
Eurocrypt 2024 | Zurich | May 27th

M&M’S: Mix and Match 
Attaks on Schnorr-type 
Blind Signatures with 
Repetition 
K. Do, L. Hanzlik, E. Paracucchi



I. Introduction: blind signatures and 
security model 

II. Schnorr-type blind signatures 

III. Mix and match attacks

Goals

2



3

Blind Signatures 
User Signer



4

Blind Signatures 
User Signer



5

Blind Signatures 
User Signer

• Blindness: the signer does not learn the message 



6

Blind Signatures 
User Signer

• Blindness: the signer does not learn the message 

• Unforgeability*: the user needs the signer to get a valid 
signature



7

One More Unforgeability
Malicious 

User
Signer



8

One More Unforgeability
Malicious 

User
Signer



9

One More Unforgeability
Malicious 

User
Signer



10

One More Unforgeability
Malicious 

User
Signer

One more unforgeability: 
The user cannot create  valid signatures  
under different messages while only finishing 
the signing process  times with the signer

ℓ + 1

ℓ



11

Sequential vs Concurrent Security

The one more unforgeability comes with two flavors: 

• Sequential security: to open a new session one must first close the previous one 

  



12

Sequential vs Concurrent Security

The one more unforgeability comes with two flavors: 

• Sequential security: to open a new session one must first close the previous one 

  

• Concurrent security: users can execute sessions in parallel



13

Schnorr-type Blind Signatures  
User Signer



14

Schnorr-type Blind Signatures  
User Signer

It is a folklore approach to constructing blind signatures on the base of interactive 
identification schemes (sigma protocols)

response

commitment

challenge



15

Schnorr-type Blind Signatures  
User Signer

It is a folklore approach to constructing blind signatures on the base of interactive 
identification schemes (sigma protocols)

response

commitment

challenge
Blind

Unblind



16

Identification Schemes
Verifier Prover(sk, pk)



17

Identification Schemes
Verifier Prover(sk, pk)

commitment: R



18

Identification Schemes
Verifier Prover(sk, pk)

commitment: R

challenge: c ∈ 𝒞



19

Identification Schemes
Verifier Prover(sk, pk)

response: s

commitment: R

challenge: c ∈ 𝒞

Yes/No



20

Identification Schemes
Verifier Prover(sk, pk)

response: s

commitment: R

challenge: c ∈ 𝒞

Yes/No

• Correctness: an honest prover always succeeds 



21

Identification Schemes
Verifier Prover(sk, pk)

response: s

commitment: R

challenge: c ∈ 𝒞

Yes/No

• Correctness: an honest prover always succeeds 
• Soundness: a dishonest prover succeeds with probability 1/ |𝒞 |



22

Identification Schemes
Verifier Prover(sk, pk)

response: s

commitment: R

challenge: c ∈ 𝒞

Yes/No

• Correctness: an honest prover always succeeds 
• Soundness: a dishonest prover succeeds with probability  
• HVZK: there exists a simulator that, given a challenge  outputs a valid  

transcript of the protocol 

1/ |𝒞 |
c ∈ 𝒞



23

Parallel Repetitions
Verifier Prover(sk, pk)

s = (s1, …, sn)

R = (R1, …, Rn)

c = (c1, …, cn) ∈ 𝒞n

Yes/No

If  is small then repeat the protocol  times to increase security: now the 
cheating probability of a dishonest prover is 

𝒞 n
1/ |𝒞 |n



24

Fiat-Shamir Transform

1. R ← commit(sk)
2. c ← ℋ(R, m)
3. s ← resp(R, c, sk)

(R, s)

Sign

m

sk

We replace the interaction with the verifier with a call of a random oracle  
ℋ : {0,1}* → 𝒞



25

Parallel Repetitions

If  is small, then repeat the protocol  times to increase security|𝒞 | n

1. R ← commit(sk)
2. c ← ℋ(R, m)
3. s ← resp(R, c, sk)

(R, s)

Sign

m

sk



26

Schnorr-type Blind Signatures

User(pk, m) Signer(pk, sk)

s

R

c

(R, s)

R ← commit(sk)

s ← resp(R, c, sk)

c ← ℋ(R, m)



27

Schnorr-type Blind Signatures

User(pk, m) Signer(pk, sk)

s

R

c

(R′ , s′ )

R ← commit(sk)

R′ ← blind(R)

s ← resp(R, c, sk)

c′ ← ℋ(R′ , m)
c ← blind(c′ )

s′ ← unblind(s)



28

Schnorr-type Blind Signatures with Repetitions

User(pk, m) Signer(pk, sk)

s

R

c

(R′ , s′ )

R ← commit(sk)

R′ ← blind(R)

s ← resp(R, c, sk)

c′ ← ℋ(R′ , m)
c ← blind(c′ )

s′ ← unblind(s)



29

The Attack

We construct an adversary  against the one more unforgeability 
of a Schnorr-type blind signature: 
• small base challenge space  (polynomial in the security 
  parameter ) 
•  parallel repetitions

𝒜

𝒞
n

n



30

The Attack

I. n-out-of-n:  signatures after  concurrent sessions n + 1 n

We construct an adversary  against the one more unforgeability 
of a Schnorr-type blind signature: 
• small base challenge space  (polynomial in the security 
  parameter ) 
•  parallel repetitions

𝒜

𝒞
n

n



31

The Attack

I. n-out-of-n:  signatures after  concurrent sessions  
II. 2-out-of-n:  signatures after  sessions for a scheme allowing at most 

 two concurrent sessions

n + 1 n
n + 1 n

We construct an adversary  against the one more unforgeability 
of a Schnorr-type blind signature: 
• small base challenge space  (polynomial in the security 
  parameter ) 
•  parallel repetitions

𝒜

𝒞
n

n



32

The Attack

I. n-out-of-n:  signatures after  concurrent sessions  
II. 2-out-of-n:  signatures after  sessions for a scheme allowing at most 

 two concurrent sessions

n + 1 n
n + 1 n

Runtime: 𝒪(n ⋅ |𝒞 | )

We construct an adversary  against the one more unforgeability 
of a Schnorr-type blind signature: 
• small base challenge space  (polynomial in the security 
  parameter ) 
•  parallel repetitions

𝒜

𝒞
n

n



33

N-out-of-n (High Level, Unblind, n=3)

R = (R1, R2, R3)



34

N-out-of-n (High Level, Unblind, n=3)

• Simulate a valid transcript  and replace  with  
• Find  such that  
• Requires  queries

(e, d, f ) R (e, R2, R3)
m c = ℋ(m, (e, R2, R3)) = (d, c2, c3)

𝒪( |𝒞 | )

R = (R1, R2, R3)



35

N-out-of-n (High Level, Unblind, n=3)

( * , c2, c3)

s

Advantage: gets one additional response for any challenge involving R1

• Simulate a valid transcript  and replace  with  
• Find  such that  
• Requires  queries

(e, d, f ) R (e, R2, R3)
m c = ℋ(m, (e, R2, R3)) = (d, c2, c3)

𝒪( |𝒞 | )

R = (R1, R2, R3)



36

N-out-of-n (High Level, Unblind, n=3)

R1,1

R2,1

R1,3R1,2

R2,2 R2,3

R3,1 R3,2 R3,3

1st

2nd

3rd



37

N-out-of-n (High Level, Unblind, n=3)

R1,1

R2,1

R1,3R1,2

R2,2 R2,3

R3,1 R3,2 R3,3

1st

2nd

3rd



38

N-out-of-n (High Level, Unblind, n=3)

R2,1

R1,3R1,2

R2,3

R3,1 R3,2

1st

2nd

3rd

R1,1 R2,2 R3,3Forgery



39

N-out-of-n (High Level, Unblind, n=3)

R2,1

R1,3R1,2

R2,3

R3,1 R3,2

1st

2nd

3rd

R1,1 R2,2 R3,3Forgery ℋ(m*, (R1,1, R2,2, R3,3)) = (c4,1, c4,2, c4,3)



40

N-out-of-n (High Level, Unblind, n=3)

R2,1

R1,3R1,2

e2 R2,3

R3,1 R3,2 e3

1st

2nd

3rd

e1

R1,1 R2,2 R3,3Forgery ℋ(m*, (R1,1, R2,2, R3,3)) = (c4,1, c4,2, c4,3)

• Generate  transcripts for (ei, di, fi) i = 1,2,3



41

N-out-of-n (High Level, Unblind, n=3)

R2,1

R1,3R1,2

e2 R2,3

R3,1 R3,2 e3

1st

2nd

3rd

e1

R1,1 R2,2 R3,3Forgery c4 = ℋ(m*, (R1,1, R2,2, R3,3)) = (c4,1, c4,2, c4,3)

• Generate  transcripts for  
• Find  for 

(ei, di, fi) i = 1,2,3
mi i = 1,2,3

c1 = ℋ(m1, (e1, R1,2, R1,3)) = (d1, * , * )

c2 = ℋ(m2, (R2,1, e2, R2,3)) = ( * , d2, * )

c3 = ℋ(m3, (R3,1, R3,2, e3)) = ( * , * ,d3)



42

N-out-of-n (High Level, Unblind, n=3)

R2,1

R1,3R1,2

e2 R2,3

R3,1 R3,2 e3

1st

2nd

3rd

e1

R1,1 R2,2 R3,3Forgery

• Generate  transcripts for  
• Find  for  
• Send the signer:  and 
   receive the responses

(ei, di, fi) i = 1,2,3
mi i = 1,2,3

(c4,1, c1,2, c1,3), (c2,1, c4,2, c2,3), (c3,1, c3,2, c4,3)

c4 = ℋ(m*, (R1,1, R2,2, R3,3)) = (c4,1, c4,2, c4,3)

c1 = ℋ(m1, (e1, R1,2, R1,3)) = (d1, * , * )

c2 = ℋ(m2, (R2,1, e2, R2,3)) = ( * , d2, * )

c3 = ℋ(m3, (R3,1, R3,2, e3)) = ( * , * ,d3)



43

N-out-of-n Generalization

Find a message  such that , requires  queries  
and  sessions 
  

m ℋ(m, R) = (d, c2, …, cn) 𝒪( |𝒞 | )
n



44

N-out-of-n Generalization

Find a message  such that , requires  queries  
and  sessions 
  
Find a message  such that ,  
requires  queries and  sessions 

m ℋ(m, R) = (d, c2, …, cn) 𝒪( |𝒞 | )
n

m ℋ(m, R) = (d1, d2, …, ds, cs+1, …, cn)
𝒪( |𝒞 |s ) ⌈n /s⌉



45

N-out-of-n Generalization

Find a message  such that , requires  queries  
and  sessions 
  
Find a message  such that ,  
requires  queries and  sessions 

Runtime:  

 trade-off between number of queries to  and number of sessions 

m ℋ(m, R) = (d, c2, …, cn) 𝒪( |𝒞 | )
n

m ℋ(m, R) = (d1, d2, …, ds, cs+1, …, cn)
𝒪( |𝒞 |s ) ⌈n /s⌉

𝒪(⌈n /s⌉ ⋅ |𝒞 |s )

⟹ ℋ



46

Conclusion

• Affected scheme: CSI-Otter [KLLQ23], the first isogeny-based blind signature scheme. 
   Our attack is able to efficiently forge 129 valid signatures after  
   128 concurrent sessions with the signer 



47

Conclusion

• Affected scheme: CSI-Otter [KLLQ23], the first isogeny-based blind signature scheme. 
   Our attack is able to efficiently forge 129 valid signatures after  
   128 concurrent sessions with the signer  

• Impossibility result: Shnorr-type blind signatures with repetitions of a small challenge 
   space are not concurrently secure



48

Conclusion

• Affected scheme: CSI-Otter [KLLQ23], the first isogeny-based blind signature scheme. 
   Our attack is able to efficiently forge 129 valid signatures after  
   128 concurrent sessions with the signer  

• Impossibility result: Shnorr-type blind signatures with repetitions of a small challenge 
   space are not concurrently secure 
    
• To construct a potential secure blind signature following this paradigm we need a base 

identification scheme with (exponentially) big challenge space  



49

Eugenio Paracucchi

PhD Student @ CISPA

Contact Information 

E-Mail:   

eugenio.paracucchi@cispa.de


