*-gate Boolean circuit has size bits *O*(*n* ⋅ *λ*)

E.g., privacy-preserving machine learning

x ∈ {0,1} *y* ∈ {0,1} ∧

Garbling arithmetic gates was a challenge

Traditionally, *P* is a Boolean circuit

Desirable to garble **arithmetic circuits**

Garbling of *n*-gate Boolean circuit has size bits *O*(*n* ⋅ *λ*)

E.g., privacy-preserving machine learning

Garbling arithmetic gates was a challenge

Consider: P is an n -gate arithmetic circuit over ℓ -bit integers

Goal: Generate small encoding P

Consider: P is an n -gate arithmetic circuit over ℓ -bit integers

Goal: Generate small encoding *P*

Main Result: *P* $\bf\widetilde{D}$ is *O*(*n* ⋅ *ℓ* ⋅ *λ*) bits long

- *λ* is a computational security parameter (e.g. 128)
- **•** Assumes circular-correlation robust hashes (common in practical symmetric-key GC)

Consider: P is an n -gate arithmetic circuit over ℓ -bit integers

Goal: Generate small encoding *P*

Main Result: *P* $\bf\widetilde{D}$ is *O*(*n* ⋅ *ℓ* ⋅ *λ*) bits long

- λ is a computational security parameter (e.g. 128)
- **•** Assumes circular-correlation robust hashes (common in practical symmetric-key GC)

Surprise Factor: l^2 -bit \cdot ^λ multiplication at cost *O*(*ℓ* ⋅ *λ*)

[AIK11] and [BLL+23] also garble arithmetic, but require public-key cryptography

[AIK11] and [BLL+23] also garble arithmetic, but require public-key cryptography

Goal

Integer Arithmetic

Goal

Long Integer Arithmetic

Short Integer Arithmetic

Chinese Remainder Theorem

Goal *Long* Integer Arithmetic

Short Integer Arithmetic

Chinese

Remainder

Theorem

Inspired by tri-state circuits [HKO23]

Goal *Long* Integer Arithmetic

Short Integer Arithmetic

> *computational model*

Chinese

Remainder

Theorem

Inspired by tri-state circuits [HKO23]

Goal

Long Integer Arithmetic

Short Integer Arithmetic

Chinese

Remainder

Theorem

Inspired by tri-state circuits [HKO23]

Alternative to Boolean Circuits

Relatively Straightforward to Garble

Models Computation as a **Constraint System** that the evaluator will solve

Alternative to Boolean Circuits

Relatively Straightforward to Garble

Models Computation as a **Constraint System** that the evaluator will solve

Alternative to Boolean Circuits

Relatively Straightforward to Garble

Models Computation as a **Constraint System** that the evaluator will solve

Alternative to Boolean Circuits

Relatively Straightforward to Garble

Models Computation as a **Constraint System** that the evaluator will solve

Captures much of the state-of-theart in symmetric-key garbling

> *Free XOR, Half-AND Gates, Garbled RAM, One-Hot Garbling, Arithmetic Computations*

x

control wire

data wire

control wire

control wire

 \bigcap

control wire

 $\overline{()}$

0

y

A switch enforces a *constraint* Namely, it is *bidirectional*

Switch

A switch enforces a constraint Namely, it is bidirectional

0

Insight: Garbler chooses one key per value per wire.

37 *Difference between keys on data wires is equal to the hash of the zero control key*

Switch Systems Switch

 $x = 0 \implies y = z$

control wire

0

GC Evaluator will learn value of every control wire

0

z

GC Evaluator will learn value of every control wire

Oblivious switch system:

The control wire values can be simulated

Switch

 $x = 0 \implies y = z$

0

z

GC Evaluator will learn value of every control wire

Oblivious switch system:

The control wire values can be simulated

 $x = 0 \implies y = z$

Switch

Insight: Garbler can introduce one-time-pad masks that allow to safely reveal control values

Join

 $\boldsymbol{\chi}$

 $x = y$

41

42

Switch Systems

Join

NOTE! The only gates that contribute to the size of a garbled circuit are joins!

Join Switch systems evaluate as a system of constraints, but they must be set up as a circuit

NOTE! The only gates that contribute to the size of a garbled circuit are joins!

x y

Join Switch systems evaluate as a system of constraints, but they must be set up as a circuit

NOTE! The only gates that contribute to the size of a garbled circuit are joins!

x = *y*

Join Switch systems evaluate as a system of constraints, but they must be set up as a circuit

NOTE! The only gates that contribute to the size of a garbled circuit are joins!

To improve GC handling, reduce the number of joins!

Insight: Garbler encrypts system in circuit order, evaluator solves constraints

ADD

$x + y = z$

See paper

See paper

How to Multiply Short Integers

For sake of example, let $x = 4$

How to Multiply Short Integers

For sake of example, let $x = 4$

How to Multiply Short Integers

For sake of

How to Multiply Short Integers

For sake of

How to Multiply Short Integers

How to Multiply Short Integers

How to Multiply Short Integers

How to Multiply Short Integers

To multiply again, we need to convert single wire to one-hot encoding

This is achieved by another (complex) switch system, somewhat similar to one-hot scaling *See paper*

 $hot(x), y \mapsto x \cdot y$

switch systems generalize much of the garbled circuit literature

First symmetric-key garbling scheme for arithmetic circuits that achieves linear-cost multiplication

Opens possibility of new custom arithmetic garbled "gates"

See Paper For

More details on (oblivious) switch systems

Switch system that converts between one-hot representation and arithmetic representation

Long integer handling, based on Chinese Remainder Theorem

How to garble switch systems