

ASYMPTOTICS AND IMPROVEMENTS OF SIEVING FOR CODES

May 2024, Eurocrypt 2024

presenting: Simona Etinski (CWI) based on joint work with: Léo Ducas (CWI, LEI), Andre Esser (TII), and Elena Kirshanova (TII) **Motivation**: Sieving is a well-known and widely used technique for attacking decoding problems in **lattice-based** cryptography.

Motivation: Sieving is a well-known and widely used technique for attacking decoding problems in **lattice-based** cryptography.

How well these techniques perform in the code-based setting?

Motivation: Sieving is a well-known and widely used technique for attacking decoding problems in **lattice-based** cryptography.

How well these techniques perform in the **code-based** setting?

Goal: Adapt sieving techniques to the **code-based setting** and make them competitive with state-of-the-art algorithms.

SIEVING FOR CODES

PROBLEM DEFINITION

Decoding problem, DP(n, k, w)

Given an [n,k] binary linear code ${\mathcal C}$ and a weight w, find a codeword of Hamming weight^1 w.

¹Hamming weight, | · |: The number of non-zero entries of a vector.

INFORMATION SET DECODING (ISD)

Information set decoding algorithms are the best known generic² attacks for the decoding problem.

²For certain parameter ranges, statistical decoding performs better. (Kevin Carrier et al. Statistical Decoding 2.0: Reducing Decoding to LPN. Cryptology ePrint Archive, Paper 2022/1000. 2022)

INFORMATION SET DECODING (ISD)

Information set decoding algorithms are the best known generic attacks for the decoding problem.

Recently, a new ISD algorithm based using **sieving** as a **subroutine** was proposed in [GJN23]².

²Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

Sieving for codes

Near-Neighbor Search 0000000000 Comparisons and conclusions 000

Sieving ISD

INSPIRATION PART I: [GJN23] APPROACH³

³Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

INSPIRATION PART I: [GJN23] APPROACH⁵

Provides slight improvements in asymptotic runtime over the baseline algorithm due to Prange⁴.

⁴Eugene Prange. "The use of information sets in decoding cyclic codes". In: IRE Trans. Inf. Theory 8.5 (1962), pp. 5–9.

⁵Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

INSPIRATION PART I: [GJN23] APPROACH⁵

Provides slight improvements in asymptotic runtime over the baseline algorithm due to Prange⁴.

Gives very good time-memory trade-offs.

⁴Eugene Prange. "The use of information sets in decoding cyclic codes". In: IRE Trans. Inf. Theory 8.5 (1962), pp. 5–9.

⁵Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

INSPIRATION PART II: NEAR-NEIGHBOR SEARCH

In the lattice-based setting, **sieving** was successfully combined with **near-neighbor search**⁶⁷⁸.

⁶Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. Cryptology ePrint Archive, Paper 2014/744. 2014.

⁷Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving without increasing the memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive, Paper 2015/522. 2015.

⁸Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

INSPIRATION PART II: NEAR-NEIGHBOR SEARCH

In the lattice-based setting, **sieving** was successfully combined with **near-neighbor search**.

[MO15]⁶, [BM18]⁷, etc. and Kévin Carrier's thesis⁸ explored **near-neighbor search** in the coding setting.

⁶Alexander May and Ilya Ozerov. "On Computing Nearest Neighbors with Applications to Decoding of Binary Linear Codes". In: 2015.

⁷Leif Both and Alexander May. "Decoding Linear Codes with High Error Rate and Its Impact for LPN Security". In: ed. by Tanja Lange and Rainer Steinwandt. 2018. ⁸Kévin Carrier. "Recherche de Presque-Collisions pour le Décodage et la Reconnaissance de Codes Correcteurs. (Near-collisions finding problem for decoding and recognition of error correcting codes)". PhD thesis. 2020. Sieving for codes

lear-Neighbor Search

Comparisons and conclusions 000

Sieving ISD

OUR GENERALIZATION

NEAR-NEIGHBOR SEARCH

DEFINITIONS AND NOTATION

$$\mathcal{S}_p^m := \{ \boldsymbol{x} \in \mathbb{F}_2^m: \ |\boldsymbol{x}| = p \}.$$

Near-Neighbor Search

DEFINITIONS AND NOTATION

$$\mathcal{S}_p^m := \{ \textbf{x} \in \mathbb{F}_2^m: \; |\textbf{x}| = p \}.$$

$\label{eq:Nearneighbors:} \text{Near neighbors:} \quad \big\{(x,y)\in \mathcal{S}_p^m\times \mathcal{S}_p^m: \; |x+y|=p\big\},$

where + denotes bitwise XOR.

Near-Neighbor Search

DEFINITIONS AND NOTATION

$$\mathcal{S}_p^m:=\{\textbf{x}\in\mathbb{F}_2^m:\;|\textbf{x}|=p\}.$$

$\label{eq:Nearneighbors:} \qquad \big\{ (\textbf{x},\textbf{y}) \in \mathcal{S}_p^m \times \mathcal{S}_p^m: \ |\textbf{x} \wedge \textbf{y}| = p/2 \big\},$

where \land denotes bitwise AND.

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), $NNS(\mathcal{L}, p)$

Given a target weight p and an input list $\mathcal{L} \subseteq \mathcal{S}_p^m$, find all pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ satisfying $|\mathbf{x} + \mathbf{y}| = p$.

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), NNS(*L*, p)

Given an input list $\mathcal{L} \subseteq S_p^m$ and a target weight p, find all pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ satisfying $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

NEAR-NEIGHBOR SEARCH PROBLEM

Near-Neighbor Search (NNS), $NNS(\mathcal{L}, p)$

Given an input list $\mathcal{L} \subseteq S_p^m$ and a target weight p, find all pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ satisfying $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

 \rightarrow Brute-force search runtime: $\tilde{\mathcal{O}}(|\mathcal{L}|^2)$.

Near-Neighbor Search

LOCALIZED SEARCH

For a suitable choice of α , if $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = \alpha$, **x** and **y** are likely **near neighbors**.

Near-Neighbor Search

Comparisons and conclusions 000

LOCALITY-SENSITIVE FILTERING (LSF)⁹

Given $\mathcal{L} \subseteq \mathcal{S}_p^m$

⁹Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

LOCALITY-SENSITIVE FILTERING (LSF)⁹

Given $\mathcal{L} \subseteq \mathcal{S}_p^m$, set of centers \mathcal{C}_f and parameter α

⁹Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

LOCALITY-SENSITIVE FILTERING (LSF)⁹

Given $\mathcal{L} \subseteq \mathcal{S}_p^m$, set of centers \mathcal{C}_f and parameter α , perform

• **bucketing phase**: for each element $\mathbf{x} \in \mathcal{L}$, if $|\mathbf{x} \wedge \mathbf{c}| = \alpha$, assign \mathbf{x} to a bucket $\mathcal{B}_{\alpha}(\mathbf{c})$,

⁹Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

LOCALITY-SENSITIVE FILTERING (LSF)⁹

Given $\mathcal{L} \subseteq \mathcal{S}_p^m$, set of centers \mathcal{C}_f and parameter α , perform

- **bucketing phase**: for each element $\mathbf{x} \in \mathcal{L}$, if $|\mathbf{x} \wedge \mathbf{c}| = \alpha$, assign \mathbf{x} to a bucket $\mathcal{B}_{\alpha}(\mathbf{c})$,
- **checking phase**: for each $\mathbf{c} \in C_{f}$, check which $(\mathbf{x}, \mathbf{y}) \in \mathcal{B}_{\alpha}(\mathbf{c}) \times \mathcal{B}_{\alpha}(\mathbf{c})$ are near neighbors and add them to the output list.

⁹Anja Becker, Léo Ducas, et al. New directions in nearest neighbor searching with applications to lattice sieving. 2015.

Input : Weight p, input list $\mathcal{L} \subseteq S_p^m$, set of centers C_f , and a bucketing parameter α .

Input : Weight p, input list $\mathcal{L} \subseteq S_p^m$, set of centers C_f , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

BUCKETING PHASE:

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

BUCKETING PHASE:

for $x \in \mathcal{L}$ do

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

BUCKETING PHASE:

```
for \mathbf{x} \in \mathcal{L} do
for \mathbf{c} \in FindValidCenters(\mathcal{C}_{f}, \mathbf{x}, \alpha) do
```

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

BUCKETING PHASE:

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

BUCKETING PHASE:

CHECKING PHASE:

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

BUCKETING PHASE:

CHECKING PHASE:

for $c \in \mathcal{C}_f$ do

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

BUCKETING PHASE:

CHECKING PHASE:

```
\label{eq:constraint} \left[ \begin{array}{c} \mbox{for } c \in \mathcal{C}_f \mbox{ do } \\ \mbox{for } (x,y) \in \mathcal{B}_\alpha(c) \times \mathcal{B}_\alpha(c) \mbox{ do } \end{array} \right]
```

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(x, y) \in \mathcal{L} \times \mathcal{L}$ with $|x \wedge y| = p/2$.

BUCKETING PHASE:

CHECKING PHASE:

```
\label{eq:constraint} \left| \begin{array}{c} \mbox{for } c \in \mathcal{C}_f \mbox{ do} \\ \mbox{for } (x,y) \in \mathcal{B}_\alpha(c) \times \mathcal{B}_\alpha(c) \mbox{ do} \\ \mbox{ if } |x \wedge y| = p/2 \mbox{ then} \\ \mbox{ } \mbox{ Add } (x,y) \mbox{ to } \mathcal{L}'. \end{array} \right|
```

Input : Weight p, input list $\mathcal{L} \subseteq \mathcal{S}_{p}^{m}$, set of centers \mathcal{C}_{f} , and a bucketing parameter α .

Output: Output list \mathcal{L}' containing pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{L} \times \mathcal{L}$ with $|\mathbf{x} \wedge \mathbf{y}| = p/2$.

BUCKETING PHASE:

CHECKING PHASE:

 $\text{return } \mathcal{L}'$

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH¹⁰

Basic idea: For any $(\mathbf{x}, \mathbf{y}) \in S_p^m \times S_p^m$ satisfying $|\mathbf{x} \wedge \mathbf{y}| = p/2$, there exists a unique $\mathbf{c} \in S_{p/2}^m$ such that $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = p/2$.

¹⁰Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH¹⁰

Basic idea: For any $(\mathbf{x}, \mathbf{y}) \in S_p^m \times S_p^m$ satisfying $|\mathbf{x} \wedge \mathbf{y}| = p/2$, there exists a unique $\mathbf{c} \in S_{p/2}^m$ such that $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = p/2$.

*Initially, the approach was not presented in the locality-sensitive filtering fashion, yet it aligns with the framework.

¹⁰Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

GUO, JOHANSSON AND NGUYEN [GJN] APPROACH¹⁰

Basic idea: For any $(\mathbf{x}, \mathbf{y}) \in S_p^m \times S_p^m$ satisfying $|\mathbf{x} \wedge \mathbf{y}| = p/2$, there exists a unique $\mathbf{c} \in S_{p/2}^m$ such that $|\mathbf{x} \wedge \mathbf{c}| = |\mathbf{y} \wedge \mathbf{c}| = p/2$.

*Initially, the approach was not presented in the locality-sensitive filtering fashion, yet it aligns with the framework.

Parameters:

$$C_{f} = S_{p/2}^{m}, \quad \alpha = p/2.$$

¹⁰Qian Guo, Thomas Johansson, and Vu Nguyen. A New Sieving-Style Information-Set Decoding Algorithm. 2023.

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of buckets efficiently.

CODED HASHING APPROACH (HASH)

Basic idea: Increase the size of buckets but reduce the number of buckets efficiently.

Parameters

$$\mathcal{C}_{f} = \mathcal{S}^{m}_{\alpha} \cap \mathcal{C}_{\mathcal{H}}, \quad \alpha \leq p/2,$$

where $\mathcal{C}_{\mathcal{H}}$ is [m,m-r] binary linear code.

Coded hashing approach (HASH)

Basic idea: Increase the size of buckets but reduce the number of buckets efficiently.

Parameters

$$\mathcal{C}_{f} = \mathcal{S}^{m}_{\alpha} \cap \mathcal{C}_{\mathcal{H}}, \quad \alpha \leq p/2,$$

where $\mathcal{C}_{\mathcal{H}}$ is [m,m-r] binary linear code.

 \rightarrow FINDVALIDCENTERS subroutine needs to perform efficient decoding.

RANDOM PRODUCT CODES APPROACH (RPC)

Basic idea: Improve efficiency of FINDVALIDCENTERS subroutine using random product codes.

RANDOM PRODUCT CODES APPROACH (RPC)

Basic idea: Improve efficiency of FINDVALIDCENTERS subroutine using random product codes.

Parameters:

$$\mathcal{C}_{\mathcal{H}}^{(i)} \subseteq \mathcal{S}_{v/t}^{m/t}, \quad \mathcal{C}_{\mathcal{H}} = \mathcal{C}_{\mathcal{H}}^{(1)} \times \cdots \times \mathcal{C}_{\mathcal{H}}^{(t)}, \quad \alpha, v \leq p/2 \text{ - to be optimized},$$

where t is chosen to guarantee random behavior of the $\mathcal{C}_{\mathcal{H}}$ and an efficient decodability.

Comparisons and conclusions 000

Different approaches

MEMORY OPTIMAL VERSIONS (HASH AND RPC MEMO-OPT)

High-level idea

We interleave the bucketing and the checking phase.

Comparisons and conclusions 000

Different approaches

Memory optimal versions (HASH and RPC memo-opt)

High-level idea

We interleave the bucketing and the checking phase.

Memory optimal approach

The initial set of filters contains $|\mathcal{C}_f|/d$ centers but we repeat the algorithm d times.

COMPARISONS AND CONCLUSIONS

Asymptotic runtime exponent for different ISD variants for the unique-decoding regime.

Time-memory trade-off curves of different SievingISD instantiations.

20

SUMMA SUMMARUM

We introduce **sieving-based ISD** algorithms whose asymptotic runtime and memory are close to those of the state-of-the-art.

Summa summarum

We introduce **sieving-based ISD** algorithms whose asymptotic runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

Summa summarum

We introduce **sieving-based ISD** algorithms whose asymptotic runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

How practical is code-sieving?

Summa summarum

We introduce **sieving-based ISD** algorithms whose asymptotic runtime and memory are close to those of the state-of-the-art.

A new alignment of the lattice-based and code-based framework.

How practical is code-sieving?

Thank you for your attention!