

ASYMPTOTICS AND IMPROVEMENTS OF SIEVING FOR CODES

May 2024, Eurocrypt 2024

presenting: Simona Etinski (CWI) based on joint work with: Léo Ducas (CWI, LEI), Andre Esser (TII), and Elena Kirshanova (TII)

Motivation: Sieving is a well-known and widely used technique for attacking decoding problems in lattice-based cryptography.

Motivation: Sieving is a well-known and widely used technique for attacking decoding problems in lattice-based cryptography.

How well these techniques perform in the code-based setting?

Motivation: Sieving is a well-known and widely used technique for attacking decoding problems in lattice-based cryptography.

How well these techniques perform in the code-based setting?

Goal: Adapt sieving techniques to the code-based setting and make them competitive with state-of-the-art algorithms.

SIEVING FOR CODES

PROBLEM DEFINITION

Decoding problem, DP(n*,* k*,*w)

Given an [n*,* k] binary linear code *C* and a weight w, find a codeword of Hamming weight¹ w.

¹Hamming weight, $|\cdot|$: The number of non-zero entries of a vector.

INFORMATION SET DECODING (ISD)

Information set decoding algorithms are the best known generic² attacks for the decoding problem.

²For certain parameter ranges, statistical decoding performs better. (Kevin Carrier et al. Statistical Decoding 2.0: Reducing Decoding to LPN. Cryptology ePrint Archive, Paper 2022/1000. 2022)

INFORMATION SET DECODING (ISD)

Information set decoding algorithms are the best known generic attacks for the decoding problem.

Recently, a new ISD algorithm based using sieving as a subroutine was proposed in [GJN23]².

²Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

[Sieving for codes](#page-4-0) [Near-Neighbor Search](#page-14-0) [Comparisons and conclusions](#page-47-0)

[Sieving ISD](#page-8-0)

INSPIRATION PART I: [GJN23] APPROACH³

³Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

INSPIRATION PART I: [GJN23] APPROACH⁵

Provides slight improvements in asymptotic runtime over the baseline algorithm due to Prange⁴.

⁴Eugene Prange. "The use of information sets in decoding cyclic codes". In: IRE Trans. Inf. Theory 8.5 (1962), pp. 5–9.

⁵Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

INSPIRATION PART I: [GJN23] APPROACH⁵

Provides slight improvements in asymptotic runtime over the baseline algorithm due to Prange⁴.

Gives very good time-memory trade-offs.

⁴Eugene Prange. "The use of information sets in decoding cyclic codes". In: IRE Trans. Inf. Theory 8.5 (1962), pp. 5–9.

⁵Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

INSPIRATION PART II: NEAR-NEIGHBOR SEARCH

In the lattice-based setting, sieving was successfully combined with near-neighbor search⁶⁷⁸.

⁶Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. Cryptology ePrint Archive, Paper 2014/744. 2014.

⁷Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving without increasing the memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive, Paper 2015/522. 2015.

⁸Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

INSPIRATION PART II: NEAR-NEIGHBOR SEARCH

In the lattice-based setting, sieving was successfully combined with near-neighbor search.

[MO15] 6 , [BM18] 7 , etc. and Kévin Carrier's thesis 8 explored near-neighbor search in the coding setting.

⁶Alexander May and Ilya Ozerov. "On Computing Nearest Neighbors with Applications to Decoding of Binary Linear Codes". In: 2015.

 7 Leif Both and Alexander May. "Decoding Linear Codes with High Error Rate and Its Impact for LPN Security". In: ed. by Tanja Lange and Rainer Steinwandt. 2018. ⁸Kévin Carrier. "Recherche de Presque-Collisions pour le Décodage et la Reconnaissance de Codes Correcteurs. (Near-collisions finding problem for decoding and recognition of error correcting codes)". PhD thesis. 2020.

[Sieving for codes](#page-4-0) [Near-Neighbor Search](#page-14-0) [Comparisons and conclusions](#page-47-0)

[Sieving ISD](#page-8-0)

OUR GENERALIZATION

NEAR-NEIGHBOR SEARCH

DEFINITIONS AND NOTATION

$$
\text{Sphere of radius } p: \qquad \mathcal{S}_p^m := \{ \mathbf{x} \in \mathbb{F}_2^m : \ |\mathbf{x}| = p \}.
$$

DEFINITIONS AND NOTATION

Sphere of radius p:
$$
S
$$

$$
\mathcal{S}_p^m:=\{x\in\mathbb{F}_2^m:\ |x|=p\}.
$$

$$
\text{Near neighbors:} \qquad \big\{ (\textbf{x}, \textbf{y}) \in \mathcal{S}_p^m \times \mathcal{S}_p^m: \ |\textbf{x} + \textbf{y}| = p \big\},
$$

where + denotes bitwise XOR.

DEFINITIONS AND NOTATION

Sphere of radius p:
$$
S
$$

$$
\mathcal{S}_p^m:=\{x\in\mathbb{F}_2^m:\ |x|=p\}.
$$

$$
\text{Near neighbors:} \qquad \big\{ (\textbf{x}, \textbf{y}) \in \mathcal{S}_{p}^{m} \times \mathcal{S}_{p}^{m} : \ |\textbf{x} \wedge \textbf{y}| = p/2 \big\},
$$

where *∧* denotes bitwise AND.

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), NNS(*L,* p)

Given a target weight p and an input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, find all pairs $(x, y) \in \mathcal{L} \times \mathcal{L}$ satisfying $|x + y| = p$.

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), NNS(*L,* p)

Given an input list $\mathcal{L} \subseteq \mathcal{S}^\mathsf{m}_\mathsf{p}$ and a target weight p, find all pairs (x*,* y) *∈ L × L* satisfying *|*x *∧* y*|* = p*/*2.

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), NNS(*L,* p)

Given an input list $\mathcal{L} \subseteq \mathcal{S}^\mathsf{m}_\mathsf{p}$ and a target weight p, find all pairs (x*,* y) *∈ L × L* satisfying *|*x *∧* y*|* = p*/*2.

 \rightarrow Brute-force search runtime: $\tilde{\mathcal{O}}(|\mathcal{L}|^2).$

LOCALIZED SEARCH

For a suitable choice of *α*, if *|*x *∧* c*|* = *|*y *∧* c*|* = *α*, x and y are likely near neighbors.

[Sieving for codes](#page-4-0) **[Near-Neighbor Search](#page-14-0) Comparisons** and conclusions and conclusions and conclusions and conclusions and conclusions **Comparisons** and conclusions **Comparisons** and conclusions **COO**

LOCALITY-SENSITIVE FILTERING (LSF)⁹

Given $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$

⁹Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

LOCALITY-SENSITIVE FILTERING (LSF)⁹

Given $\mathcal{L} \subseteq \mathcal{S}_{\mathrm{p}}^{\mathrm{m}}$, set of centers \mathcal{C}_{f} and parameter *α*

⁹Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

LOCALITY-SENSITIVE FILTERING (LSF)⁹

Given $\mathcal{L} \subseteq \mathcal{S}_{\mathrm{p}}^{\mathrm{m}}$, set of centers \mathcal{C}_{f} and parameter *α*, perform

∙ bucketing phase: for each element $x \in \mathcal{L}$, if $|x \wedge c| = \alpha$, assign **x** to a bucket $B_\alpha(c)$,

⁹Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

LOCALITY-SENSITIVE FILTERING (LSF)⁹

Given $\mathcal{L} \subseteq \mathcal{S}_{\mathrm{p}}^{\mathrm{m}}$, set of centers \mathcal{C}_{f} and parameter *α*, perform

- ∙ bucketing phase: for each element $x \in \mathcal{L}$, if $|x \wedge c| = \alpha$, assign x to a bucket $B_\alpha(c)$,
- \cdot **checking phase**: for each $\mathbf{c} \in \mathcal{C}_{\mathsf{f}},$ check which $(x, y) \in \mathcal{B}_\alpha(\mathsf{c}) \times \mathcal{B}_\alpha(\mathsf{c})$ are near neighbors and add them to the output list.

⁹Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_f , and a bucketing parameter *α*.

<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_f , and a bucketing parameter *α*.

Output: Output list *L ′* containing pairs (x*,* y) *∈ L×L* with *|*x*∧*y*|* = p*/*2.

<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_f , and a bucketing parameter *α*.

Output: Output list *L ′* containing pairs (x*,* y) *∈ L×L* with *|*x*∧*y*|* = p*/*2.

BUCKETING PHASE:

<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_f , and a bucketing parameter *α*.

Output: Output list *L ′* containing pairs (x*,* y) *∈ L×L* with *|*x*∧*y*|* = p*/*2.

BUCKETING PHASE:

for $x \in \mathcal{L}$ do

<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_f , and a bucketing parameter *α*.

```
Output: Output list L
′
containing pairs (x, y) ∈ L×L with |x∧y| = p/2.
```
BUCKETING PHASE:

```
for x \in \mathcal{L} do
       \mathsf{for} \ \mathsf{c} \in \mathsf{FindValidCenters}(\mathcal{C}_{\mathsf{f}}, \mathsf{x}, \alpha) \ \mathsf{do}
```
<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_f , and a bucketing parameter *α*.

```
Output: Output list L
′
containing pairs (x, y) ∈ L×L with |x∧y| = p/2.
```
BUCKETING PHASE:

```
for x \in \mathcal{L} do
       \mathsf{for} \ \mathsf{c} \in \mathsf{FindValidCenters}(\mathcal{C}_{\mathsf{f}}, \mathsf{x}, \alpha) \ \mathsf{do}Add x to \mathcal{B}_{\alpha}(\mathsf{c}).
```
<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_{f} , and a bucketing parameter *α*.

```
Output: Output list L
′
containing pairs (x, y) ∈ L×L with |x∧y| = p/2.
```
BUCKETING PHASE:

```
for x \in \mathcal{L} do
       \mathsf{for} \ \mathsf{c} \in \mathsf{FindValidCenters}(\mathcal{C}_{\mathsf{f}}, \mathsf{x}, \alpha) \ \mathsf{do}Add x to \mathcal{B}_{\alpha}(\mathsf{c}).
```
CHECKING PHASE:

<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_{f} , and a bucketing parameter *α*.

```
Output: Output list L
′
containing pairs (x, y) ∈ L×L with |x∧y| = p/2.
```
BUCKETING PHASE:

```
for x \in \mathcal{L} do
       \mathsf{for} \ \mathsf{c} \in \mathsf{FindValidCenters}(\mathcal{C}_{\mathsf{f}}, \mathsf{x}, \alpha) \ \mathsf{do}Add x to \mathcal{B}_{\alpha}(\mathsf{c}).
```
CHECKING PHASE:

for $c \in \mathcal{C}_f$ do

<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_{f} , and a bucketing parameter *α*.

```
Output: Output list L
′
containing pairs (x, y) ∈ L×L with |x∧y| = p/2.
```
BUCKETING PHASE:

```
for x \in \mathcal{L} do
       \mathsf{for} \ \mathsf{c} \in \mathsf{FindValidCenters}(\mathcal{C}_{\mathsf{f}}, \mathsf{x}, \alpha) \ \mathsf{do}Add x to \mathcal{B}_{\alpha}(\mathsf{c}).
```
CHECKING PHASE:

```
for c \in \mathcal{C}_f do
   for (x, y) \in B_\alpha(c) \times B_\alpha(c) do
```
<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_{f} , and a bucketing parameter *α*.

```
Output: Output list L
′
containing pairs (x, y) ∈ L×L with |x∧y| = p/2.
```
BUCKETING PHASE:

```
for x \in \Lambda do
       \mathsf{for} \ \mathsf{c} \in \mathsf{FindValidCenters}(\mathcal{C}_{\mathsf{f}}, \mathsf{x}, \alpha) \ \mathsf{do}Add x to \mathcal{B}_{\alpha}(\mathsf{c}).
```
CHECKING PHASE:

```
for c \in \mathcal{C}_f do
    for (x, y) \in \mathcal{B}_{\alpha}(c) \times \mathcal{B}_{\alpha}(c) do
           if |x ∧ y| = p/2 then
                 Add (x, y) to L
′
.
```
<code>Input :</code> Weight p, input list $\mathcal{L} \subseteq \mathcal{S}^\text{m}_\text{p}$, set of centers \mathcal{C}_{f} , and a bucketing parameter *α*.

```
Output: Output list L
′
containing pairs (x, y) ∈ L×L with |x∧y| = p/2.
```
BUCKETING PHASE:

```
for x \in \Lambda do
       \mathsf{for} \ \mathsf{c} \in \mathsf{FindValidCenters}(\mathcal{C}_{\mathsf{f}}, \mathsf{x}, \alpha) \ \mathsf{do}Add x to \mathcal{B}_{\alpha}(\mathsf{c}).
```
CHECKING PHASE:

```
for c \in \mathcal{C}_f do
   for (x, y) \in B_\alpha(c) \times B_\alpha(c) do
         if |x ∧ y| = p/2 then
              Add (x, y) to L
′
.
```
return *L ′*

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH¹⁰

Basic idea: For any $(x, y) \in \mathcal{S}_{p}^{\text{m}} \times \mathcal{S}_{p}^{\text{m}}$ satisfying $|x \wedge y| = p/2$, there ρ exists a unique $\mathbf{c} \in \mathcal{S}^\mathsf{m}_{\mathsf{p}/2}$ such that $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = \mathsf{p}/2.$

¹⁰Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH¹⁰

Basic idea: For any $(x, y) \in \mathcal{S}_{p}^{\text{m}} \times \mathcal{S}_{p}^{\text{m}}$ satisfying $|x \wedge y| = p/2$, there ρ exists a unique $\mathbf{c} \in \mathcal{S}^\mathsf{m}_{\mathsf{p}/2}$ such that $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = \mathsf{p}/2.$

*Initially, the approach was not presented in the locality-sensitive filtering fashion, yet it aligns with the framework.

¹⁰Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH¹⁰

Basic idea: For any $(x, y) \in \mathcal{S}_{p}^{\text{m}} \times \mathcal{S}_{p}^{\text{m}}$ satisfying $|x \wedge y| = p/2$, there ρ exists a unique $\mathbf{c} \in \mathcal{S}^\mathsf{m}_{\mathsf{p}/2}$ such that $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = \mathsf{p}/2.$

*Initially, the approach was not presented in the locality-sensitive filtering fashion, yet it aligns with the framework.

Parameters:

$$
\mathcal{C}_f = \mathcal{S}_{p/2}^m, \quad \alpha = p/2.
$$

¹⁰Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of buckets efficiently.

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of buckets efficiently.

Parameters

$$
\mathcal{C}_f = \mathcal{S}_\alpha^m \cap \mathcal{C}_{\mathcal{H}}, \quad \alpha {\leq} \; p/2,
$$

where C_H is $[m, m - r]$ binary linear code.

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of buckets efficiently.

Parameters

$$
\mathcal{C}_f = \mathcal{S}_\alpha^m \cap \mathcal{C}_{\mathcal{H}}, \quad \alpha {\leq} \; p/2,
$$

where $C_{\mathcal{H}}$ is $[m, m - r]$ binary linear code.

→ FINDVALIDCENTERS subroutine needs to perform efficient decoding.

RANDOM PRODUCT CODES APPROACH (RPC)

Basic idea: Improve efficiency of FINDVALIDCENTERS subroutine using random product codes.

RANDOM PRODUCT CODES APPROACH (RPC)

Basic idea: Improve efficiency of FINDVALIDCENTERS subroutine using random product codes.

Parameters:

$$
\mathcal{C}_{\mathcal{H}}^{(i)} \subseteq \mathcal{S}_{v/t}^{m/t}, \quad \mathcal{C}_{\mathcal{H}} = \mathcal{C}_{\mathcal{H}}^{(1)} \times \cdots \times \mathcal{C}_{\mathcal{H}}^{(t)}, \quad \alpha, v \leq p/2 \text{ - to be optimized},
$$

where t is chosen to guarantee random behavior of the C_H and an efficient decodability.

[Sieving for codes](#page-4-0) [Near-Neighbor Search](#page-14-0) [Comparisons and conclusions](#page-47-0)

[Different approaches](#page-37-0)

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)

High-level idea

We interleave the bucketing and the checking phase.

[Sieving for codes](#page-4-0) [Near-Neighbor Search](#page-14-0) [Comparisons and conclusions](#page-47-0)

[Different approaches](#page-37-0)

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains *|C*^f *|/*d centers but we repeat the algorithm d times.

COMPARISONS AND CONCLUSIONS

Asymptotic runtime exponent for different ISD variants for the unique-decoding regime.

Time-memory trade-off curves of different SievingISD instantiations.

We introduce sieving-based ISD algorithms whose asymptotic runtime and memory are close to those of the state-of-the-art.

We introduce **sieving-based ISD** algorithms whose asymptotic runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

We introduce **sieving-based ISD** algorithms whose asymptotic runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

How practical is code-sieving?

We introduce sieving-based ISD algorithms whose asymptotic runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

How practical is code-sieving?

Thank you for your attention!