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Differential cryptanalysis

• Cryptanalysis technique introduced by Biham and Shamir in 1990.
• Based on the existence of a high-probability differential (δin,δout).

• If the probability of (δin,δout) is (much) higher than max(2−n,2−κ), where n is the
block size, κ the key length, then we have a differential distinguisher.
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Key recovery attack

A differential distinguisher can be used to mount a key recovery attack.

• This technique broke many block ciphers of the 70s-80s, e.g. DES, FEAL, etc.

• New primitives should come with arguments of resistance by design against this
technique.

• Most of the arguments used rely on showing that differential distinguishers of high
probability do not exist after a certain number of rounds.

• Not always enough: A deep understanding of how the key recovery works is necessary
to claim resistance against these attacks.
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The key recovery problem
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Overview of the key recovery procedure

rδ rounds δoutδinrin rounds rout roundsDin Dout

2−p

2−din

1 1

First step: Construct 2p+din pairs ((P,C), (P′,C′)) s.t. P+P′ ∈ Din.
• Use of structures of size 2din → Data complexity: ≈ 2p+1, Memory complexity: 2din

Second step: Discard pairs that are not in Dout .
• Number of pairs for the attack: N = 2p+din−(n−dout )

Third step: Core key recovery
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Core key recovery
Goal
Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet ((P,C), (P′,C′),k) such that the (partial) key candidate k encrypts
(resp. decrypts) (P,P′) (resp. (C,C′)) to the input (resp. output) of the differential.

What is the complexity of this procedure?

• Upper bound: min(2κ,N ·2|K |),

• Lower bound: N +N ·2|K |−din−dout ,
where N ·2|K |−din−dout is the number of expected candidates.

A key recovery is efficient, if its complexity is as close as possible to the lower bound.
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The key recovery problem

Potentially too many active S-boxes and key guesses.

Our goal : Automatise the key recovery for SPN block ciphers with a bit-permutation as
linear layer and an (almost) linear key schedule.
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Efficient key recovery

Solving an active S-box S

Determine the triplets (x,x′,k) s. t. x+x′ ∈ νin and S(x+k)+S(x′+k) ∈ νout .
Discard the other triplets.

Example: this active S-box has 28+4−2 = 210 solutions.

Can be generalised to any subset of active S-boxes!

Goal: Reduce the number of triplets as early as possible whilst maximizing the number of
determined key bits in the involved key material K .
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An algorithm for efficient key recovery
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Modeling the key recovery as a graph

S2,0

S1,2S1,0

S0,2S0,0 S0,1S0,3

S4,2

S5,1 S5,0

S6,2 S6,3 S6,0 S6,1

Key recovery:
partition of the nodes + associated order
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Considering strategies
Strategy SX for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

Parameters of a strategy SX :
• number of solutions N ;
• online time complexity T .

S5,0

2

S6,1S6,03

S5,0

S6,1

1

S6,0

A strategy can be further refined with extra information: e.g. memory, offline time.

Objective: Build an efficient strategy for the whole graph.

→ Based on basic strategies, i.e. strategies for a single S-box.
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Comparing two strategies

Compare two strategies S 1
X and S 2

X for the same subgraph X

1. Choose the one with the best time complexity.
2. If same time complexity, choose the one with the best memory complexity.

Compare S 1
X and S 2

Y when Y ⊂ X

If the number of solutions and time complexity of S 1
X are not higher than those of S 2

Y ,
then we can freely replace S 2

Y by S 1
X .
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Merging two strategies

Let SX and SY two strategies for the graphs X and Y respectively.

• The number of solutions of S ′ = merge(SX ,SY ) only depends on X ∪Y :

Number of solutions of S ′

Sol(X ∪Y ) = Sol(X)+Sol(Y )−# bit-relations between the nodes of X and Y " log scale

Time and memory associated to S ′

• T(S ′) ≈ max(T(SX ),T(SY ),Sol(X ∪Y ))

• M(S ′) ≈ max(M(SX ),M(SY ),min(Sol(SX ),Sol(SY )))
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A dynamic programming approach

• The online time complexity of merge(SX ,SY ) only depends on the time complexities
of SX and SY .

• An optimal strategy for X ∪Y can always be obtained by merging two optimal
strategies for X and Y .

• Use a bottom-up approach, merging first the strategies with the smallest time
complexity to reach a graph strategy with a minimal time complexity.

Dynamic programming approach
Ensure that, for any subgraph X , we only keep one optimal strategy to enumerate it.
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Sieving

Idea: Use the differential constraints to filter out pairs that cannot follow the differential,
regardless of the value of the key.

• Example:
(x3,x′3,x2,x′2,x1⊕x′1,x0⊕x′0)

Filter: 36/26 = 2−0.83.

Pre-sieving
Apply a sieve on all S-boxes of the external rounds.

Advantage : The key recovery is performed on N ′ ≤ N pairs.
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Precomputing partial solutions

Idea
Precompute the partial solutions to some subgraph.

• Impact on the memory complexity and the offline time of the attack.

• The optimal key recovery strategy depends on how much memory and offline time are
allowed.
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Applications of our tool: KYRYDI
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Application to the toy cipher
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Application to the toy cipher
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Application to other ciphers

Start from an existing distinguisher that led to the best key recovery attack against the
target cipher.

• RECTANGLE: Extended by one round the previous best attack.

• PRESENT-80: Extended by two rounds the previous best differential attack.

• GIFT-64 and SPEEDY-7-192: Best key recovery strategy without additional
techniques.
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Extensions and improvements

• Handle ciphers with more complex linear layers.

• Handle ciphers with non-linear key schedules.

• Incorporate tree-based key recovery techniques by exploiting the structure of the
involved S-boxes.

The best distinguisher does not always lead to the best key recovery!

Ultimate goal
Combine the tool with a distinguisher-search algorithm to find the best possible attacks.
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Other open problems

• Prove optimality.

• The tool works for (impossible) differential attacks:

→ Apply a similar approach to other attacks.

Thanks for your attention!

Link to KYRYDI:

https://gitlab.inria.fr/capsule/kyrydi
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