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Sieving for codes Near-Neighbor Search Comparisons and conclusions

Motivation: Sieving is a well-known and widely used technique for
attacking decoding problems in lattice-based cryptography.

How well these techniques perform in the code-based setting?

Goal: Adapt sieving techniques to the code-based setting and make
them competitive with state-of-the-art algorithms.
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SIEVING FOR CODES



Sieving for codes Near-Neighbor Search Comparisons and conclusions

PROBLEM DEFINITION

Decoding problem, DP(n, k,w)

Given an [n, k] binary linear code C and a weight w, find a codeword
of Hamming weight1 w.

1Hamming weight, | · |: The number of non-zero entries of a vector.
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INFORMATION SET DECODING (ISD)

Information set decoding algorithms are the best known generic2
attacks for the decoding problem.

Recently, a new ISD algorithm based using sieving as a subroutine
was proposed in [GJN23].

2For certain parameter ranges, statistical decoding performs better. (Kevin Carrier
et al. Statistical Decoding 2.0: Reducing Decoding to LPN. Cryptology ePrint Archive,
Paper 2022/1000. 2022)
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Sieving ISD

INSPIRATION PART I: [GJN23] APPROACH3

ISD

Sieving

3Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.
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Sieving ISD

INSPIRATION PART I: [GJN23] APPROACH5

Provides slight improvements in asymptotic runtime over the
baseline algorithm due to Prange4.

Gives very good time-memory trade-offs.

4Eugene Prange. “The use of information sets in decoding cyclic codes”. In: IRE
Trans. Inf. Theory 8.5 (1962), pp. 5–9.

5Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.
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Sieving ISD

INSPIRATION PART II: NEAR-NEIGHBOR SEARCH

In the lattice-based setting, sieving was successfully combined with
near-neighbor search678.

[MO15], [BM18], etc. and Kévin Carrier’s thesis explored
near-neighbor search in the coding setting.

6Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. Cryptology ePrint Archive, Paper 2014/744. 2014.

7Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search. Cryptology
ePrint Archive, Paper 2015/522. 2015.

8Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with
applications to lattice sieving. 2015.
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Sieving ISD

INSPIRATION PART II: NEAR-NEIGHBOR SEARCH

In the lattice-based setting, sieving was successfully combined with
near-neighbor search.

[MO15]6, [BM18]7, etc. and Kévin Carrier’s thesis8 explored
near-neighbor search in the coding setting.

6Alexander May and Ilya Ozerov. “On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes”. In: 2015.

7Leif Both and Alexander May. “Decoding Linear Codes with High Error Rate and Its
Impact for LPN Security”. In: ed. by Tanja Lange and Rainer Steinwandt. 2018.

8Kévin Carrier. “Recherche de Presque-Collisions pour le Décodage et la
Reconnaissance de Codes Correcteurs. (Near-collisions finding problem for decoding
and recognition of error correcting codes)”. PhD thesis. 2020.
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Sieving ISD

OUR GENERALIZATION

ISD

Sieving

NNS
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DEFINITIONS AND NOTATION

Sphere of radius p: Sm
p := {x ∈ Fm

2 : |x| = p}.
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DEFINITIONS AND NOTATION

Sphere of radius p: Sm
p := {x ∈ Fm

2 : |x| = p}.

Near neighbors:
{
(x, y) ∈ Sm

p × Sm
p : |x ∧ y| = p/2

}
,

where ∧ denotes bitwise AND.
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NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), NNS(L,p)

Given a target weight p and an input list L ⊆ Sm
p , find all pairs

(x, y) ∈ L × L satisfying |x+ y| = p.

→ Brute-force search runtime: Õ(|L|2).
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LOCALIZED SEARCH

For a suitable choice of α, if
|x ∧ c| = |y ∧ c| = α, x and y
are likely near neighbors.

c

x y
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LOCALITY-SENSITIVE FILTERING (LSF)9

Given L ⊆ Sm
p

9Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with
applications to lattice sieving. 2015.
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LOCALITY-SENSITIVE FILTERING (LSF)9

Given L ⊆ Sm
p , set of centers Cf and pa-

rameter α, perform
∙ bucketing phase: for each element
x ∈ L, if |x ∧ c| = α, assign x to a
bucket Bα(c),

∙ checking phase: for each c ∈ Cf,
check which (x, y) ∈ Bα(c)× Bα(c)
are near neighbors and add them to
the output list.

c1

c2 c3

9Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with
applications to lattice sieving. 2015.
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Algorithm NNS using locality-sensitive filtering
Input : Weight p, input list L ⊆ Sm

p , set of centers Cf, and a bucketing
parameter α.

Output: Output list L′ containing pairs (x, y) ∈ L×L with |x∧y| = p/2.

BUCKETING PHASE:
for x ∈ L do

for c ∈ FindValidCenters(Cf, x, α) do
Add x to Bα(c).

CHECKING PHASE:
for c ∈ Cf do

for (x, y) ∈ Bα(c)× Bα(c) do
if |x ∧ y| = p/2 then

Add (x, y) to L′.

return L′
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Different approaches

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH10

Basic idea: For any (x, y) ∈ Sm
p × Sm

p satisfying |x ∧ y| = p/2, there
exists a unique c ∈ Sm

p/2 such that |x ∧ c| = |y ∧ c| = p/2.

*Initially, the approach was not presented in the locality-sensitive
filtering fashion, yet it aligns with the framework.

Parameters:

Cf = Sm
p/2, α = p/2.

10Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style
Information-Set Decoding Algorithm. 2023.
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Different approaches

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of
buckets efficiently.

Parameters

Cf = Sm
α ∩ CH, α≤ p/2,

where CH is [m,m− r] binary linear code.

→ FINDVALIDCENTERS subroutine needs to perform efficient decoding.
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Different approaches

RANDOM PRODUCT CODES APPROACH (RPC)

Basic idea: Improve efficiency of FINDVALIDCENTERS subroutine using
random product codes.

Parameters:

C(i)
H ⊆ Sm/t

v/t , CH = C(1)
H × · · · × C(t)

H , α, v ≤ p/2 - to be optimized,

where t is chosen to guarantee random behavior of the CH and an
efficient decodability.
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Different approaches

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains |Cf|/d centers but we repeat the
algorithm d times.
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SUMMA SUMMARUM

We introduce sieving-based ISD algorithms whose asymptotic
runtime and memory are close to those of the state-of-the-art.
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