
ASYMPTOTICS AND IMPROVEMENTS OF SIEVING FOR CODES
May 2024, Eurocrypt 2024

presenting: Simona Etinski (CWI)
based on joint work with: Léo Ducas (CWI, LEI),
Andre Esser (TII), and Elena Kirshanova (TII)

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Motivation: Sieving is a well-known and widely used technique for
attacking decoding problems in lattice-based cryptography.

How well these techniques perform in the code-based setting?

Goal: Adapt sieving techniques to the code-based setting and make
them competitive with state-of-the-art algorithms.

1

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Motivation: Sieving is a well-known and widely used technique for
attacking decoding problems in lattice-based cryptography.

How well these techniques perform in the code-based setting?

Goal: Adapt sieving techniques to the code-based setting and make
them competitive with state-of-the-art algorithms.

1

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Motivation: Sieving is a well-known and widely used technique for
attacking decoding problems in lattice-based cryptography.

How well these techniques perform in the code-based setting?

Goal: Adapt sieving techniques to the code-based setting and make
them competitive with state-of-the-art algorithms.

1

SIEVING FOR CODES

Sieving for codes Near-Neighbor Search Comparisons and conclusions

PROBLEM DEFINITION

Decoding problem, DP(n, k,w)

Given an [n, k] binary linear code C and a weight w, find a codeword
of Hamming weight1 w.

1Hamming weight, | · |: The number of non-zero entries of a vector.
3

Sieving for codes Near-Neighbor Search Comparisons and conclusions

INFORMATION SET DECODING (ISD)

Information set decoding algorithms are the best known generic2
attacks for the decoding problem.

Recently, a new ISD algorithm based using sieving as a subroutine
was proposed in [GJN23].

2For certain parameter ranges, statistical decoding performs better. (Kevin Carrier
et al. Statistical Decoding 2.0: Reducing Decoding to LPN. Cryptology ePrint Archive,
Paper 2022/1000. 2022)

4

Sieving for codes Near-Neighbor Search Comparisons and conclusions

INFORMATION SET DECODING (ISD)

Information set decoding algorithms are the best known generic
attacks for the decoding problem.

Recently, a new ISD algorithm based using sieving as a subroutine
was proposed in [GJN23]2.

2Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

4

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Sieving ISD

INSPIRATION PART I: [GJN23] APPROACH3

ISD

Sieving

3Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

5

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Sieving ISD

INSPIRATION PART I: [GJN23] APPROACH5

Provides slight improvements in asymptotic runtime over the
baseline algorithm due to Prange4.

Gives very good time-memory trade-offs.

4Eugene Prange. “The use of information sets in decoding cyclic codes”. In: IRE
Trans. Inf. Theory 8.5 (1962), pp. 5–9.

5Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

6

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Sieving ISD

INSPIRATION PART I: [GJN23] APPROACH5

Provides slight improvements in asymptotic runtime over the
baseline algorithm due to Prange4.

Gives very good time-memory trade-offs.

4Eugene Prange. “The use of information sets in decoding cyclic codes”. In: IRE
Trans. Inf. Theory 8.5 (1962), pp. 5–9.

5Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

6

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Sieving ISD

INSPIRATION PART II: NEAR-NEIGHBOR SEARCH

In the lattice-based setting, sieving was successfully combined with
near-neighbor search678.

[MO15], [BM18], etc. and Kévin Carrier’s thesis explored
near-neighbor search in the coding setting.

6Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. Cryptology ePrint Archive, Paper 2014/744. 2014.

7Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search. Cryptology
ePrint Archive, Paper 2015/522. 2015.

8Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with
applications to lattice sieving. 2015.

7

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Sieving ISD

INSPIRATION PART II: NEAR-NEIGHBOR SEARCH

In the lattice-based setting, sieving was successfully combined with
near-neighbor search.

[MO15]6, [BM18]7, etc. and Kévin Carrier’s thesis8 explored
near-neighbor search in the coding setting.

6Alexander May and Ilya Ozerov. “On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes”. In: 2015.

7Leif Both and Alexander May. “Decoding Linear Codes with High Error Rate and Its
Impact for LPN Security”. In: ed. by Tanja Lange and Rainer Steinwandt. 2018.

8Kévin Carrier. “Recherche de Presque-Collisions pour le Décodage et la
Reconnaissance de Codes Correcteurs. (Near-collisions finding problem for decoding
and recognition of error correcting codes)”. PhD thesis. 2020.

7

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Sieving ISD

OUR GENERALIZATION

ISD

Sieving

NNS

8

NEAR-NEIGHBOR SEARCH

Sieving for codes Near-Neighbor Search Comparisons and conclusions

DEFINITIONS AND NOTATION

Sphere of radius p: Sm
p := {x ∈ Fm

2 : |x| = p}.

10

Sieving for codes Near-Neighbor Search Comparisons and conclusions

DEFINITIONS AND NOTATION

Sphere of radius p: Sm
p := {x ∈ Fm

2 : |x| = p}.

Near neighbors:
{
(x, y) ∈ Sm

p × Sm
p : |x+ y| = p

}
,

where + denotes bitwise XOR.

10

Sieving for codes Near-Neighbor Search Comparisons and conclusions

DEFINITIONS AND NOTATION

Sphere of radius p: Sm
p := {x ∈ Fm

2 : |x| = p}.

Near neighbors:
{
(x, y) ∈ Sm

p × Sm
p : |x ∧ y| = p/2

}
,

where ∧ denotes bitwise AND.

10

Sieving for codes Near-Neighbor Search Comparisons and conclusions

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), NNS(L,p)

Given a target weight p and an input list L ⊆ Sm
p , find all pairs

(x, y) ∈ L × L satisfying |x+ y| = p.

→ Brute-force search runtime: Õ(|L|2).

11

Sieving for codes Near-Neighbor Search Comparisons and conclusions

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), NNS(L,p)

Given an input list L ⊆ Sm
p and a target weight p, find all pairs

(x, y) ∈ L × L satisfying |x ∧ y| = p/2.

→ Brute-force search runtime: Õ(|L|2).

11

Sieving for codes Near-Neighbor Search Comparisons and conclusions

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), NNS(L,p)

Given an input list L ⊆ Sm
p and a target weight p, find all pairs

(x, y) ∈ L × L satisfying |x ∧ y| = p/2.

→ Brute-force search runtime: Õ(|L|2).

11

Sieving for codes Near-Neighbor Search Comparisons and conclusions

LOCALIZED SEARCH

For a suitable choice of α, if
|x ∧ c| = |y ∧ c| = α, x and y
are likely near neighbors.

c

x y

12

Sieving for codes Near-Neighbor Search Comparisons and conclusions

LOCALITY-SENSITIVE FILTERING (LSF)9

Given L ⊆ Sm
p

9Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with
applications to lattice sieving. 2015.

13

Sieving for codes Near-Neighbor Search Comparisons and conclusions

LOCALITY-SENSITIVE FILTERING (LSF)9

Given L ⊆ Sm
p , set of centers Cf and

parameter α

c1

c2 c3

9Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with
applications to lattice sieving. 2015.

13

Sieving for codes Near-Neighbor Search Comparisons and conclusions

LOCALITY-SENSITIVE FILTERING (LSF)9

Given L ⊆ Sm
p , set of centers Cf and

parameter α, perform
∙ bucketing phase: for each
element x ∈ L, if |x ∧ c| = α,
assign x to a bucket Bα(c),

c1

c2 c3

9Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with
applications to lattice sieving. 2015.

13

Sieving for codes Near-Neighbor Search Comparisons and conclusions

LOCALITY-SENSITIVE FILTERING (LSF)9

Given L ⊆ Sm
p , set of centers Cf and pa-

rameter α, perform
∙ bucketing phase: for each element
x ∈ L, if |x ∧ c| = α, assign x to a
bucket Bα(c),

∙ checking phase: for each c ∈ Cf,
check which (x, y) ∈ Bα(c)× Bα(c)
are near neighbors and add them to
the output list.

c1

c2 c3

9Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with
applications to lattice sieving. 2015.

13

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:

for x ∈ L do
for c ∈ FindValidCenters(Cf, x, α) do

Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do

Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:

for c ∈ Cf do
for (x, y) ∈ Bα(c)× Bα(c) do

if |x ∧ y| = p/2 then
Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do

if |x ∧ y| = p/2 then
Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′

14

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH10

Basic idea: For any (x, y) ∈ Sm
p × Sm

p satisfying |x ∧ y| = p/2, there
exists a unique c ∈ Sm

p/2 such that |x ∧ c| = |y ∧ c| = p/2.

*Initially, the approach was not presented in the locality-sensitive
filtering fashion, yet it aligns with the framework.

Parameters:

Cf = Sm
p/2, α = p/2.

10Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

15

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH10

Basic idea: For any (x, y) ∈ Sm
p × Sm

p satisfying |x ∧ y| = p/2, there
exists a unique c ∈ Sm

p/2 such that |x ∧ c| = |y ∧ c| = p/2.

*Initially, the approach was not presented in the locality-sensitive
filtering fashion, yet it aligns with the framework.

Parameters:

Cf = Sm
p/2, α = p/2.

10Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

15

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH10

Basic idea: For any (x, y) ∈ Sm
p × Sm

p satisfying |x ∧ y| = p/2, there
exists a unique c ∈ Sm

p/2 such that |x ∧ c| = |y ∧ c| = p/2.

*Initially, the approach was not presented in the locality-sensitive
filtering fashion, yet it aligns with the framework.

Parameters:

Cf = Sm
p/2, α = p/2.

10Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.

15

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of
buckets efficiently.

Parameters

Cf = Sm
α ∩ CH, α≤ p/2,

where CH is [m,m− r] binary linear code.

→ FINDVALIDCENTERS subroutine needs to perform efficient decoding.

16

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of
buckets efficiently.

Parameters

Cf = Sm
α ∩ CH, α≤ p/2,

where CH is [m,m− r] binary linear code.

→ FINDVALIDCENTERS subroutine needs to perform efficient decoding.

16

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of
buckets efficiently.

Parameters

Cf = Sm
α ∩ CH, α≤ p/2,

where CH is [m,m− r] binary linear code.

→ FINDVALIDCENTERS subroutine needs to perform efficient decoding.

16

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

RANDOM PRODUCT CODES APPROACH (RPC)

Basic idea: Improve efficiency of FINDVALIDCENTERS subroutine using
random product codes.

Parameters:

C(i)
H ⊆ Sm/t

v/t , CH = C(1)
H × · · · × C(t)

H , α, v ≤ p/2 - to be optimized,

where t is chosen to guarantee random behavior of the CH and an
efficient decodability.

17

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

RANDOM PRODUCT CODES APPROACH (RPC)

Basic idea: Improve efficiency of FINDVALIDCENTERS subroutine using
random product codes.

Parameters:

C(i)
H ⊆ Sm/t

v/t , CH = C(1)
H × · · · × C(t)

H , α, v ≤ p/2 - to be optimized,

where t is chosen to guarantee random behavior of the CH and an
efficient decodability.

17

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains |Cf|/d centers but we repeat the
algorithm d times.

18

Sieving for codes Near-Neighbor Search Comparisons and conclusions

Different approaches

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains |Cf|/d centers but we repeat the
algorithm d times.

18

COMPARISONS AND CONCLUSIONS

Sieving for codes Near-Neighbor Search Comparisons and conclusions

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

R = k/n

t IS
D

Prange
GJN
BJMM
HASH (memo-opt)
RPC (memo-opt)
Both-May

Asymptotic runtime exponent for different ISD variants for the
unique-decoding regime.

20

Sieving for codes Near-Neighbor Search Comparisons and conclusions

0.100 0.105 0.110 0.115 0.120
0

2

4

6

8

·10−2

PRANGE

tISD

m
IS
D

GJN HASH HASH (memo-opt)
RPC RPC (memo-opt)

Time-memory trade-off curves of different SievingISD instantiations.

20

Sieving for codes Near-Neighbor Search Comparisons and conclusions

SUMMA SUMMARUM

We introduce sieving-based ISD algorithms whose asymptotic
runtime and memory are close to those of the state-of-the-art.

0.096

BOTH-MAY

0.101

RPC memo-opt
HASH memo-opt

0.102

BJMM

0.121

PRANGE

0.117

GJN

A new alignment of the lattice-based and code-based framework.

How practical is code-sieving?

eprint GitHub repo

Thank you for your attention!

21

Sieving for codes Near-Neighbor Search Comparisons and conclusions

SUMMA SUMMARUM

We introduce sieving-based ISD algorithms whose asymptotic
runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

How practical is code-sieving?

eprint GitHub repo

Thank you for your attention!

21

Sieving for codes Near-Neighbor Search Comparisons and conclusions

SUMMA SUMMARUM

We introduce sieving-based ISD algorithms whose asymptotic
runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

How practical is code-sieving?

eprint GitHub repo

Thank you for your attention!

21

Sieving for codes Near-Neighbor Search Comparisons and conclusions

SUMMA SUMMARUM

We introduce sieving-based ISD algorithms whose asymptotic
runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

How practical is code-sieving?

eprint GitHub repo

Thank you for your attention!

21

